
Compiler Construction

Lecture 15: Semantic Analysis I (Attribute Grammars)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/


Outline

1 Regular vs. LR(0) Languages

2 Overview

3 Semantic Analysis

4 Attribute Grammars

5 Adding Inherited Attributes

6 Formal Definition of Attribute Grammars

Compiler Construction Winter semester 2010/11 2



Repetition: Overview of Language Classes

(cf. O. Mayer: Syntaxanalyse, BI-Verlag, 1978, p. 409ff)

REG

L(LL(0 ))

L(LR(0 ))

L(LL(1 ))

CFL

L(SLR(1 )) = L(LALR(1 )) =

unambiguous CFL

L(LR(1 )) = det . CFL

Moreover:

L(LL(k)) $
L(LL(k + 1)) $
L(LR(1))
for every k ∈ N

L(LR(k)) =
L(LR(1))
for every k ≥ 1

Compiler Construction Winter semester 2010/11 3



Why REG 6⊆ L(LR(0))?

Definition (cf. Exercise 6.2)

A language L ⊆ Σ∗ is called prefix-free if L ∩ L · Σ+ = ∅, i.e., if no
proper prefix of an element of L is again in L.

Compiler Construction Winter semester 2010/11 4



Why REG 6⊆ L(LR(0))?

Definition (cf. Exercise 6.2)

A language L ⊆ Σ∗ is called prefix-free if L ∩ L · Σ+ = ∅, i.e., if no
proper prefix of an element of L is again in L.

Lemma (cf. Exercise 6.2)

G ∈ LR(0) =⇒ L(G) prefix-free

Compiler Construction Winter semester 2010/11 4



Why REG 6⊆ L(LR(0))?

Definition (cf. Exercise 6.2)

A language L ⊆ Σ∗ is called prefix-free if L ∩ L · Σ+ = ∅, i.e., if no
proper prefix of an element of L is again in L.

Lemma (cf. Exercise 6.2)

G ∈ LR(0) =⇒ L(G) prefix-free

Corollary

{a, aa} ∈ REG \ L(LR(0))

Compiler Construction Winter semester 2010/11 4



Why REG 6⊆ L(LR(0))?

Definition (cf. Exercise 6.2)

A language L ⊆ Σ∗ is called prefix-free if L ∩ L · Σ+ = ∅, i.e., if no
proper prefix of an element of L is again in L.

Lemma (cf. Exercise 6.2)

G ∈ LR(0) =⇒ L(G) prefix-free

Corollary

{a, aa} ∈ REG \ L(LR(0))

Conjecture: L ∈ REG \ L(LR(0)) =⇒ L(G) not prefix-free?
(cf. Exercise 7)

Compiler Construction Winter semester 2010/11 4



Outline

1 Regular vs. LR(0) Languages

2 Overview

3 Semantic Analysis

4 Attribute Grammars

5 Adding Inherited Attributes

6 Formal Definition of Attribute Grammars

Compiler Construction Winter semester 2010/11 5



Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntactic analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
Compiler Construction Winter semester 2010/11 6



Outline

1 Regular vs. LR(0) Languages

2 Overview

3 Semantic Analysis

4 Attribute Grammars

5 Adding Inherited Attributes

6 Formal Definition of Attribute Grammars

Compiler Construction Winter semester 2010/11 7



Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

Are there identifiers that are not declared? Declared but not used?

Compiler Construction Winter semester 2010/11 8



Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

Are there identifiers that are not declared? Declared but not used?

Is x a scalar, an array, or a procedure? Of which type?

Compiler Construction Winter semester 2010/11 8



Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

Are there identifiers that are not declared? Declared but not used?

Is x a scalar, an array, or a procedure? Of which type?

Which declaration of x is used by each reference?

Compiler Construction Winter semester 2010/11 8



Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

Are there identifiers that are not declared? Declared but not used?

Is x a scalar, an array, or a procedure? Of which type?

Which declaration of x is used by each reference?

Is x defined before it is used?

Compiler Construction Winter semester 2010/11 8



Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

Are there identifiers that are not declared? Declared but not used?

Is x a scalar, an array, or a procedure? Of which type?

Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?

Compiler Construction Winter semester 2010/11 8



Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

Are there identifiers that are not declared? Declared but not used?

Is x a scalar, an array, or a procedure? Of which type?

Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?

Where should the value of x be stored (register/stack/heap)?

Compiler Construction Winter semester 2010/11 8



Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

Are there identifiers that are not declared? Declared but not used?

Is x a scalar, an array, or a procedure? Of which type?

Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?

Where should the value of x be stored (register/stack/heap)?

Do p and q refer to the same memory location (aliasing)?

...

Compiler Construction Winter semester 2010/11 8



Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

Are there identifiers that are not declared? Declared but not used?

Is x a scalar, an array, or a procedure? Of which type?

Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?

Where should the value of x be stored (register/stack/heap)?

Do p and q refer to the same memory location (aliasing)?

...

These cannot be expressed using context-free grammars!

Compiler Construction Winter semester 2010/11 8



Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

Are there identifiers that are not declared? Declared but not used?

Is x a scalar, an array, or a procedure? Of which type?

Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?

Where should the value of x be stored (register/stack/heap)?

Do p and q refer to the same memory location (aliasing)?

...

