
Compiler Construction

Lecture 14: Syntactic Analysis IX (Practical Issues)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Outline

1 Repetition: LALR(1) Parsing

2 More on LALR(1) Parsing

3 Bottom-Up Parsing of Ambiguous Grammars

4 Generating Parsers Using yacc

5 Expressiveness of LL and LR Grammars

6 LL and LR Parsing in Practice

Compiler Construction Winter semester 2010/11 2

LALR(1) Sets I

Corollary

For every G ∈ CFGΣ, |LR(1)(G)/ ∼0 | = |LR(0)(G)|.

Idea: merge LR(0)-equivalent LR(1) sets (maintaining the lookahead
information, but possibly introducing conflicts)

Definition (LALR(1) sets)

Let G ∈ CFGΣ.

An information I ∈ LR(1)(G) determines the LALR(1) set
⋃

[I]∼0 =
⋃

{I ′ ∈ LR(1)(G) | I ′ ∼0 I}.

The set of all LALR(1) sets of G is denoted by LALR(1)(G).

Remark: by Corollary 13.16, |LALR(1)(G)| = |LR(0)(G)|
(but LALR(1) sets provide additional lookahead information)

Compiler Construction Winter semester 2010/11 3

LALR(1) Sets II

Example (cf. Example 13.15)

GLR : S′ → S S → L=R | R L→ *R | a R→ L

LR(0)(GLR) :
I0(ε) : [S′ → ·S] [S → ·L=R]

[S → ·R] [L→ ·*R]
[L→ ·a] [R→ ·L]

I1(S) : [S′ → S·]
I2(L) : [S → L · =R] [R→ L·]
I3(R) : [S → R·]
I4(*) : [L→ * · R] [R→ ·L]

[L→ ·*R] [L→ ·a]
I5(a) : [L→ a·]
I6(L=) : [S → L= · R] [R→ ·L]

[L→ ·*R] [L→ ·a]
I7(*R) : [L→ *R·]
I8(*L) : [R→ L·]
I9(L=R) : [S → L=R·]

LALR(1)(GLR) :
I ′′

0 := I ′

0 : [S′ → ·S, ε] [S → ·L=R, ε]
[S → ·R, ε] [L→ ·*R, =/ε]
[L→ ·a, =/ε] [R→ ·L, ε]

I ′′

1 := I ′

1 : [S′ → S·, ε]
I ′′

2 := I ′

2 : [S → L · =R, ε] [R→ L·, ε]
I ′′

3 := I ′

3 : [S → R·, ε]
I ′′

4 := I ′

4 ∪ I ′

11 : [L→ * · R, =/ε] [R→ ·L, =/ε]
[L→ ·*R,=/ε] [L→ ·a, =/ε]

I ′′

5 := I ′

5 ∪ I ′

12 : [L→ a·, =/ε]
I ′′

6 := I ′

6 : [S → L= ·R, ε] [R→ ·L, ε]
[L→ ·*R, ε] [L→ ·a, ε]

I ′′

7 := I ′

7 ∪ I ′

13 : [L→ *R·, =/ε]
I ′′

8 := I ′

8 ∪ I ′

10 : [R→ L·, =/ε]
I ′′

9 := I ′

9 : [S → L=R·, ε]

Compiler Construction Winter semester 2010/11 4

Outline

1 Repetition: LALR(1) Parsing

2 More on LALR(1) Parsing

3 Bottom-Up Parsing of Ambiguous Grammars

4 Generating Parsers Using yacc

5 Expressiveness of LL and LR Grammars

6 LL and LR Parsing in Practice

Compiler Construction Winter semester 2010/11 5

LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 14.1

G : S′ → S S → aAd | bBd | aBe | bAe A → c B → c

Compiler Construction Winter semester 2010/11 6

LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 14.1

G : S′ → S S → aAd | bBd | aBe | bAe A → c B → c

LR(1)(ε) : [S′ → ·S, ε] [S → ·aAd, ε] [S → ·bBd, ε] [S → ·aBe, ε]
[S → ·bAe, ε]

