
Compiler Construction

Lecture 13: Syntactic Analysis VIII (LR(1) Parsing)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Outline

1 Repetition: SLR(1) Parsing

2 LR(1) Parsing

3 LALR(1) Parsing

Compiler Construction Winter semester 2010/11 2

Adding Lookahead

Goal: resolving conflicts by considering first input symbol

Observations:

[A → β1 · aβ2] ∈ LR(0)(αβ1)
=⇒ S′ ⇒∗

r αAw ⇒r αβ1

↗
pushdown

aβ2w
↖
next input symbol

Thus: shift only on lookahead a

[A → β·] ∈ LR(0)(αβ)
=⇒ S′ ⇒∗

r αAxw ⇒r αβ
↗

pushdown

xw
↖
input

=⇒ x ∈ fo(A) ⊆ Σε (x = ε only if w = ε)

Thus: reduce with A → β only if lookahead x ∈ fo(A)

Compiler Construction Winter semester 2010/11 3

The SLR(1) Action Function

Definition (SLR(1) action function)

The SLR(1) action function
act : LR(0)(G) × Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I, x) :=



















red i if πi = A → α, [A → α·] ∈ I (i 6= 0),
and x ∈ fo(A)

shift if [A → α1 · xα2] ∈ I and x ∈ Σ
accept if [S′ → S·] ∈ I and x = ε
error otherwise

Definition (SLR(1) grammar)

A grammar G ∈ CFGΣ has the SLR(1) property (notation:
G ∈ SLR(1)) if its SLR(1) action function is well defined.

Together, act and the LR(0) goto function (cf. Definition 11.9) form
the SLR(1) parsing table of G.

Compiler Construction Winter semester 2010/11 4

The SLR(1) Parsing Table

Example (cf. Example 12.9)

I0 : [E′ → ·E] [E → ·E+T] I1 : [E′ → E·] [E → E · +T]
[E → ·T] [T → ·T*F] I2 : [E → T ·] [T → T · *F]
[T → ·F] [F → ·(E)] I3 : [T → F ·]
[F → ·a] [F → ·b]

I4 : [F → (· E)] [E → ·E+T] I5 : [F → a·]
[E → ·T] [T → ·T*F] I6 : [F → b·]
[T → ·F] [F → ·(E)] I7 : [E → E+ · T] [T → ·T*F]
[F → ·a] [F → ·b] [T → ·F] [F → ·(E)]

[F → ·a] [F → ·b]
I8 : [T → T* · F] [F → ·(E)] I9 : [F → (E ·)] [E → E · +T]

[F → ·a] [F → ·b] I10 : [E → E+T ·] [T → T · *F]
I11 : [T → T*F ·] I12 : [F → (E)·]

A ∈ N fo(A)
E′ {ε}
E {+,), ε}
T {+, *,), ε}
F {+, *,), ε}

LR(0)(GAE) act goto
+ * () a b ε E T F + * () a b

I0 shift shift shift I1 I2 I3 I4 I5 I6
I1 shift accept I7
I2 red 2 shift red 2 red 2 I8
I3 red 4 red 4 red 4 red 4
I4 shift shift shift I9 I2 I3 I4 I5 I6
I5 red 6 red 6 red 6 red 6
I6 red 7 red 7 red 7 red 7
I7 shift shift shift I10 I3 I4 I5 I6
I8 shift shift shift I11 I4 I5 I6
I9 shift shift I7 I12
I10 red 1 shift red 1 red 1 I8
I11 red 3 red 3 red 3 red 3
I12 red 5 red 5 red 5 red 5

Compiler Construction Winter semester 2010/11 5

The SLR(1) Parsing Automaton

Definition (SLR(1) parsing automaton)

