Compiler Construction

Lecture 13: Syntactic Analysis VIII (LR(1) Parsing)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

© Repetition: SLR(1) Parsing

Rm Compiler Construction ter semester 2010/11

Adding Lookahead

Goal: resolving conflicts by considering first input symbol

Observations:
o [A — ﬁl . aﬁg] S LR(O)(OLﬁl)
= S =} aAw =, afrafaw
7N
pushdown next input symbol

Thus: shift only on lookahead a
o [A— B] € LR(0)(af)
= S’ = adrw =, afrw

7N

pushdown input
— z€fo(A) CX. (r =conlyifw=c¢)

Thus: reduce with A — [only if lookahead z € fo(A)

m' Compiler Construction Winter semester 2010/11

The SLR(1) Action Function

Definition (SLR(1) action function)

The SLR(1) action function
act : LR(0)(G) x 2. — {redi | i € [p]} U {shift, accept, error}
is defined by
redi ifm=A4A—a[d—a]el (i#0),
and z € fo(A)
act(I,r) := ¢ shift if [A— ay-zag] €l and z € ¥
accept if [S'— S:]elandx=¢
error otherwise

Definition (SLR(1) grammar)

A grammar G € CFGx has the SLR(1) property (notation:
G € SLR(1)) if its SLR(1) action function is well defined.

Together, act and the LR(0) goto function (cf. Definition 11.9) form
the SLR(1) parsing table of G.

m Compiler Construction Winter semester 2010/11

The SLR(1) Parsing Table

Example (cf. Example 12.9)

Iy: [E' — -E] [E— -E+T) I,: [E' — E] [E — E - +T]
E — T T — -T*F| Ir: [E— T [T — T -*F]
T — - F} [F—>(E)] I3 : T—>F~]
F — -a [F — b
L: [Fo (-B)] [E— -E+qT] Is: [F— a] Ag,N Y]
E — T [T — -T*F| Is: [F — b I +{§}
T —-F] [F—-(B)] Ir: [E— E+-T|[T — -T*F| = {;{f B} 35}}
F —] [F—>b} T—>-F] [F—> (E)} P {+7*7)7E}
F — -a] [F — b sl
Is: [T —>T*-F|[F—-(E)] Is: [F— (E:)] |[E— E-+T)]
F — -a] [F — b Iio: [E— E+T] [T — T - *F|
I : [T — T*F} Iio: [F — (E)}
R(0)(GaEr) act goto
+ * () a b 5 E T F + * () a b
Iy shift shift shift I Io I3 I Is Ig
I shift accept Iz
I red 2 shift red 2 red 2 Is
I3 red4 red4 red 4 red 4
Iy shift shift shift Ig Is I3 Iy Is Ig
Is red6 red 6 red 6 red 6
Is red7 red7 red 7 red 7
I7 shift shift shift Lo I3 Iy Is Ig
Is shift shift shift I11 I Is Ig
Ig shift shift I 112
Io red1 shift red 1 red 1 Is
I11 red3 red3 red 3 red 3
T2 red5 red 5 red 5 red 5

m Compiler Construction Winter semester 2010/11

The SLR(1) Parsing Automaton

Definition (SLR(1) parsing automaton)

The SLR(1) parsing automaton is defined as in the LR(0) case (see
Definition 12.6), except for the transition relation:

shift: (aw,al, z) F (w,all’, z) if act(I,a) = shift and
goto(I,a) =1
reduce,: (aw,ally...I,,2)F (aw,all’, i) if act(I,,a) = red s,
mi=A—Y1...Y,, and goto(I,A) = I

reduce.: (e,ally ... I, 2) b (e,all’, i) if act(l,,c) = red 1,
m=A—>Y,...Y,, and goto(I,A) =TI’