LR(1)(S) : [S′ → S·, ε]
LR(1)(a) : [S → a · Ad, ε] [S → a · Be, ε] [A → ·c, d] [B → ·c, e]
LR(1)(b) : [S → b · Bd, ε] [S → b · Ae, ε] [B → ·c, d] [A → ·c, e]
LR(1)(aA) : [S → aA · d, ε] LR(1)(aB) : [S → aB · e, ε]
LR(1)(ac) : [A → c·, d] [B → c·, e]
LR(1)(bB) : [S → bB · d, ε] LR(1)(bA) : [S → bA · e, ε]
LR(1)(bc) : [B → c·, d] [A → c·, e]
LR(1)(aAd) : [S → aAd·, ε] LR(1)(aBe) : [S → aBe·, ε]
LR(1)(bBd) : [S → bBd·, ε] LR(1)(bAe) : [S → bAe·, ε]

Compiler Construction Winter semester 2010/11 6

LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 14.1

G : S′ → S S → aAd | bBd | aBe | bAe A → c B → c

LR(1)(ε) : [S′ → ·S, ε] [S → ·aAd, ε] [S → ·bBd, ε] [S → ·aBe, ε]
[S → ·bAe, ε]

LR(1)(S) : [S′ → S·, ε]
LR(1)(a) : [S → a · Ad, ε] [S → a · Be, ε] [A → ·c, d] [B → ·c, e]
LR(1)(b) : [S → b · Bd, ε] [S → b · Ae, ε] [B → ·c, d] [A → ·c, e]
LR(1)(aA) : [S → aA · d, ε] LR(1)(aB) : [S → aB · e, ε]
LR(1)(ac) : [A → c·, d] [B → c·, e]
LR(1)(bB) : [S → bB · d, ε] LR(1)(bA) : [S → bA · e, ε]
LR(1)(bc) : [B → c·, d] [A → c·, e]
LR(1)(aAd) : [S → aAd·, ε] LR(1)(aBe) : [S → aBe·, ε]
LR(1)(bBd) : [S → bBd·, ε] LR(1)(bAe) : [S → bAe·, ε]

no conflicts =⇒ G ∈ LR(1)

Compiler Construction Winter semester 2010/11 6

LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 14.1

G : S′ → S S → aAd | bBd | aBe | bAe A → c B → c

LR(1)(ε) : [S′ → ·S, ε] [S → ·aAd, ε] [S → ·bBd, ε] [S → ·aBe, ε]
[S → ·bAe, ε]

LR(1)(S) : [S′ → S·, ε]
LR(1)(a) : [S → a · Ad, ε] [S → a · Be, ε] [A → ·c, d] [B → ·c, e]
LR(1)(b) : [S → b · Bd, ε] [S → b · Ae, ε] [B → ·c, d] [A → ·c, e]
LR(1)(aA) : [S → aA · d, ε] LR(1)(aB) : [S → aB · e, ε]
LR(1)(ac) : [A → c·, d] [B → c·, e]
LR(1)(bB) : [S → bB · d, ε] LR(1)(bA) : [S → bA · e, ε]
LR(1)(bc) : [B → c·, d] [A → c·, e]
LR(1)(aAd) : [S → aAd·, ε] LR(1)(aBe) : [S → aBe·, ε]
LR(1)(bBd) : [S → bBd·, ε] LR(1)(bAe) : [S → bAe·, ε]

no conflicts =⇒ G ∈ LR(1)

LR(1)(ac) ∼0 LR(1)(bc), but LR(1)(ac) ∪ LR(1)(bc) has conflicts
=⇒ G /∈ LALR(1)

Compiler Construction Winter semester 2010/11 6

Efficient Construction of LALR(1) Parsers

Naive algorithm to construct LALR(1) parser for G ∈ CFGΣ:

1 Construct LR(1)(G)

2 Determine and merge LR(0)-equivalent LR(1) sets

Problem: no reduction of peak space requirement

Compiler Construction Winter semester 2010/11 7

Efficient Construction of LALR(1) Parsers

Naive algorithm to construct LALR(1) parser for G ∈ CFGΣ:

1 Construct LR(1)(G)

2 Determine and merge LR(0)-equivalent LR(1) sets

Problem: no reduction of peak space requirement

Idea of improved algorithm (see Aho/Lam/Sethi/Ullman: Compilers:

Principles, Techniques, and Tools, 2nd ed., p. 270ff):

1 Represent each set of items by its kernel, i.e., by the items of the
form [S′ → ·S, ε] or [A → β1 · β2, x] where β1 6= ε

2 Construct LALR(1) kernels from LR(0) kernels similarly to LR(1)
items

3 Compute LALR(1) sets by taking the ε-closure

(applied in yacc parser generator)

Compiler Construction Winter semester 2010/11 7

Outline

1 Repetition: LALR(1) Parsing

2 More on LALR(1) Parsing

3 Bottom-Up Parsing of Ambiguous Grammars

4 Generating Parsers Using yacc

5 Expressiveness of LL and LR Grammars

6 LL and LR Parsing in Practice

Compiler Construction Winter semester 2010/11 8

Ambiguous Grammars

Reminder (Definition 6.6): a context-free grammar G ∈ CFGΣ is called
unambiguous if every word w ∈ L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

Compiler Construction Winter semester 2010/11 9

Ambiguous Grammars

Reminder (Definition 6.6): a context-free grammar G ∈ CFGΣ is called
unambiguous if every word w ∈ L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

Lemma 14.2

If G ∈ CFGΣ is ambiguous, then G /∈
⋃

k∈N
LR(k).

Compiler Construction Winter semester 2010/11 9

Ambiguous Grammars

Reminder (Definition 6.6): a context-free grammar G ∈ CFGΣ is called
unambiguous if every word w ∈ L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

Lemma 14.2

If G ∈ CFGΣ is ambiguous, then G /∈
⋃

k∈N
LR(k).

Proof.

Assume that there exist k ∈ N and G ∈ LR(k) such that G is ambiguous.

Compiler Construction Winter semester 2010/11 9

Ambiguous Grammars

Reminder (Definition 6.6): a context-free grammar G ∈ CFGΣ is called
unambiguous if every word w ∈ L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

Lemma 14.2

If G ∈ CFGΣ is ambiguous, then G /∈
⋃

k∈N
LR(k).

Proof.

Assume that there exist k ∈ N and G ∈ LR(k) such that G is ambiguous.
Hence there exists w ∈ L(G) with different right derivations. Let αAv be the
last common sentence of the two derivations (i.e., β 6= β′):

S ⇒∗

r
αAv

{

⇒r αβv ⇒∗

r w
⇒r αβ′v ⇒∗

r
w

Compiler Construction Winter semester 2010/11 9

Ambiguous Grammars

Reminder (Definition 6.6): a context-free grammar G ∈ CFGΣ is called
unambiguous if every word w ∈ L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

Lemma 14.2

If G ∈ CFGΣ is ambiguous, then G /∈
⋃

k∈N
LR(k).

Proof.

Assume that there exist k ∈ N and G ∈ LR(k) such that G is ambiguous.
Hence there exists w ∈ L(G) with different right derivations. Let αAv be the
last common sentence of the two derivations (i.e., β 6= β′):

S ⇒∗

r
αAv

{

⇒r αβv ⇒∗

r w
⇒r αβ′v ⇒∗

r
w

But since firstk(v) = firstk(v) for every v ∈ Σ∗, Definition 10.9 yields that
β = β′. Contradiction

Compiler Construction Winter semester 2010/11 9

Ambiguous Grammars

Reminder (Definition 6.6): a context-free grammar G ∈ CFGΣ is called
unambiguous if every word w ∈ L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

Lemma 14.2

If G ∈ CFGΣ is ambiguous, then G /∈
⋃

k∈N
LR(k).

Proof.

