Compiler Construction

Lecture 14: Syntactic Analysis IX (Practical Issues)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

© Repetition: LALR(1) Parsing

Rm Compiler Construction ter semester 2010/11

LALR(1) Sets 1

For every G € CFGy, |[LR(1)(G)/ ~o | = |[LR(0)(G)|.

Idea: merge LR(0)-equivalent LR(1) sets (maintaining the lookahead
information, but possibly introducing conflicts)

Definition (LALR(1) sets)

Let G € CFGx.

o An information I € LR(1)(G) determines the LALR(1) set
Ulll~o = U{I" € LR()(G) | I ~o I}
@ The set of all LALR(1) sets of G is denoted by LALR(1)(G).

Remark: by Corollary 13.16, |LALR(1)(G)| = |LR(0)(G)]
(but LALR(1) sets provide additional lookahead information)

m Compiler Construction Winter semester 2010/11

LALR(1) Sets 1I

Example (cf. Example 13.15)
Grr:S'"—-S S—L=R|R L—*R|a R—L

LR(O)(GLR) : LALR(l)(GLR) :
Iy(e) : S —-S] [S—-L=R] Ii:=1I:

S — R] [L — *R)

L — -a] [R — -L]
I(S) : S — S =1:
I,(L) : S — L-=R] [R— L] J o= 115 ¢
Is5(R): [S— R Iy =15
L(: [L—+R [R—-L I=LUl,

L — *R] [L— -a]
Is(a) : L — a If .=IgU I,
Is(L=): [S— L=-R][R— L] If = 1I§

L — *R] [L— -4
I(xR) : [L — xR] Y =T,UI;
Ig(*L): [R— L] If =I5 U I,
Is(L=R) : [S — L=R'] Iy :=1Iy:

S" — .S, €] [S — -L=R,¢]
S — ‘R, ¢] [L — *R,=/¢]
L — -a,=/e] [R— -L,¢|
S — S €]
S—L-=R,e] [R— L-¢]
S — R €]

:[L—*-R,=/e] [R— -L,=/¢]
L — *R,=/e] [L — -a,=/¢]

: [L— a,=/¢]
S — L=-R,e] [R— -L,e]
L — *R, €| [L — -a,¢]

3: [L - *R'7=/E]

: [R— L-,=/e]

[S — L=R-,¢|

Compiler Construction

Winter semester 2010/11

4

© More on LALR(1) Parsing

Rm Compiler Construction ter semester 2010/11

LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 14.1
G:5—S S—aAd|bBd|aBe|bde A—c B—c

m' Compiler Construction Winter semester 2010/11 6

LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 14.1

G:5—S S—aAd|bBd|aBe|bde A—c B—c

LR(1)(e) : S’ — -S,e] [S—-add,e] [S— -bBd,¢] [S — -aBe,¢]
S — -bAe,¢]

LR(1)(S): [S'— S €]
LR(1)(a) : S —a-Ad,e]| [S— a-Be,g] [A— c,d] [B— -c,e]
LR(1)(b) : S —b-Bde] [S—b-Aee] [B— c,d [4A— e
LR(1)(ad): [S— aA-d,¢] LR(1)(aB): [S — aB-e,¢]
LR(1)(ac): [A— c-,d] [B — c-e]
LR(1)(bB): [S—DbB-d,¢] LR(1)(bA): [S— bA-e,¢]
LR(1)(bc): [B — c-,d] [A — c-, €]
LR(1)(add) : [S — aAd-,€] LR(1)(aBe): [S — aBe-,¢]
LR(1)(bBd) : [S — bBd-,¢] LR(1)(bAe) : [S — bAe-, €]

Compiler Construction

Winter semester 2010/11

6

LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 14.1

G:5—S S—aAd|bBd|aBe|bde A—c B—c

LR(1)(e) : S’ — -S,e] [S—-add,e] [S— -bBd,¢] [S — -aBe,¢]
S — -bAe,¢]