accept: (e,Ipl,2) F (g,¢,20) if act([,c) = accept

errory: (aw,al, z) F (g,¢e, z error) if act(l,a) = error

error.: (g,al,z) b (g,¢, zerror) if act([,e) = error

m Compiler Construction Winter semester 2010/11

© LR(1) Parsing

Rm Compiler Construction nter semester 2010/11

SLR(1) Conflicts

Problem: not all conflicts can be resolved using fo sets

Example 13.1

Grr:S'"—S S—L=R|R L—*R|a R—L
LR(0)(GLRr):
Iy := LR(0)(¢) : [S" — 5] [S — -L=R] [S — ‘R]
Lo+ (Lo [R—-I
I := LR(0)(S) : [S" — S
Iy := LR(0)(L) : [S— L-=R] [R— L
Is:= LR(0)(R) : [S — R
I, := LR(0)(*) : [L - *-R] [R— L] [L — *xR] [L — -a]
Iy = LR(0)(a): [L—a]
Is:= LR(0)(L=): [S— L=-R] [R— ‘L] [L — *xR] [L — -a]
I; := LR(0)(*R) : [L — *R]
Is:= LR(0)(*L): [R— L]
Iy :== LR(0)(L=R) : [S — L=R']
But: conflict in I not SLR(1)-solvable since = € fo(R)

Compiler Construction Winter semester 2010/11 8

LR(1) Items and Sets 1

Observation: not every element of fo(A) can follow every occurrence
of A
— refinement of LR(0) items by adding possible lookahead symbols

Definition 13.2 (LR(1) items and sets)

Let G = (N, X%, P,S) € CFGy, be start separated by S — S.

o If S’ =% aAaw =, affraw, then [A — [31 - B2, a] is called an
LR(1) item for of.

o If ' =% aA =, af1fs, then [A — (1 - fa,¢] is called an LR(1)
item for af;.

o Given v € X*, LR(1)(vy) denotes the set of all LR(1) items for ~,
called the LR(1) set (or: LR(1) information) of ~.

o LR(1)(G) :={LR(1)(v) |y € X*}.

m Compiler Construction Winter semester 2010/11 9

LR(1) Items and Sets II

Corollary 13.3

Q For every v € X*, LR(1)(7y) is finite.
@ LR(1)(G) is finite.
Q For every v € X*, LR(1)(y) “contains” LR(0)(7), i.e.,

{[A— B1-Ba] | [A— b1 B2,2] € LR(1)(7)} = LR(0)(v)-

Q [A— (1 P2,2] € LR(1)(G) = =z € fo(4)

m Compiler Construction Winter semester 2010/11 10

LR(1) Conflicts

Definition 13.4 (LR(1) conflicts)

Let G = (N,X,P,S) € CFGy and I € LR(1)(G).
@ [has a shift/reduce conflict if there exist A — ajaag, B — 3 € P

and x € Y. such that
[A — a1 - aag, z],[B — (-,a] € I.

@ I has a reduce/reduce conflict if there exist x € 3. and
A— a,B— (€ P with A# B or a # (8 such that
[A — a-,z2],[B — (2] € 1.

G € LR(1) iff no I € LR(1)(G) contains conflicting items.

m Compiler Construction Winter semester 2010/11 11

Computing LR(1) Sets I

The computation of LR(0) sets (cf. Theorem 11.7) can be extended to
cover right contexts:

Theorem 13.6 (Computing LR(1) sets)

Let G = (N, X, P,S) € CFGy, be start separated by S" — S and
reduced.
QO LR(1)(e) is the least set such that
o [§'—-S,e] € LR(1)(¢) and
o if [A— -By,z] € LR(1)(¢), B— B € P, and y € fi(yx), then
[B— -08,y] € LR(1)(e).
Q@ LR(1)(aY) (x € X*,Y € X) is the least set such that
o if [A = Y ° Y’)’?vw] € LR(].)(O(),
then [A — 1Y - y2,2] € LR(1)(aY) and
o if [A = v - Bys,z] € LR(1)(aY), B— B € P, and y € fi(y2x), then
[B— -0,y] € LR(1)(aY).