Assume that there exist k ∈ N and G ∈ LR(k) such that G is ambiguous.
Hence there exists w ∈ L(G) with different right derivations. Let αAv be the
last common sentence of the two derivations (i.e., β 6= β′):

S ⇒∗

r
αAv

{

⇒r αβv ⇒∗

r w
⇒r αβ′v ⇒∗

r
w

But since firstk(v) = firstk(v) for every v ∈ Σ∗, Definition 10.9 yields that
β = β′. Contradiction

However ambiguity is a natural specification method which generally avoids

involved syntactic constructs.
Compiler Construction Winter semester 2010/11 9

Bottom-Up Parsing of Ambiguous Grammars I

Example 14.3 (Simple arithmetic expressions)

G : E′ → E E → E+E | E*E | a

Compiler Construction Winter semester 2010/11 10

Bottom-Up Parsing of Ambiguous Grammars I

Example 14.3 (Simple arithmetic expressions)

G : E′ → E E → E+E | E*E | a

Precedence: * > + Associativity: left
(thus: a+a*a+a :=(a+(a*a))+a)

Compiler Construction Winter semester 2010/11 10

Bottom-Up Parsing of Ambiguous Grammars I

Example 14.3 (Simple arithmetic expressions)

G : E′ → E E → E+E | E*E | a

Precedence: * > + Associativity: left
(thus: a+a*a+a :=(a+(a*a))+a)

LR(0)(G):
I0 := LR(0)(ε) : [E′ → ·E] [E → ·E+E] [E → ·E*E] [E → ·a]
I1 := LR(0)(E) : [E′ → E·] [E → E · +E] [E → E · *E]
I2 := LR(0)(a) : [E → a·]
I3 := LR(0)(E+) : [E → E+ · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I4 := LR(0)(E*) : [E → E* · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I5 := LR(0)(E+E) : [E → E+E·] [E → E · +E] [E → E · *E]
I6 := LR(0)(E*E) : [E → E*E·] [E → E · +E] [E → E · *E]

Compiler Construction Winter semester 2010/11 10

Bottom-Up Parsing of Ambiguous Grammars I

Example 14.3 (Simple arithmetic expressions)

G : E′ → E E → E+E | E*E | a

Precedence: * > + Associativity: left
(thus: a+a*a+a :=(a+(a*a))+a)

LR(0)(G):
I0 := LR(0)(ε) : [E′ → ·E] [E → ·E+E] [E → ·E*E] [E → ·a]
I1 := LR(0)(E) : [E′ → E·] [E → E · +E] [E → E · *E]
I2 := LR(0)(a) : [E → a·]
I3 := LR(0)(E+) : [E → E+ · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I4 := LR(0)(E*) : [E → E* · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I5 := LR(0)(E+E) : [E → E+E·] [E → E · +E] [E → E · *E]
I6 := LR(0)(E*E) : [E → E*E·] [E → E · +E] [E → E · *E]

Conflicts: I1: SLR(1)-solvable (reduce on ε, shift on +/*)

Compiler Construction Winter semester 2010/11 10

Bottom-Up Parsing of Ambiguous Grammars I

Example 14.3 (Simple arithmetic expressions)

G : E′ → E E → E+E | E*E | a

Precedence: * > + Associativity: left
(thus: a+a*a+a :=(a+(a*a))+a)

LR(0)(G):
I0 := LR(0)(ε) : [E′ → ·E] [E → ·E+E] [E → ·E*E] [E → ·a]
I1 := LR(0)(E) : [E′ → E·] [E → E · +E] [E → E · *E]
I2 := LR(0)(a) : [E → a·]
I3 := LR(0)(E+) : [E → E+ · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I4 := LR(0)(E*) : [E → E* · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I5 := LR(0)(E+E) : [E → E+E·] [E → E · +E] [E → E · *E]
I6 := LR(0)(E*E) : [E → E*E·] [E → E · +E] [E → E · *E]

Conflicts: I1: SLR(1)-solvable (reduce on ε, shift on +/*)
I5, I6: not SLR(1)-solvable (+, * ∈ fo(E))

Compiler Construction Winter semester 2010/11 10

Bottom-Up Parsing of Ambiguous Grammars I

Example 14.3 (Simple arithmetic expressions)

G : E′ → E E → E+E | E*E | a

Precedence: * > + Associativity: left
(thus: a+a*a+a :=(a+(a*a))+a)