LR(1)(S): [S'— S €]
LR(1)(a) : S —a-Ad,e]| [S— a-Be,g] [A— c,d] [B— -c,e]
LR(1)(b) : S —b-Bde] [S—b-Aee] [B— c,d [4A— e
LR(1)(ad): [S— aA-d,¢] LR(1)(aB): [S — aB-e,¢]
LR(1)(ac): [A— c-,d] [B — c-e]
LR(1)(bB): [S—DbB-d,¢] LR(1)(bA): [S— bA-e,¢]
LR(1)(bc): [B — c-,d] [A — c-, €]
LR(1)(add) : [S — aAd-,€] LR(1)(aBe): [S — aBe-,¢]
LR(1)(bBd) : [S — bBd-,¢] LR(1)(bAe) : [S — bAe-, €]

no conflicts = G € LR(1)

Compiler Construction

Winter semester 2010/11

6

LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 14.1

G:S5 —S S— aAd|bBd|aBe|bde

LR(1)(g) :
LR(1)(S) :
LR(1)(a) :
LR(1)(b) :
LR(1)(aA) :
LR(1)(ac) :
LR(1)(bB) :
LR(1)(bc) :
LR(1)(aAd)
LR(1)(bB4) :

S’ — .S €]
S — bAe, €]
S’ — S €]

S —a-Ad,e]| [S— a- Be,¢]
S —b-Bde| [S—b- Ae,¢]

S —ad-d,e|
A — c-,d]
S —bB-d,¢]
B — c-,d]

: [S — add, €]

S — bBd., €]

no conflicts = G € LR(1)

LR(1)(ac) ~o LR(1)(bc), but LR(1)(ac)U LR(1)(bc) has conflicts
= G ¢ LALR(1)

[S — -add, €]

[B — c-e]

[A — c-, €]

A—c

B—c
[S — -bBd,¢] [S — -aBe,¢]

[A— -c,d] [B— -c,e€]
[B— c,d] [A— e
LR(1)(aB): [S — aB-e,¢]
LR(1)(bA): [S— bA-e,g]
LR(1)(aBe): [S — aBe-,¢]
LR(1)(bAe) : [S — bAe-, €]

Compiler Construction

Winter semester 2010/11

6

Efficient Construction of LALR(1) Parsers

Naive algorithm to construct LALR(1) parser for G € CFGx:
@ Construct LR(1)(G)
@ Determine and merge LR(0)-equivalent LR(1) sets

Problem: no reduction of peak space requirement

Rm Compiler Construction Winter semester 2010/11 7

Efficient Construction of LALR(1) Parsers

Naive algorithm to construct LALR(1) parser for G € CFGx:
@ Construct LR(1)(G)
@ Determine and merge LR(0)-equivalent LR(1) sets

Problem: no reduction of peak space requirement

Idea of improved algorithm (see Aho/Lam/Sethi/Ullman: Compilers:
Principles, Techniques, and Tools, 2nd ed., p. 270ff):

@ Represent each set of items by its kernel, i.e., by the items of the
form [S" — -S,e] or [A — (1 - B2, x| where 31 # ¢

@ Construct LALR(1) kernels from LR(0) kernels similarly to LR(1)
items

© Compute LALR(1) sets by taking the e-closure

(applied in yacc parser generator)

m' Compiler Construction Winter semester 2010/11 7

© Bottom-Up Parsing of Ambiguous Grammars

Rm Compiler Construction nter semester 2010/11

Ambiguous Grammars

Reminder (Definition 6.6): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

Rm Compiler Construction Winter semester 2010/11 9

Ambiguous Grammars

Reminder (Definition 6.6): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

If G € CFGx is ambiguous, then G ¢ J, ey LR(K).

m' Compiler Construction Winter semester 2010/11 9

Ambiguous Grammars

Reminder (Definition 6.6): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

If G € CFGsx is ambiguous, then G & oy LR(K).

Proof.
Assume that there exist £ € N and G € LR(k) such that G is ambiguous.

m Compiler Construction Winter semester 2010/11 9

Ambiguous Grammars

Reminder (Definition 6.6): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

If G € CFGsx is ambiguous, then G & oy LR(K).

Proof.

Assume that there exist £ € N and G € LR(k) such that G is ambiguous.
Hence there exists w € L(G) with different right derivations. Let aAv be the
last common sentence of the two derivations (i.e., 5 # §'):

=, afv =5 w
* T T
S =F adv {:>T aBlv =+ w

m Compiler Construction Winter semester 2010/11 9

Ambiguous Grammars

Reminder (Definition 6.6): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

If G € CFGsx is ambiguous, then G & oy LR(K).