The SLR(1) parsing automaton is defined as in the LR(0) case (see
Definition 12.6), except for the transition relation:

shift: (aw,αI, z) ` (w,αII ′, z) if act(I, a) = shift and
goto(I, a) = I ′

reducea: (aw,αII1 . . . In, z) ` (aw,αII ′, zi) if act(In, a) = red i,
πi = A → Y1 . . . Yn, and goto(I,A) = I ′

reduceε: (ε, αII1 . . . In, z) ` (ε, αII ′, zi) if act(In, ε) = red i,
πi = A → Y1 . . . Yn, and goto(I,A) = I ′

accept: (ε, I0I, z) ` (ε, ε, z 0) if act(I, ε) = accept

errora: (aw,αI, z) ` (ε, ε, z error) if act(I, a) = error

errorε: (ε, αI, z) ` (ε, ε, z error) if act(I, ε) = error

Compiler Construction Winter semester 2010/11 6

Outline

1 Repetition: SLR(1) Parsing

2 LR(1) Parsing

3 LALR(1) Parsing

Compiler Construction Winter semester 2010/11 7

SLR(1) Conflicts

Problem: not all conflicts can be resolved using fo sets

Example 13.1

GLR : S′ → S S → L=R | R L → *R | a R → L

LR(0)(GLR):

I0 := LR(0)(ε) : [S′ → ·S] [S → ·L=R] [S → ·R]
[L → ·*R] [L → ·a] [R → ·L]

I1 := LR(0)(S) : [S′ → S·]
I2 := LR(0)(L) : [S → L · =R] [R → L·]
I3 := LR(0)(R) : [S → R·]
I4 := LR(0)(*) : [L → * · R] [R → ·L] [L → ·*R] [L → ·a]
I5 := LR(0)(a) : [L → a·]
I6 := LR(0)(L=) : [S → L= · R] [R → ·L] [L → ·*R] [L → ·a]
I7 := LR(0)(*R) : [L → *R·]
I8 := LR(0)(*L) : [R → L·]
I9 := LR(0)(L=R) : [S → L=R·]

But: conflict in I2 not SLR(1)-solvable since = ∈ fo(R)

Compiler Construction Winter semester 2010/11 8

LR(1) Items and Sets I

Observation: not every element of fo(A) can follow every occurrence
of A
=⇒ refinement of LR(0) items by adding possible lookahead symbols

Definition 13.2 (LR(1) items and sets)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ be start separated by S′ → S.

If S′ ⇒∗
r αAaw ⇒r αβ1β2aw, then [A → β1 · β2, a] is called an

LR(1) item for αβ1.

If S′ ⇒∗
r αA ⇒r αβ1β2, then [A → β1 · β2, ε] is called an LR(1)

item for αβ1.

Given γ ∈ X∗, LR(1)(γ) denotes the set of all LR(1) items for γ,
called the LR(1) set (or: LR(1) information) of γ.

LR(1)(G) := {LR(1)(γ) | γ ∈ X∗}.

Compiler Construction Winter semester 2010/11 9

LR(1) Items and Sets II

Corollary 13.3

1 For every γ ∈ X∗, LR(1)(γ) is finite.
2 LR(1)(G) is finite.
3 For every γ ∈ X∗, LR(1)(γ) “contains” LR(0)(γ), i.e.,

{[A → β1 · β2] | [A → β1 · β2, x] ∈ LR(1)(γ)} = LR(0)(γ).

4 [A → β1 · β2, x] ∈ LR(1)(G) =⇒ x ∈ fo(A)

Compiler Construction Winter semester 2010/11 10

LR(1) Conflicts

Definition 13.4 (LR(1) conflicts)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ and I ∈ LR(1)(G).

I has a shift/reduce conflict if there exist A → α1aα2, B → β ∈ P
and x ∈ Σε such that

[A → α1 · aα2, x], [B → β·, a] ∈ I.

I has a reduce/reduce conflict if there exist x ∈ Σε and
A → α,B → β ∈ P with A 6= B or α 6= β such that

[A → α·, x], [B → β·, x] ∈ I.

Lemma 13.5

G ∈ LR(1) iff no I ∈ LR(1)(G) contains conflicting items.

Compiler Construction Winter semester 2010/11 11

Computing LR(1) Sets I

The computation of LR(0) sets (cf. Theorem 11.7) can be extended to
cover right contexts:

Theorem 13.6 (Computing LR(1) sets)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ be start separated by S′ → S and
reduced.