LR(0)(G):
I0 := LR(0)(ε) : [E′ → ·E] [E → ·E+E] [E → ·E*E] [E → ·a]
I1 := LR(0)(E) : [E′ → E·] [E → E · +E] [E → E · *E]
I2 := LR(0)(a) : [E → a·]
I3 := LR(0)(E+) : [E → E+ · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I4 := LR(0)(E*) : [E → E* · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I5 := LR(0)(E+E) : [E → E+E·] [E → E · +E] [E → E · *E]
I6 := LR(0)(E*E) : [E → E*E·] [E → E · +E] [E → E · *E]

Conflicts: I1: SLR(1)-solvable (reduce on ε, shift on +/*)
I5, I6: not SLR(1)-solvable (+, * ∈ fo(E))

Solution:
I5: * > + =⇒ act(I5, *) := shift, + left assoc. =⇒ act(I5, +) := red 1

Compiler Construction Winter semester 2010/11 10

Bottom-Up Parsing of Ambiguous Grammars I

Example 14.3 (Simple arithmetic expressions)

G : E′ → E E → E+E | E*E | a

Precedence: * > + Associativity: left
(thus: a+a*a+a :=(a+(a*a))+a)

LR(0)(G):
I0 := LR(0)(ε) : [E′ → ·E] [E → ·E+E] [E → ·E*E] [E → ·a]
I1 := LR(0)(E) : [E′ → E·] [E → E · +E] [E → E · *E]
I2 := LR(0)(a) : [E → a·]
I3 := LR(0)(E+) : [E → E+ · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I4 := LR(0)(E*) : [E → E* · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I5 := LR(0)(E+E) : [E → E+E·] [E → E · +E] [E → E · *E]
I6 := LR(0)(E*E) : [E → E*E·] [E → E · +E] [E → E · *E]

Conflicts: I1: SLR(1)-solvable (reduce on ε, shift on +/*)
I5, I6: not SLR(1)-solvable (+, * ∈ fo(E))

Solution:
I5: * > + =⇒ act(I5, *) := shift, + left assoc. =⇒ act(I5, +) := red 1
I6: * > + =⇒ act(I6, +) := red 2, * left assoc. =⇒ act(I6, *) := red 2

Compiler Construction Winter semester 2010/11 10

Bottom-Up Parsing of Ambiguous Grammars II

Example 14.4 (“Dangling else”)

G : S′ → S S → iSeS | iS | a

Compiler Construction Winter semester 2010/11 11

Bottom-Up Parsing of Ambiguous Grammars II

Example 14.4 (“Dangling else”)

G : S′ → S S → iSeS | iS | a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

Compiler Construction Winter semester 2010/11 11

Bottom-Up Parsing of Ambiguous Grammars II

Example 14.4 (“Dangling else”)

G : S′ → S S → iSeS | iS | a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

LR(0)(G):
I0 := LR(0)(ε) : [S′ → ·S] [S → ·iSeS] [S → ·iS]

[S → ·a]
I1 := LR(0)(S) : [S′ → S·]
I2 := LR(0)(i) : [S → i · SeS] [S → i · S] [S → ·iSeS]

[S → ·iS] [S → ·a]
I3 := LR(0)(a) : [S → a·]
I4 := LR(0)(iS) : [S → iS · eS] [S → iS·]
I5 := LR(0)(iSe) : [S → iSe · S] [S → ·iSeS] [S → ·iS]

[S → ·a]
I6 := LR(0)(iSeS) : [S → iSeS·]

Compiler Construction Winter semester 2010/11 11

Bottom-Up Parsing of Ambiguous Grammars II

Example 14.4 (“Dangling else”)

G : S′ → S S → iSeS | iS | a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

LR(0)(G):
I0 := LR(0)(ε) : [S′ → ·S] [S → ·iSeS] [S → ·iS]

[S → ·a]
I1 := LR(0)(S) : [S′ → S·]
I2 := LR(0)(i) : [S → i · SeS] [S → i · S] [S → ·iSeS]

[S → ·iS] [S → ·a]
I3 := LR(0)(a) : [S → a·]
I4 := LR(0)(iS) : [S → iS · eS] [S → iS·]
I5 := LR(0)(iSe) : [S → iSe · S] [S → ·iSeS] [S → ·iS]

[S → ·a]
I6 := LR(0)(iSeS) : [S → iSeS·]