Proof.

Assume that there exist £ € N and G € LR(k) such that G is ambiguous.
Hence there exists w € L(G) with different right derivations. Let aAv be the
last common sentence of the two derivations (i.e., 5 # §'):

=, afv =>Fw

=, af'v=Fw

But since firsty (v) = firsty (v) for every v € ¥*, Definition 10.9 yields that

B = 3. Contradiction O

S = aAv

4

m Compiler Construction Winter semester 2010/11 9

Ambiguous Grammars

Reminder (Definition 6.6): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise
it is called ambiguous.

If G € CFGsx is ambiguous, then G & oy LR(K).

Proof.

Assume that there exist £ € N and G € LR(k) such that G is ambiguous.
Hence there exists w € L(G) with different right derivations. Let aAv be the
last common sentence of the two derivations (i.e., 5 # §'):

=, afv =>Fw

=, af'v=Fw

But since firsty (v) = firsty (v) for every v € ¥*, Definition 10.9 yields that

B = 3. Contradiction O

S = aAv

4

However ambiguity is a natural specification method which generally avoids

involved syntactic constructs.
m Compiler Construction Winter semester 2010/11 9

Bottom-Up Parsing of Ambiguous Grammars I

Example 14.3 (Simple arithmetic expressions)
G:E - FE E — E+E | E*E | a

m Compiler Construction Winter semester 2010/11 10

Bottom-Up Parsing of Ambiguous Grammars I

Example 14.3 (Simple arithmetic expressions)

G:F — FE FE— E+E|ExE|a
Precedence: * > + Associativity: left
(thus: at+a*a+a :=(a+(axa))+a)

m Compiler Construction Winter semester 2010/11 10

Bottom-Up Parsing of Ambiguous Grammars I

Example 14.3 (Simple arithmetic expressions)
G:F — FE FE— E+E|ExE|a

Precedence: * > + Associativity: left

(thus: at+a*a+a :=(a+(axa))+a)

LR(0)(G):

Iy := LR(0)(¢) : [E) — -E] [E — -E+E| [E — -E*E]| [E — -a]
I :=LR(O)(E): |[E'—E] [E—E +E|[E— E-*E]

Iy := LR(0)(a) : [E — a‘]

I := LR(0)(E+): [E — E+-E|[E — -E+E| [E — -E+E] [E — -3
I, := LR(0)(E*): [E — E*x-E]|[E — -E+E] [E — -ExE]| [E — -2
I5 := LR(0)(E+E) : [E — E+E] [E — E-+E| [E — E - xE]

Is := LR(0)(E*E) : [E — E*E] [E — E-+E|] [E — E - xE]

m Compiler Construction Winter semester 2010/11 10

Bottom-Up Parsing of Ambiguous Grammars I

Example 14.3 (Simple arithmetic expressions)
G:F — FE FE— E+E|ExE|a

Precedence: * > + Associativity: left

(thus: at+a*a+a :=(a+(axa))+a)

LR(0)(G):

Iy := LR(0)(¢) : [E) — -E] [E — -E+E| [E — -E*E]| [E — -a]
I .= LR(0)(E) : [E' — E] [E - E-+E| [E — E -*E]
L=IR(0)a): [E—al

I3:=LR(0)(E+): |E — E+-E||[E— -E+E| [E — -E*E] [E — -a]
Iy := LR(0)(E*): |[E — Ex-E] [E — E+E] [E — ExE] [E — -a]
I5 := LR(0)(E+E) : [E — E+E] [E — E-+E| [E — E - xE]

Is := LR(0)(E*E) : [E — E*E] [E — E-+E|] [E — E - xE]

Conflicts: I1: SLR(1)-solvable (reduce on e, shift on +/*)

m Compiler Construction Winter semester 2010/11 10

Bottom-Up Parsing of Ambiguous Grammars I

Example 14.3 (Simple arithmetic expressions)
G:F — FE FE— E+E|ExE|a

Precedence: * > + Associativity: left

(thus: at+a*a+a :=(a+(axa))+a)

LR(0)(G):