1 LR(1)(ε) is the least set such that

[S′ → ·S, ε] ∈ LR(1)(ε) and
if [A → ·Bγ, x] ∈ LR(1)(ε), B → β ∈ P , and y ∈ fi(γx), then
[B → ·β, y] ∈ LR(1)(ε).

2 LR(1)(αY) (α ∈ X∗, Y ∈ X) is the least set such that

if [A → γ1 · Y γ2, x] ∈ LR(1)(α),
then [A → γ1Y · γ2, x] ∈ LR(1)(αY) and
if [A → γ1 · Bγ2, x] ∈ LR(1)(αY), B → β ∈ P , and y ∈ fi(γ2x), then
[B → ·β, y] ∈ LR(1)(αY).

Compiler Construction Winter semester 2010/11 12

Computing LR(1) Sets II

Example 13.7 (cf. Example 13.1)

GLR : S′ → S S → L=R | R L → *R | a R → L

LR(1)(GLR): [S′ → ·S, ε] ∈ LR(1)(ε) [A → ·Bγ, x] ∈ LR(1)(ε), B → β ∈ P, y ∈ fi(γx)
=⇒ [B → ·β, y] ∈ LR(1)(ε)

I ′

0 := LR(1)(ε) : [S′ → ·S, ε] [S → ·L=R, ε] [S → ·R, ε] [L → ·*R,=]
[L → ·a, =] [R → ·L, ε] [L → ·*R, ε] [L → ·a, ε]

I ′

1 := LR(1)(S) : [S′ → S·, ε]
I ′

2 := LR(1)(L) : [S → L · =R, ε] [R → L·, ε]
I ′

3 := LR(1)(R) : [S → R·, ε]
I ′

4 := LR(1)(*) : [L → * · R, =] [L → * · R, ε] [R → ·L, =] [R → ·L, ε]
[L → ·*R, =] [L → ·a, =] [L → ·*R, ε] [L → ·a, ε]

I ′

5 := LR(1)(a) : [L → a·, =] [L → a·, ε]
I ′

6 := LR(1)(L=) : [S → L= · R, ε] [R → ·L, ε] [L → ·*R, ε] [L → ·a, ε]
I ′

7 := LR(1)(*R) : [L → *R·, =] [L → *R·, ε]
I ′

8 := LR(1)(*L) : [R → L·, =] [R → L·, ε]
I ′

9 := LR(1)(L=R) : [S → L=R·, ε]
I ′

10 := LR(1)(L=L) : [R → L·, ε]
I ′

11 := LR(1)(L=*) : [L → * · R, ε] [R → ·L, ε] [L → ·*R, ε] [L → ·a, ε]
I ′

12 := LR(1)(L=a) : [L → a·, ε]
I ′

13 := LR(1)(L=*R) : [L → *R·, ε]
I ′

14 := ∅
In I ′

2: shift on =/reduce on ε =⇒ GLR ∈ LR(1)
Compiler Construction Winter semester 2010/11 13

The LR(1) Action Function

Definition 13.8 (LR(1) action function)

The LR(1) action function
act : LR(1)(G) × Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I, x) :=











red i if πi = A → α and [A → α·, x] ∈ I
shift if [A → α1 · xα2, y] ∈ I and x ∈ Σ
accept if [S′ → S·, ε] ∈ I and x = ε
error otherwise

Corollary 13.9

For every G ∈ CFGΣ, G ∈ LR(1) iff its LR(1) action function is well
defined.

Compiler Construction Winter semester 2010/11 14

The LR(1) goto Function

The goto function is defined in analogy to the LR(0) case
(Definition 11.9).

Definition 13.10 (LR(1) goto function)

The function goto : LR(1)(G) × X → LR(1)(G) is determined by

goto(I, Y) = I ′ iff there exists γ ∈ X∗ such that
I = LR(1)(γ) and I ′ = LR(1)(γY).

Again, act and goto form the LR(1) parsing table of G.