Conflict in I4: e ∈ fo(S) =⇒ not SLR(1)-solvable

Compiler Construction Winter semester 2010/11 11

Bottom-Up Parsing of Ambiguous Grammars II

Example 14.4 (“Dangling else”)

G : S′ → S S → iSeS | iS | a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

LR(0)(G):
I0 := LR(0)(ε) : [S′ → ·S] [S → ·iSeS] [S → ·iS]

[S → ·a]
I1 := LR(0)(S) : [S′ → S·]
I2 := LR(0)(i) : [S → i · SeS] [S → i · S] [S → ·iSeS]

[S → ·iS] [S → ·a]
I3 := LR(0)(a) : [S → a·]
I4 := LR(0)(iS) : [S → iS · eS] [S → iS·]
I5 := LR(0)(iSe) : [S → iSe · S] [S → ·iSeS] [S → ·iS]

[S → ·a]
I6 := LR(0)(iSeS) : [S → iSeS·]

Conflict in I4: e ∈ fo(S) =⇒ not SLR(1)-solvable

Solution (1): act(I4, e) := shift

Compiler Construction Winter semester 2010/11 11

Outline

1 Repetition: LALR(1) Parsing

2 More on LALR(1) Parsing

3 Bottom-Up Parsing of Ambiguous Grammars

4 Generating Parsers Using yacc

5 Expressiveness of LL and LR Grammars

6 LL and LR Parsing in Practice

Compiler Construction Winter semester 2010/11 12

The yacc Tool

Usage of yacc (“yet another compiler compiler”):

spec.y
yacc
−→ y.tab.c lex.yy.c

[f]lex
←− spec.l

yacc specification Parser source Scanner source [f]lex specification
↓ cc ↓
a.out

Executable LALR(1) parser

Compiler Construction Winter semester 2010/11 13

The yacc Tool

Usage of yacc (“yet another compiler compiler”):

spec.y
yacc
−→ y.tab.c lex.yy.c

[f]lex
←− spec.l

yacc specification Parser source Scanner source [f]lex specification
↓ cc ↓
a.out

Executable LALR(1) parser

Like for [f]lex, a yacc specification is of the form

Declarations (optional)
%%

Rules
%%

Auxiliary procedures (optional)

Compiler Construction Winter semester 2010/11 13

yacc Specifications

Declarations: Token definitions: %token Tokens
Not every token needs to be declared (’+’, ’=’, ...)
Start symbol: %start Symbol (optional)
C code for declarations etc.: %{ Code %}

Compiler Construction Winter semester 2010/11 14

yacc Specifications

Declarations: Token definitions: %token Tokens
Not every token needs to be declared (’+’, ’=’, ...)
Start symbol: %start Symbol (optional)
C code for declarations etc.: %{ Code %}

Rules: context-free productions and semantic actions

A → α1 | α2 | . . . | αn represented as
A : α1 {Action1}

| α2 {Action2}
...
| αn {Actionn};

Semantic actions = C statements for computing attribute
values
$$ = attribute value of A
$i = attribute value of ith symbol on right-hand side
Default action: $$ = $1

Compiler Construction Winter semester 2010/11 14

yacc Specifications

Declarations: Token definitions: %token Tokens
Not every token needs to be declared (’+’, ’=’, ...)
Start symbol: %start Symbol (optional)
C code for declarations etc.: %{ Code %}

Rules: context-free productions and semantic actions

A → α1 | α2 | . . . | αn represented as
A : α1 {Action1}

| α2 {Action2}
...
| αn {Actionn};

Semantic actions = C statements for computing attribute
values
$$ = attribute value of A
$i = attribute value of ith symbol on right-hand side
Default action: $$ = $1

Auxiliary procedures: scanner (if not [f]lex), error routines, ...