4

m Compiler Construction Winter semester 2010/11 12

Computing LR(1) Sets 1I
Example 13.7 (cf. Example 13.1)

Grr:8'"—-S S—L=R|R L—*R|a R— L
LR(1)(GLr): [S" — -S,e] € LR(1)(e) [A — -Bv,z] € LR(1)(¢), B — B € P,y € fi(yz
= [B — -B,y] € LR(1)(g)
Iy := LR(1)(e) : [— .S, €] [S— -L=R,e] [S— -R,e] [L— *R,=]
[L - 3, =] [R - 'L>E] [L — *R, 6} [L = &, 6}
Ii := LR(1)(S) : [S" — S- €]
I5 = LR(1)(L) : [S— L-=R,e] [R— L-¢]
I3 := LR(1)(R) : [S — R- €]
L= IRO)®: [L—o*-Re [L—*Re [Ro L] [R— L
L —*R,- [L—-a= [L—+Re [L—-ar]
I := LR(1)(a) : [L — a-,=] [L — a-, €]
Is := LR(1)(L=) : [S— L=-R,e] [R— -L,¢] [L — *R,e] [L— -a,¢]
I := LR(1)(*R) : [L — *R-, =] [L — *R-, €]
Iy := LR(1)(*L) : [R — L-, =] [R — L-¢]
Iy := LR(1)(L=R) : [S — L=R- €]
Il := LR(1)(L=L): [R — L-¢|
It := LR(1)(L=%) : [L —*-Rye] [R—-Le [L — *R,e] [L— -a,¢]
Iiy := LR(1)(L=a) : [L — a-é€]
Ily := LR(1)(L=*R) : [L — *R-]
]{4 o= @
In I4: shift on =/reduce on ¢ = Grr € LR(1)

m Compiler Construction Winter semester 2010/11 13

The LR(1) Action Function

Definition 13.8 (LR(1) action function)

The LR(1) action function
act : LR(1)(G) x . — {redi | i € [p]} U {shift, accept, error}
is defined by

redi ifm=A—aand [A— a,x]el
shift ~ if [A — g -zag,yl €l and z € X
accept if [S" — S.,eleTandz=¢

error otherwise

act(l,z) :=

For every G € CFGx,, G € LR(1) iff its LR(1) action function is well
defined.

m Compiler Construction Winter semester 2010/11 14

The LR(1) goto Function

The goto function is defined in analogy to the LR(0) case
(Definition 11.9).

Definition 13.10 (LR(1) goto function)

The function goto : LR(1)(G) x X — LR(1)(G) is determined by

goto(I,Y)=1" iff there exists v € X* such that
I =LR(1)(y) and I' = LR(1)(7Y).

Again, act and goto form the LR(1) parsing table of G.

m' Compiler Construction Winter semester 2010/11 15

The LR(1) Parsing Table

Example 13.11 (cf. Example 13.7)

LR(1)(GLR) act/goto|x, goto| N
* = a e |S L R
7 shift/ T} shift /T T I, T
0 accept
I shift/ I} red 5
I3 red 2
I shift /I shift /I I
I red 4
I shift/ I/, shift /1., I, I
Il red 3
I red 5
I red 1
Io red 5
I, |shift/I], shift /1., I, Il
Iy red 4
Iig red 3
(empty = error /()
RWTH Compiler Construction Winter semester 2010/11

16

The LR(1) Parsing Automaton I

Definition 13.12 (LR(1) parsing automaton)

The LR(1) parsing automaton is defined as in the LR(0) case (see
Definition 12.6), except for the transition relation:

shift: (aw,al, z) F (w,all’, z) if act(I,a) = shift and
goto(I,a) =1
reduce,: (aw,all ... I, 2)F (aw,all’, zi) if act(I,,a) = redi,
mi=A—Y1...Y,, and goto([,A) = I

reduce.: (e,ally...I,,2) F (e,all’, zi) if act(l,,e) = red i,
m=A—>Y,...Y,, and goto(I,A) =TI’

accept: (e,Ipl,z) F (g,e,20) if act([,e) = accept

errory: (aw,al, z) F (g,¢e, zerror) if act(I,a) = error

error.: (g,al,z) b (g,¢, zerror) if act([,e) = error

m Compiler Construction Winter semester 2010/11

The LR(1) Parsing Automaton II

Example 13.13 (cf. Example 13.7)