Compiler Construction Winter semester 2010/11 15

The LR(1) Parsing Table

Example 13.11 (cf. Example 13.7)

LR(1)(GLR) act/goto|Σε
goto|N

* = a ε S L R
I ′0 shift/I ′4 shift/I ′5 I ′1 I ′2 I ′3
I ′1 accept
I ′2 shift/I ′6 red 5
I ′3 red 2
I ′4 shift/I ′4 shift/I ′5 I ′8 I ′7
I ′5 red 4
I ′6 shift/I ′11 shift/I ′12 I ′10 I ′9
I ′7 red 3
I ′8 red 5
I ′9 red 1
I ′10 red 5
I ′11 shift/I ′11 shift/I ′12 I ′10 I ′13
I ′12 red 4
I ′13 red 3

(empty = error/∅)

Compiler Construction Winter semester 2010/11 16

The LR(1) Parsing Automaton I

Definition 13.12 (LR(1) parsing automaton)

The LR(1) parsing automaton is defined as in the LR(0) case (see
Definition 12.6), except for the transition relation:

shift: (aw,αI, z) ` (w,αII ′, z) if act(I, a) = shift and
goto(I, a) = I ′

reducea: (aw,αII1 . . . In, z) ` (aw,αII ′, zi) if act(In, a) = red i,
πi = A → Y1 . . . Yn, and goto(I,A) = I ′

reduceε: (ε, αII1 . . . In, z) ` (ε, αII ′, zi) if act(In, ε) = red i,
πi = A → Y1 . . . Yn, and goto(I,A) = I ′

accept: (ε, I0I, z) ` (ε, ε, z 0) if act(I, ε) = accept

errora: (aw,αI, z) ` (ε, ε, z error) if act(I, a) = error

errorε: (ε, αI, z) ` (ε, ε, z error) if act(I, ε) = error

Compiler Construction Winter semester 2010/11 17

The LR(1) Parsing Automaton II

Example 13.13 (cf. Example 13.7)

GLR : S′ → S (0) S → L=R | R (1, 2) L → *R | a (3, 4) R → L (5)

LR(1)(GLR) act/goto|Σε
goto|N

* = a ε S L R
I ′

0 shift/I ′

4 shift/I ′

5 I ′

1 I ′

2 I ′

3

I ′

1 accept

I ′

2 shift/I ′

6 red 5
I ′

3 red 2
I ′

4 shift/I ′

4 shift/I ′

5 I ′

8 I ′

7

I ′

5 red 4
I ′

6 shift/I ′

11 shift/I ′

12 I ′

10 I ′

9

I ′

7 red 3
I ′

8 red 5
I ′

9 red 1
I ′

10 red 5
I ′

11 shift/I ′

11 shift/I ′

12 I ′

10I ′

13

I ′

12 red 4
I ′

13 red 3
(empty = error/∅)

LR(1) parsing of a=*a:

(a=*a, I ′

0 , ε)
` (=*a, I ′

0I
′

5 , ε)
` (=*a, I ′

0I
′

2 , 4)
` (*a, I ′

0I
′

2I
′

6 , 4)
` (a, I ′

0I
′

2I
′

6I
′

11 , 4)
` (ε, I ′

0I
′

2I
′

6I
′

11I
′

12, 4)
` (ε, I ′

0I
′

2I
′

6I
′

11I
′

10, 44)
` (ε, I ′

0I
′

2I
′

6I
′

11I
′

13, 445)
` (ε, I ′

0I
′

2I
′

6I
′

10 , 4453)
` (ε, I ′

0I
′

2I
′

6I
′

9 , 44535)
` (ε, I ′

0I
′

1 , 445351)
` (ε, ε , 4453510)

Compiler Construction Winter semester 2010/11 18

Outline

1 Repetition: SLR(1) Parsing

2 LR(1) Parsing

3 LALR(1) Parsing

Compiler Construction Winter semester 2010/11 19

LALR(1) Parsing

Motivation: resolving conflicts using LR(1) too expensive

Example 13.1/13.7: |LR(0)(GLR)| = 11, |LR(1)(GLR)| = 15

A. Johnstone, E. Scott: Generalised Reduction Modified LR

Parsing for Domain Specific Language Prototyping, HICSS ’02,
IEEE, 2002, http://doi.ieeecomputersociety.org/10.1109/HICSS.2002.994495:

Grammar |LR(0)(G)| |LR(1)(G)|
Ansi-C 381 1788
Pascal 368 1395

Observation: potential redundancy by containment of LR(0) sets
in LR(1) sets (cf. Corollary 13.3)

Definition 13.14 (LR(0) equivalence)

Let lr0 : LR(1)(G) → LR(0)(G) be defined by
lr0(I) := {[A → β1 · β2] | [A → β1 · β2, x] ∈ I}.