Compiler Construction Winter semester 2010/11 14

Example: Simple Desk Calculator I

%{/* SLR(1) grammar for arithmetic expressions (Example 12.9) */
#include <stdio.h>
#include <ctype.h>

%}
%token DIGIT
%%
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ term { $$ = $1 + $3; }

| term { $$ = $1; };
term : term ’*’ factor { $$ = $1 * $3; }

| factor { $$ = $1; };
factor : ’(’ expr ’)’ { $$ = $2; }

| DIGIT { $$ = $1; };
%%
yylex() {
int c;
c = getchar();
if (isdigit(c)) yylval = c - ’0’; return DIGIT;
return c;

}

Compiler Construction Winter semester 2010/11 15

Example: Simple Desk Calculator II

> yacc calc.y

> cc y.tab.c -ly

> a.out

2+3

5

> a.out

2+3*5

17

Compiler Construction Winter semester 2010/11 16

An Ambiguous Grammar I

%{/* Ambiguous grammar for arithm. expressions (Ex. 14.3) */
#include <stdio.h>
#include <ctype.h>

%}
%token DIGIT
%%
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr { $$ = $1 + $3; }

| expr ’*’ expr { $$ = $1 * $3; }
| DIGIT { $$ = $1; };

%%
yylex() {
int c;
c = getchar();
if (isdigit(c)) {yylval = c - ’0’; return DIGIT;}
return c;

}

Compiler Construction Winter semester 2010/11 17

An Ambiguous Grammar II

Invoking yacc with the option -v produces a report y.output:

...
State 8

2 expr: expr . ’+’ expr
2 | expr ’+’ expr .
3 | expr . ’*’ expr

’+’ shift and goto state 6
’*’ shift and goto state 7

’+’ [reduce with rule 2 (expr)]
’*’ [reduce with rule 2 (expr)]

State 9

2 expr: expr . ’+’ expr
3 | expr . ’*’ expr
3 | expr ’*’ expr .

’+’ shift and goto state 6
’*’ shift and goto state 7

’+’ [reduce with rule 3 (expr)]
’*’ [reduce with rule 3 (expr)]

Compiler Construction Winter semester 2010/11 18

Conflict Handling in yacc

Default conflict resolving strategy in yacc:

reduce/reduce: choose first conflicting production in specification

Compiler Construction Winter semester 2010/11 19

Conflict Handling in yacc

Default conflict resolving strategy in yacc:

reduce/reduce: choose first conflicting production in specification

shift/reduce: prefer shift

resolves dangling-else ambiguity (Example 14.4) correctly
also adequate for strong following weak operator (* after
+; Example 14.3) and for right-associative operators
not appropriate for weak following strong operator and for
left-associative binary operators
(=⇒ reduce; see Example 14.3)

Compiler Construction Winter semester 2010/11 19

Conflict Handling in yacc

Default conflict resolving strategy in yacc:

reduce/reduce: choose first conflicting production in specification

shift/reduce: prefer shift

resolves dangling-else ambiguity (Example 14.4) correctly
also adequate for strong following weak operator (* after
+; Example 14.3) and for right-associative operators
not appropriate for weak following strong operator and for
left-associative binary operators
(=⇒ reduce; see Example 14.3)

For ambiguous grammar:

> yacc ambig.y
conflicts: 4 shift/reduce
> cc y.tab.c -ly
> a.out
2+3*5
17
> a.out
2*3+5
16

Compiler Construction Winter semester 2010/11 19

Precedences and Associativities in yacc I

General mechanism for resolving conflicts:

%[left|right] Operators1
...

%[left|right] Operatorsn

operators in one line have given associativity and same precedence

precedence increases over lines

Compiler Construction Winter semester 2010/11 20

Precedences and Associativities in yacc I

General mechanism for resolving conflicts:

%[left|right] Operators1
...

%[left|right] Operatorsn

operators in one line have given associativity and same precedence

precedence increases over lines

Example 14.5

%left ’+’ ’-’

%left ’*’ ’/’

%right ’^’

^ (right associative) binds stronger than * and / (left associative),
which in turn bind stronger than + and - (left associative)

Compiler Construction Winter semester 2010/11 20

Precedences and Associativities in yacc II

%{/* Ambiguous grammar for arithmetic expressions
with precedences and associativities */

#include <stdio.h>
#include <ctype.h>

%}
%token DIGIT
%left ’+’
%left ’*’
%%
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr { $$ = $1 + $3; }

| expr ’*’ expr { $$ = $1 * $3; }
| DIGIT { $$ = $1; };