Iy := LR(0)(¢) : [E) — -E] [E — -E+E| [E — -E*E]| [E — -a]
I :=LR(O)(E): |[E'—E] [E—E +E|[E— E-*E]
L=IR(0)a): [E—al

I .= LR(0)(E+): |E — E+-E|[E — -E+E| [E — -E+E] [E — -3
I,:= LR(0)(E*): [E — E*x-E][E— E+E] [E — -E*E] [E — -a]
I5 := LR(0)(E+E) : [E — E+E] [E — E-+E| [E — E - xE]

Is := LR(0)(E*E) : [E — E*E] [E — E-+E|] [E — E - xE]

Conflicts: I1: SLR(1)-solvable (reduce on e, shift on +/*)
I5, Is: not SLR(1)-solvable (+, * € fo(FE))

m Compiler Construction Winter semester 2010/11 10

Bottom-Up Parsing of Ambiguous Grammars I

Example 14.3 (Simple arithmetic expressions)
G:F — FE FE— E+E|ExE|a

Precedence: * > + Associativity: left

(thus: at+a*a+a :=(a+(axa))+a)

LR(0)(G):

Iy := LR(0)(¢) : [E) — -E] [E — -E+E| [E — -E*E]| [E — -a]
I .= LR(0)(E) : [E' — E] [E - E-+E| [E — E - *E]
L=IR(0)a): [E—al

I .= LR(0)(E+): |E — E+-E|[E — -E+E| [E — -E+E] [E — -3
I,:= LR(0)(E*): [E — E*x-E][E— E+E] [E — -E*E] [E — -a]
I5 := LR(0)(E+E) : [E — E+E] [E — E-+E| [E — E - xE]

Is := LR(0)(E*E) : [E — E*E] [E — E-+E|] [E — E - xE]

Conflicts: I1: SLR(1)-solvable (reduce on e, shift on +/*)
I5, Is: not SLR(1)-solvable (+,* € fo(FE))
Solution:
Is: * >+ == act([5, *) := shift, + left assoc. = act(I5,+) :=red1

m Compiler Construction Winter semester 2010/11 10

Bottom-Up Parsing of Ambiguous Grammars I

Example 14.3 (Simple arithmetic expressions)
G:F — FE FE— E+E|ExE|a

Precedence: * > + Associativity: left

(thus: at+a*a+a :=(a+(axa))+a)

LR(0)(G):

Iy := LR(0)(¢) : [E) — -E] [E — -E+E| [E — -E*E]| [E — -a]
I .= LR(0)(E) : [E' — E] [E - E-+E| [E — E - *E]
L=IR(0)a): [E—al

I .= LR(0)(E+): |E — E+-E|[E — -E+E| [E — -E+E] [E — -3
I,:= LR(0)(E*): [E — E*x-E][E— E+E] [E — -E*E] [E — -a]
I5 := LR(0)(E+E) : [E — E+E] [E — E-+E| [E — E - xE]

Is := LR(0)(E*E) : [E — E*E] [E — E-+E|] [E — E - xE]

Conflicts: I1: SLR(1)-solvable (reduce on e, shift on +/*)
I5, Is: not SLR(1)-solvable (+,* € fo(FE))

Solution:
Is: * > + = act([5, *) := shift, + left assoc. = act([5,+) :=red1
Ig: * >+ = act(lg, +) := red 2, * left assoc. = act(lg, *) := red 2

m Compiler Construction Winter semester 2010/11 10

Bottom-Up Parsing of Ambiguous Grammars II

Example 14.4 (“Dangling)
G:58 — 8§ S—>iSeS|iS|a

m Compiler Construction Winter semester 2010/11 11

Bottom-Up Parsing of Ambiguous Grammars II

Example 14.4 (“Dangling)
G:5—S S—iSeS|iS|a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

m Compiler Construction Winter semester 2010/11 11

Bottom-Up Parsing of Ambiguous Grammars II

Example 14.4 (“Dangling)
G:5—S S—iSeS|iS|a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

LR(O)(G)
Iy := LR(0)(¢) : S’ — .S] [S — -iSeS] [S — i8]
S — -a
I := LR(0)(S) : S — S]]
I:= LR(0)(i): [S—i-SeS][S—i-S] [S — -iSeS]