Grr:S" — S (0)

S— L=R| R (1,2)

L — *R|a(3,4)

R— L (5)

LR(1)(GLr) act/goto[s. goto|n
* = a e |[SL R
17 shift/I; shift /17 77 15 13| LR(1) parsing of a=x*a:
Ii accept] (a=*a, I} , €)
I shift/I§ red 5 b (=*a, Iy1} , €)
I3 red 2 b (=*a, IH1} .4)
I; shift/I} shift /I Is Ir| + (=a, INI}14 , 4)
I red 4 F(o a, INILILE, 4)
Ig phift/I1; shift/I1 Iols| (e LI, 4)
I i F(e BLEN T, 44)
Is red5 F(e [BIGH T, 445)
I red 1 F(e LIbIET, 4453)
o red 5 F(e INIGIEL, 44535)
I shift/ 11, shift/ 1, Iolis| (& Il , 445351)
I, red 4 F(ee , 4453510)
Iis red 3
(empty = error /()
m Compiler Construction Winter semester 2010/11 18

© LALR(1) Parsing

Rm Compiler Construction ter semester 2010/11 19

LALR(1) Parsing

@ Motivation: resolving conflicts using LR(1) too expensive

o Example 13.1/13.7: |[LR(0)(Grg)| = 11, |LR(1)(GLr)| = 15

@ A. Johnstone, E. Scott: Generalised Reduction Modified LR
Parsing for Domain Specific Language Prototyping, HICSS 02,
TEEE, 2002, nttp://doi.ieeecomputersociety.org/10.1109/HICSS.2002.994495

Grammar | |LR(0)(G)| |LR(1)(G)]

Ansi-C 381 1788

Pascal 368 1395

@ Observation: potential redundancy by containment of LR(0) sets
in LR(1) sets (cf. Corollary 13.3)

Definition 13.14 (LR(0) equivalence)

Let Irg : LR(1)(G) — LR(0)(G) be defined by

Iro(I) :={[A— B1-Po] | [A— B1-Po,z] € 1}.
Two sets I1,I5 € LR(1)(G) are called LR(0)-equivalent (notation:
Il ~0 IQ) if 11'0([1) = lI'()(IQ).

m Compiler Construction Winter semester 2010/11 20

http://doi.ieeecomputersociety.org/10.1109/HICSS.2002.994495

LR(0) Equivalence

Example 13.15 (cf. Example 13.1/13.7)

GLR: S, — S S—>L=R‘R LR(I)(GLR)
L—*R|a R—L Ij(e) - S" — .S, €] [S — -L=R, €]
LER(0)(GLr) . 'R’a}] bLz_) '*LR’T]
LR): -, = — L€
Io(e) : S’ — Si] {S — ~L=}R] L — *R,e] [L— -a,¢]
S — R L — *R 1/(9) : S’ — S-,¢€]
v Gy hR. Rk
1 : . : — R, ¢
12EL)); g—>L-]=R] R — L] 1 () - L —%-R= [L—*R,el
I3(R) : — R- R— -L,= R — L,
Li(#): [L—+-FR [R— I LRy o
I5(a) : L —a] b] Il(a) : £—>z:,R=7}E} £—>aa~:z}
Is(L=): [S— L=-R][R— -L] IN(L=) : S — L=-R,¢] [R— -L,é€]
L — *R] |[L— -3 0 L — xR, 5}7 : L— -a,f]
nem: iz AP sy
B — L * B = I = Iy €
Io(L=R) : [S — L=R/] IZ(L=R) . [S— L=R.,€]
> [’1 ~0 [{1 1}0(L=L)C R—>L~,E}
[é ~0 [iQ I'y(L=*): [L—*-R,e] [R— -L,e]
I ~o I L — *R,e] [L— -a,¢]
L ~o 1 Ly(L=a): [L—ae]
I13(L=*R) : [L — *R-, €]

m Compiler Construction Winter semester 2010/11 21

LALR(1) Sets 1

For every G € CFGy, |[LR(1)(G)/ ~o | = |[LR(0)(G)|.