%%
yylex() {
int c;
c = getchar();
if (isdigit(c)) {yylval = c - ’0’; return DIGIT;}
return c;

}

Compiler Construction Winter semester 2010/11 21

Precedences and Associativities in yacc III

> yacc ambig-prio.y

> cc y.tab.c -ly

> a.out

2*3+5

11

> a.out

2+3*5

17

Compiler Construction Winter semester 2010/11 22

Outline

1 Repetition: LALR(1) Parsing

2 More on LALR(1) Parsing

3 Bottom-Up Parsing of Ambiguous Grammars

4 Generating Parsers Using yacc

5 Expressiveness of LL and LR Grammars

6 LL and LR Parsing in Practice

Compiler Construction Winter semester 2010/11 23

Overview of Grammar Classes

LR(0) •G (Ex. 11.8)

SLR(1) •GAE (Ex. 12.13)

LL(1) •G′

AE
(Ex. 9.1)

LR(1) •G (Ex. 14.1)

LALR(1) •GLR (Ex. 13.18)

LL(0)

(singletons)

Moreover:

LL(k) $ LL(k +1)
for every k ∈ N

LR(k) $ LR(k+1)
for every k ∈ N

LL(k) ⊆ LR(k)
for every k ∈ N

Compiler Construction Winter semester 2010/11 24

Overview of Language Classes

(cf. O. Mayer: Syntaxanalyse, BI-Verlag, 1978, p. 409ff)

REG

L(LL(0))

L(LR(0))

L(LL(1))

CFL

L(SLR(1)) = L(LALR(1)) =

unambiguous CFL

L(LR(1)) = det . CFL

Moreover:

L(LL(k)) $
L(LL(k + 1)) $
L(LR(1))
for every k ∈ N

L(LR(k)) =
L(LR(1))
for every k ≥ 1

Compiler Construction Winter semester 2010/11 25

Outline

1 Repetition: LALR(1) Parsing

2 More on LALR(1) Parsing

3 Bottom-Up Parsing of Ambiguous Grammars

4 Generating Parsers Using yacc

5 Expressiveness of LL and LR Grammars

6 LL and LR Parsing in Practice

Compiler Construction Winter semester 2010/11 26

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Compiler Construction Winter semester 2010/11 27

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins

LL parsing technique easier to understand
recursive-descent parser easier to debug than LALR
action tables

Compiler Construction Winter semester 2010/11 27

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins

Generality : LALR wins

“almost” LL(1) ⊆ LALR(1) (only pathological
counterexamples)
LL requires elimination of left recursion and left
factorization

Compiler Construction Winter semester 2010/11 27

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins

Generality : LALR wins

Semantic actions : (see semantic analysis) LL wins

actions can be placed anywhere in LL parsers without
causing conflicts
in LALR: implicit ε-productions
=⇒ may generate conflicts

Compiler Construction Winter semester 2010/11 27

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins

Generality : LALR wins

Semantic actions : (see semantic analysis) LL wins

Error handling : LL wins

top-down approach provides context information
=⇒ better basis for reporting and/or repairing
errors

Compiler Construction Winter semester 2010/11 27

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins

Generality : LALR wins

Semantic actions : (see semantic analysis) LL wins

Error handling : LL wins

Parser size : comparable

LL: action table
LALR: action/goto table

Compiler Construction Winter semester 2010/11 27

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins

Generality : LALR wins

Semantic actions : (see semantic analysis) LL wins

Error handling : LL wins

Parser size : comparable

Parsing speed : comparable

both linear in length of input program
(LL(1): see Lemma 9.10 for ε-free case)
concrete figures tool dependent

Compiler Construction Winter semester 2010/11 27

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins

Generality : LALR wins

Semantic actions : (see semantic analysis) LL wins

Error handling : LL wins

Parser size : comparable

Parsing speed : comparable

Conclusion: choose LL when possible
(depending on available grammars and tools)

Compiler Construction Winter semester 2010/11 27

	Repetition: LALR(1) Parsing
	More on LALR(1) Parsing
	Bottom-Up Parsing of Ambiguous Grammars
	Generating Parsers Using yacc
	Expressiveness of LL and LR Grammars
	LL and LR Parsing in Practice