[
[
|
[S — -iS] [S — -a]
I3 := LR(0)(a) : [S — a
Iy ;= LR(0)(iS): [S— iS-eS][S — iS5
I5 := LR(0)(iSe): [S — iSe-S][S — -iSeS] [S — -i5]
[S — -]
[

Is := LR(0)(iSeS) : [S — iSeS']

m Compiler Construction Winter semester 2010/11 11

Bottom-Up Parsing of Ambiguous Grammars II

Example 14.4 (“Dangling)
G:5—S S—iSeS|iS|a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

LR(0)(G):

Iy := LR(0)(¢) : [S" — 5] [S — -iSeS] [S — i8]
[

I := LR(0)(S) : [

I = LR(0)(1): [S—1-SeS|[S—1-9] [S— -iSeS]
[S — -iS] [S — -a]

I3 := LR(0)(a) : [S — a]

I, := LR(0)(iS): [S—1S5-eS][S — iS]

I5 := LR(0)(iSe): [S — iSe-S][S — -iSeS] [S — -i5]
[
[
(

Is := LR(0)(iSeS) : [S — iSeS']

Compiler Construction Winter semester 2010/11 11

Bottom-Up Parsing of Ambiguous Grammars II

Example 14.4 (“Dangling)
G:5—S S—iSeS|iS|a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

LR(0)(G):

Iy := LR(0)(¢) : {S’ — 5] [S — -iSeS] [S — i8]

I := LR(0)(S) : [

I = LR(0)(1): [S—1-SeS|[S—1-9] [S— -iSeS]
[S — -iS] [S — -a]

I3 := LR(0)(a) : [S — a]

I, := LR(0)(iS): [S—1S5-eS][S — iS]

I5 := LR(0)(iSe): [S — iSe-S][S — -iSeS] [S — -i5]
[
[
(

Is := LR(0)(iSeS) : [S — iSeS']

Solution (1): act(ly,e) := shift

m Compiler Construction Winter semester 2010/11 11

@ Generating Parsers Using yacc

Rm Compiler Construction nter semester 2010/11 12

The yacc Tool

Usage of yacc (“yet another compiler compiler”):

yacc [f11lex
spec.y — y.tab.c lex.yy.c — spec.1l
yacc specification Parser source Scanner source [£f]11lex specification
Leel
a.out

Executable LALR(1) parser

Rm Compiler Construction Winter semester 2010/11 13

The yacc Tool

Usage of yacc (“yet another compiler compiler”):

yacc [f11lex
spec.y — y.tab.c lex.yy.c — spec.1l
yacc specification Parser source Scanner source [£f]11lex specification
Leel
a.out

Executable LALR(1) parser

Like for [f]lex, a yacc specification is of the form

Declarations (optional)
hto

Rules

hoto

Augziliary procedures (optional)

Rm Compiler Construction Winter semester 2010/11

yacc Specifications

Declarations:

@ Token definitions: %token Tokens

@ Not every token needs to be declared (°+’, ’=?, ...)
@ Start symbol: %start Symbol (optional)

@ C code for declarations etc.: %{ Code %}

Compiler Construction Winter semester 2010/11 14

yacc Specifications

Declarations: @ Token definitions: %token Tokens
@ Not every token needs to be declared (°+’, ’=?, ...)
@ Start symbol: %start Symbol (optional)
@ C code for declarations etc.: %{ Code %}

Rules: context-free productions and semantic actions

@ A—ay|az]...|a, represented as
A : ay {Action;}
| as {Actiong}

| a, {Action,};
® Semantic actions = C statements for computing attribute
values
@ $$ = attribute value of A
@ $i = attribute value of ith symbol on right-hand side
@ Default action: $$ = $1

m' Compiler Construction Winter semester 2010/11 14

yacc Specifications

Declarations: @ Token definitions: %token Tokens
@ Not every token needs to be declared (°+’, ’=?, ...)
@ Start symbol: %start Symbol (optional)
@ C code for declarations etc.: %{ Code %}

Rules: context-free productions and semantic actions

@ A—ay|az]...|a, represented as
A : ay {Action;}
| as {Actiong}

| a, {Action,};
® Semantic actions = C statements for computing attribute
values
@ $$ = attribute value of A
@ $i = attribute value of ith symbol on right-hand side
@ Default action: $$ = $1