Two sets I1, I2 ∈ LR(1)(G) are called LR(0)-equivalent (notation:
I1 ∼0 I2) if lr0(I1) = lr0(I2).

Compiler Construction Winter semester 2010/11 20

http://doi.ieeecomputersociety.org/10.1109/HICSS.2002.994495

LR(0) Equivalence

Example 13.15 (cf. Example 13.1/13.7)

GLR : S′ → S S → L=R | R
L → *R | a R → L

LR(0)(GLR) :
I0(ε) : [S′ → ·S] [S → ·L=R]

[S → ·R] [L → ·*R]
[L → ·a] [R → ·L]

I1(S) : [S′ → S·]
I2(L) : [S → L · =R] [R → L·]
I3(R) : [S → R·]
I4(*) : [L → * · R] [R → ·L]

[L → ·*R] [L → ·a]
I5(a) : [L → a·]
I6(L=) : [S → L= · R] [R → ·L]

[L → ·*R] [L → ·a]
I7(*R) : [L → *R·]
I8(*L) : [R → L·]
I9(L=R) : [S → L=R·]

=⇒ I′

4 ∼0 I′

11
I′

5 ∼0 I′

12
I′

7 ∼0 I′

13
I′

8 ∼0 I′

10

LR(1)(GLR) :
I′

0(ε) : [S′ → ·S, ε] [S → ·L=R, ε]
[S → ·R, ε] [L → ·*R, =]
[L → ·a, =] [R → ·L, ε]
[L → ·*R, ε] [L → ·a, ε]

I′

1(S) : [S′ → S·, ε]
I′

2(L) : [S → L · =R, ε] [R → L·, ε]
I′

3(R) : [S → R·, ε]
I′

4(*) : [L → * · R, =] [L → * · R, ε]
[R → ·L, =] [R → ·L, ε]
[L → ·*R, =] [L → ·a, =]
[L → ·*R, ε] [L → ·a, ε]

I′

5(a) : [L → a·, =] [L → a·, ε]
I′

6(L=) : [S → L= · R, ε] [R → ·L, ε]
[L → ·*R, ε] [L → ·a, ε]

I′

7(*R) : [L → *R·, =] [L → *R·, ε]
I′

8(*L) : [R → L·, =] [R → L·, ε]
I′

9(L=R) : [S → L=R·, ε]
I′

10(L=L) : [R → L·, ε]
I′

11(L=*) : [L → * · R, ε] [R → ·L, ε]
[L → ·*R, ε] [L → ·a, ε]

I′

12(L=a) : [L → a·, ε]
I′

13(L=*R) : [L → *R·, ε]

Compiler Construction Winter semester 2010/11 21

LALR(1) Sets I

Corollary 13.16

For every G ∈ CFGΣ, |LR(1)(G)/ ∼0 | = |LR(0)(G)|.

Idea: merge LR(0)-equivalent LR(1) sets (maintaining the lookahead
information, but possibly introducing conflicts)

Definition 13.17 (LALR(1) sets)

Let G ∈ CFGΣ.

An information I ∈ LR(1)(G) determines the LALR(1) set
⋃

[I]∼0 =
⋃

{I ′ ∈ LR(1)(G) | I ′ ∼0 I}.

The set of all LALR(1) sets of G is denoted by LALR(1)(G).