Idea: merge LR(0)-equivalent LR(1) sets (maintaining the lookahead
information, but possibly introducing conflicts)

Definition 13.17 (LALR(1) sets)

Let G € CFGx.

o An information I € LR(1)(G) determines the LALR(1) set
Ulll~o = U{I" € LR()(G) | I ~o I}
@ The set of all LALR(1) sets of G is denoted by LALR(1)(G).

Remark: by Corollary 13.16, |LALR(1)(G)| = |LR(0)(G)]
(but LALR(1) sets provide additional lookahead information)

m Compiler Construction Winter semester 2010/11

LALR(1) Sets 1I

Example 13.18 (cf. Example 13.15)

Grr:S8' —S S—L=R|R L—*R|a R—1L

LR(O)(GLR) : LALR(l)(GLR):

Iy(e) : S —-S] [S—-L=R] Ij:=1I: S" — -S| [S — -L=R, €]
S — -R] [L — -*R] S — ‘R, ¢] [L — *R,=/¢]
L — -a] [R — -L] L — .a,=/¢] [R— -L,¢]

I, (S) S — S I s=1Ij s S — S- €]

I(L): [S— L-=R][R— L] I =1 S — L-=R,e] [R— L-¢]

I3(R): [S— R I =1 S — R- €]

Is(¥): [L—*-R] [R— L] I{=ILUI;: [L—* R=/e] [R— L,=/e]
L— *R] [L— - L — *R,=/e] [L— -a,=/e]

Is(a): [L—a] If ==IsU Ly : [L — a,=/e]

IG(L=) : SHL:R] [RHL]]é/ = Ié : S_>L='R7E] [R_>L’E]
L — *R] [L— 4] L — *R, €] [L — -a,¢€]

I;(*R) : [L — *R/] I =T, Ulis: [L — *R-,=/€]

Is(xL): [R— L 1 = W 2 TR = e =]

Iy(L=R) : [S — L=R'] iy =1 ¢ S — L=R-,¢]

m Compiler Construction Winter semester 2010/11 23

The LALR(1) Action Function

The LALR(1) action function is defined in analogy to the LR(1) case
(Definition 13.8).

Definition 13.19 (LALR(1) action function)

The LALR(1) action function

act : LALR(1)(G) x Xz — {redi | i € [p]} U {shift, accept, error}
is defined by
redi ifr(i)=A—aand [A— a,z]€l
shift if [A— a;-zag,yl€land z € X
accept if [S" — S, elelTandz=¢
error otherwise

act([,z) :=

Definition 13.20 (LALR(1) grammar)

A grammar G € CFGx, has the LALR(1) property (notation:
G € LALR(1)) if its LALR(1) action function is well defined.

m Compiler Construction Winter semester 2010/11 24

The LALR(1) goto Function

Example 13.21 (cf. Example 13.18)

GLRr € LALR(l)

Also the LR(1) goto function (Definition 13.10) carries over to the
LALR(1) case. Reason:

Let G € CFGyx, and I1,1s € LR(1)(G) such that Iy ~o Is. Then, for
every Y € X, goto(11,Y) ~o goto(l2,Y).

Again, act and goto form the LALR(1) parsing table of G.

m' Compiler Construction Winter semester 2010/11

The LALR(1) Parsing Table

Example 13.23 (cf. Example 13.18)

LALR(1)(GLR) act/goto|x, goto| N
* = a € S L R
7 shift/T7 shift/ 7 T I 17
i accept
I} shift /I red 5
I red 2
I shift/ 17 shift /I o
I red 4 red 4
I shift/I” shift/ I I
I red 3 red 3
Iy red 5 red 5
I red 1
(empty = error /()

m Compiler Construction Winter semester 2010/11 26

	Repetition: SLR(1) Parsing
	LR(1) Parsing
	LALR(1) Parsing