Auxiliary procedures: scanner (if not [£f]1lex), error routines, ...

m' Compiler Construction Winter semester 2010/11 14

Example: Simple Desk Calculator 1

%{/* SLR(1) grammar for arithmetic expressions (Example 12.9) */
#include <stdio.h>
#include <ctype.h>

3

%token DIGIT

Dot

line : expr ’\n’ { prlntf("Vd\n" $1); };
expr : expr ’+’ term {$$=9%1+ $3; }
| term {$$=81; };
term : term ’*’ factor { $$ = $1 * $3; }
| factor { $$ = $1; };
factor : ’(’ expr ’)’ { $$ = $2; }
| DIGIT { 88 = $1; };
hte
yylex() {
int c;
= getchar();
if (isdigit(c)) yylval = ¢ - ’0’; return DIGIT;
return c;

Rm Compiler Construction Winter semester 2010/11 15

Example: Simple Desk Calculator 11

> yacc calc.y

> cc y.tab.c -1y
> a.out

2+3

5

> a.out

2+3%5

17

Rm Compiler Construction Winter semester 2010/11 16

An Ambiguous Grammar I

%{/* Ambiguous grammar for arithm. expressions (Ex. 14.3) */
#include <stdio.h>
#include <ctype.h>

h}

%token DIGIT

ho

line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr {83 =81+ 93; }
| expr ’*’ expr { $8 = $1 * $3; }
| DIGIT {$$=91; };
YA
yylex() {
int c;

c = getchar();
if (isdigit(c)) {yylval = ¢ - ’0’; return DIGIT;}
return c;

Rm Compiler Construction Winter semester 2010/11

An Ambiguous Grammar II

Invoking yacc with the option -v produces a report y.output:
State 8

2 expr: expr . ’+’ expr

2 | expr ’+’ expr .

3 | expr . ’*’ expr

’+’ shift and goto state 6
’*’ shift and goto state 7

242 [reduce with rule 2 (expr)]

%2 [reduce with rule 2 (expr)]
State 9

2 expr: expr . ’+’ expr

3 | expr . ’*’ expr

3 | expr %’ expr .

’+’ shift and goto state 6
’*’ shift and goto state 7

742 [reduce with rule 3 (expr)]
%2 [reduce with rule 3 (expr)]

Rm Compiler Construction Winter semester 2010/11

Conflict Handling in yacc

Default conflict resolving strategy in yacc:

reduce/reduce: choose first conflicting production in specification

Rm Compiler Construction Winter semester 2010/11 19

Conflict Handling in yacc

Default conflict resolving strategy in yacc:

reduce/reduce: choose first conflicting production in specification
shift /reduce: prefer shift

@ resolves dangling-else ambiguity (Example 14.4) correctly

@ also adequate for strong following weak operator (* after
+; Example 14.3) and for right-associative operators

@ not appropriate for weak following strong operator and for
left-associative binary operators
(= reduce; see Example 14.3)

Rm Compiler Construction Winter semester 2010/11 19

Conflict Handling in yacc

Default conflict resolving strategy in yacc:

reduce/reduce: choose first conflicting production in specification
shift /reduce: prefer shift

@ resolves dangling-else ambiguity (Example 14.4) correctly

@ also adequate for strong following weak operator (* after
+; Example 14.3) and for right-associative operators

@ not appropriate for weak following strong operator and for
left-associative binary operators
(= reduce; see Example 14.3)

For ambiguous grammar:

> yacc ambig.y

conflicts: 4 shift/reduce
> cc y.tab.c -1y

> a.out

2+3%*5

17

> a.out

2%x3+5

16

Rm Compiler Construction Winter semester 2010/11 19

Precedences and Associativities in yacc I

General mechanism for resolving conflicts:

hlleft|right] Operators;
hlleft|right] Operators,

@ operators in one line have given associativity and same precedence

@ precedence increases over lines

Rm Compiler Construction Winter semester 2010/11 20

Precedences and Associativities in yacc I

General mechanism for resolving conflicts:

hlleft|right] Operators;
hlleft|right] Operators,

@ operators in one line have given associativity and same precedence

@ precedence increases over lines

Example 14.5
Yleft *+2 2=
hleft x> 2/’
%right °>°°

" (right associative) binds stronger than * and / (left associative),
which in turn bind stronger than + and - (left associative)

m' Compiler Construction Winter semester 2010/11 20

Precedences and Associativities in yacc 11

%{/* Ambiguous grammar for arithmetic expressions
with precedences and associativities */
#include <stdio.h>
#include <ctype.h>
h}
%token DIGIT
%hleft >+’
%hleft %’
ol
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr { 8% =81+ $3; }
| expr ’*’ expr { $$ =81 % $3; }
| DIGIT { 8% = 815 };