Remark: by Corollary 13.16, |LALR(1)(G)| = |LR(0)(G)|
(but LALR(1) sets provide additional lookahead information)

Compiler Construction Winter semester 2010/11 22

LALR(1) Sets II

Example 13.18 (cf. Example 13.15)

GLR : S′ → S S → L=R | R L → *R | a R → L

LR(0)(GLR) :
I0(ε) : [S′ → ·S] [S → ·L=R]

[S → ·R] [L → ·*R]
[L → ·a] [R → ·L]

I1(S) : [S′ → S·]
I2(L) : [S → L · =R] [R → L·]
I3(R) : [S → R·]
I4(*) : [L → * · R] [R → ·L]

[L → ·*R] [L → ·a]
I5(a) : [L → a·]
I6(L=) : [S → L= · R] [R → ·L]

[L → ·*R] [L → ·a]
I7(*R) : [L → *R·]
I8(*L) : [R → L·]
I9(L=R) : [S → L=R·]

LALR(1)(GLR) :
I ′′

0 := I ′

0 : [S′ → ·S, ε] [S → ·L=R, ε]
[S → ·R, ε] [L → ·*R, =/ε]
[L → ·a, =/ε] [R → ·L, ε]

I ′′

1 := I ′

1 : [S′ → S·, ε]
I ′′

2 := I ′

2 : [S → L · =R, ε] [R → L·, ε]
I ′′

3 := I ′

3 : [S → R·, ε]
I ′′

4 := I ′

4 ∪ I ′

11 : [L → * · R, =/ε] [R → ·L, =/ε]
[L → ·*R,=/ε] [L → ·a, =/ε]

I ′′

5 := I ′

5 ∪ I ′

12 : [L → a·, =/ε]
I ′′

6 := I ′

6 : [S → L= · R, ε] [R → ·L, ε]
[L → ·*R, ε] [L → ·a, ε]

I ′′

7 := I ′

7 ∪ I ′

13 : [L → *R·, =/ε]
I ′′

8 := I ′

8 ∪ I ′

10 : [R → L·, =/ε]
I ′′

9 := I ′

9 : [S → L=R·, ε]

Compiler Construction Winter semester 2010/11 23

The LALR(1) Action Function

The LALR(1) action function is defined in analogy to the LR(1) case
(Definition 13.8).

Definition 13.19 (LALR(1) action function)

The LALR(1) action function
act : LALR(1)(G) × Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I, x) :=











red i if π(i) = A → α and [A → α·, x] ∈ I
shift if [A → α1 · xα2, y] ∈ I and x ∈ Σ
accept if [S′ → S·, ε] ∈ I and x = ε
error otherwise

Definition 13.20 (LALR(1) grammar)

A grammar G ∈ CFGΣ has the LALR(1) property (notation:
G ∈ LALR(1)) if its LALR(1) action function is well defined.

Compiler Construction Winter semester 2010/11 24

The LALR(1) goto Function

Example 13.21 (cf. Example 13.18)

GLR ∈ LALR(1)

Also the LR(1) goto function (Definition 13.10) carries over to the
LALR(1) case. Reason:

Lemma 13.22

Let G ∈ CFGΣ and I1, I2 ∈ LR(1)(G) such that I1 ∼0 I2. Then, for
every Y ∈ X, goto(I1, Y) ∼0 goto(I2, Y).

Again, act and goto form the LALR(1) parsing table of G.

Compiler Construction Winter semester 2010/11 25

The LALR(1) Parsing Table

Example 13.23 (cf. Example 13.18)

LALR(1)(GLR) act/goto|Σε
goto|N

* = a ε S L R
I ′′0 shift/I ′′4 shift/I ′′5 I ′′1 I ′′2 I ′′3
I ′′1 accept
I ′′2 shift/I ′′6 red 5
I ′′3 red 2
I ′′4 shift/I ′′4 shift/I ′′5 I ′′8 I ′′7
I ′′5 red 4 red 4
I ′′6 shift/I ′′4 shift/I ′′5 I ′′8 I ′′9
I ′′7 red 3 red 3
I ′′8 red 5 red 5
I ′′9 red 1

(empty = error/∅)

Compiler Construction Winter semester 2010/11 26

	Repetition: SLR(1) Parsing
	LR(1) Parsing
	LALR(1) Parsing