Dot
yylex() {
int c;
c = getchar();
if (isdigit(c)) {yylval = ¢ - ’0’; return DIGIT;}
return c;

Rm Compiler Construction Winter semester 2010/11

Precedences and Associativities in yacc 111

> yacc ambig-prio.y
> cc y.tab.c -1y

> a.out

2%3+5

11

> a.out

2+3%5

17

Rm Compiler Construction Winter semester 2010/11

© Expressiveness of LL and LR Grammars

Rm Compiler Construction nter semester 2010/11

Overview of Grammar Classes

LL(1) G4y (Ex. 9.1)
Moreover:
. LL(0) o LL(k) G LL(k+1)
(singletons) for every k € N
® LR(k) & LR(k+1)
oG (Ex. 11.8) for every k € N

o LL(k) C LR(k)
for every k € N

eGap (Ex. 12.13)

oG (Ex. 13.18)

oG (Ex. 14.1)

m Compiler Construction Winter semester 2010/11 24

Overview of Language Classes

(cf. O. Mayer: Syntaxanalyse, BI-Verlag, 1978, p. 409ff)

L(LL(1))
REC Moreover:
o L(LL(k)) S
L(LL(0)) L(LL(k+1)) S
L(LR(1)
for every k € N
o L(LR(k)) =
= = L(LR(1))
= det. CFL for every k > 1
unambiguous CFL
CFL

25

m Compiler Construction Winter semester 2010/11

© LL and LR Parsing in Practice

Rm Compiler Construction nter semester 2010/11

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Rm Compiler Construction Winter semester 2010/11

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):
Simplicity : LL wins
o LL parsing technique easier to understand

@ recursive-descent parser easier to debug than LALR
action tables

Rm Compiler Construction Winter semester 2010/11

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):
Simplicity : LL wins
Generality : LALR wins
e “almost” LL(1) € LALR(1) (only pathological
counterexamples)

@ LL requires elimination of left recursion and left
factorization

m' Compiler Construction Winter semester 2010/11

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins

Generality : LALR wins
Semantic actions : (see semantic analysis) LL wins

@ actions can be placed anywhere in LL parsers without
causing conflicts

o in LALR: implicit e-productions
—> may generate conflicts

m' Compiler Construction Winter semester 2010/11

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):
Simplicity : LL wins
Generality : LALR wins
Semantic actions : (see semantic analysis) LL wins
Error handling : LL wins

@ top-down approach provides context information
= better basis for reporting and/or repairing
errors

Rm Compiler Construction Winter semester 2010/11

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):
Simplicity : LL wins
Generality : LALR wins
Semantic actions : (see semantic analysis) LL wins
Error handling : LL wins
Parser size : comparable

o LL: action table
o LALR: action/goto table

Rm Compiler Construction Winter semester 2010/11

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):
Simplicity : LL wins
Generality : LALR wins
Semantic actions : (see semantic analysis) LL wins
Error handling : LL wins
Parser size : comparable
Parsing speed : comparable

@ both linear in length of input program
(LL(1): see Lemma 9.10 for e-free case)
o concrete figures tool dependent

Rm Compiler Construction Winter semester 2010/11

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):
Simplicity : LL wins
Generality : LALR wins
Semantic actions : (see semantic analysis) LL wins
Error handling : LL wins
Parser size : comparable
Parsing speed : comparable

Conclusion: choose LL when possible
(depending on available grammars and tools)

Rm Compiler Construction Winter semester 2010/11

	Repetition: LALR(1) Parsing
	More on LALR(1) Parsing
	Bottom-Up Parsing of Ambiguous Grammars
	Generating Parsers Using yacc
	Expressiveness of LL and LR Grammars
	LL and LR Parsing in Practice