These cannot be expressed using context-free grammars!
(e.g., {ww | w ∈ Σ∗} /∈ CFLΣ)

Compiler Construction Winter semester 2010/11 8



Static Semantics

Static semantics refers to properties of program constructs

which are true for every occurrence of this construct in every
program execution (static) and

can be decided at compile time

but are context-sensitive and thus not expressible using
context-free grammars (semantics).

Compiler Construction Winter semester 2010/11 9



Static Semantics

Static semantics refers to properties of program constructs

which are true for every occurrence of this construct in every
program execution (static) and

can be decided at compile time

but are context-sensitive and thus not expressible using
context-free grammars (semantics).

Example properties:

Static: type or declaredness of an identifier, number of registers
required to evaluate an expression, ...

Dynamic: value of an expression, size of runtime stack, ...

Compiler Construction Winter semester 2010/11 9



Static Semantics

Static semantics refers to properties of program constructs

which are true for every occurrence of this construct in every
program execution (static) and

can be decided at compile time

but are context-sensitive and thus not expressible using
context-free grammars (semantics).

Example properties:

Static: type or declaredness of an identifier, number of registers
required to evaluate an expression, ...

Dynamic: value of an expression, size of runtime stack, ...

Among others, these properties are determined by

Scope rules: defines part of program where a declaration is valid

Typing rules: defines type consistency of expressions, statements, ...

Compiler Construction Winter semester 2010/11 9



Outline

1 Regular vs. LR(0) Languages

2 Overview

3 Semantic Analysis

4 Attribute Grammars

5 Adding Inherited Attributes

6 Formal Definition of Attribute Grammars

Compiler Construction Winter semester 2010/11 10



Attribute Grammars I

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

=⇒ Semantic analysis = attribute evaluation

Result: attributed syntax tree

Compiler Construction Winter semester 2010/11 11



Attribute Grammars I

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

=⇒ Semantic analysis = attribute evaluation

Result: attributed syntax tree

In greater detail:

With every nonterminal a set of attributes is associated.

Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leaves to the root)
Inherited: top-down computation (from the root to the leaves)

With every production a set of semantic rules is associated.

Compiler Construction Winter semester 2010/11 11



Attribute Grammars II

Advantage: attribute grammars provide a very flexible and broadly
applicable mechanism for transporting information throught the syntax
tree (“syntax-directed translation”)

Attribute values: symbol tables, data types, code, error flags, ...

Application in Compiler Construction:

static semantics
program analysis for optimization
code generation
error handling

Automatic attribute evaluation by compiler generators
(cf. yacc’s synthesized attributes)

Originally designed by D. Knuth for defining the semantics of
context-free languages (Math. Syst. Theory 2 (1968), pp. 127–145)

Compiler Construction Winter semester 2010/11 12



Example: Knuth’s Binary Numbers I

Example 15.1 (only synthesized attributes)

Binary numbers (with fraction):

GB : Numbers S → L
S → L.L

Lists L → B

L → LB

Bits B → 0

Bits B → 1

Compiler Construction Winter semester 2010/11 13



Example: Knuth’s Binary Numbers I

Example 15.1 (only synthesized attributes)

Binary numbers (with fraction):

GB : Numbers S → L v.0 = v.1
S → L.L v.0 = v.1 + v.3/2l.3

Lists L → B v.0 = v.1
l.0 = 1

L → LB v.0 = 2 ∗ v.1 + v.2
l.0 = l.1 + 1

Bits B → 0 v.0 = 0
Bits B → 1 v.0 = 1

Synthesized attributes of S,L,B: v (value; domain: V v := Q)
of L: l (length; domain: V l := N)

Semantic rules: equations with attribute variables
(index = position of symbol; 0 = left-hand side)

Compiler Construction Winter semester 2010/11 13



Example: Knuth’s Binary Numbers II

Example 15.1 (continued)

Syntax tree for 1101.01: S

L . L

L B

L B

L B

B

1

0

1

1

L B

B 1

0

Compiler Construction Winter semester 2010/11 14



Example: Knuth’s Binary Numbers II

Example 15.1 (continued)

Attributed syntax tree for 1101.01: S

L . L

L B

L B

L B

B

1

0

1

1

L B

B 1

0

v :

v : v : l :

v : v :

v : v :

v : v :

v :

v : l : v :

v :

Compiler Construction Winter semester 2010/11 14



Example: Knuth’s Binary Numbers II

Example 15.1 (continued)

Attributed syntax tree for 1101.01: S

L . L

L B

L B

L B

B

1

0

1

1

L B

B 1

0

v :

v : v : l :

v : v :

v : v : 0

v : v :

v :

v : l : v :

v : 0

B → 0 : v.0 = 0

Compiler Construction Winter semester 2010/11 14



Example: Knuth’s Binary Numbers II

Example 15.1 (continued)

Attributed syntax tree for 1101.01: S

L . L

L B

L B

L B

B

1

0

1

1

L B

B 1

0

v :

v : v : l :

v : v : 1

v : v : 0

v : v : 1

v : 1

v : l : v : 1

v : 0

B → 1 : v.0 = 1

Compiler Construction Winter semester 2010/11 14



Example: Knuth’s Binary Numbers II

Example 15.1 (continued)

Attributed syntax tree for 1101.01: S

L . L

L B

L B

L B

B

1

0

1

1

L B

B 1

0

v :

v : v : l :

v : v : 1

v : v : 0

v : 1 v : 1

v : 1

v : 0 l : v : 1

v : 0

L → B : v.0 = v.1

Compiler Construction Winter semester 2010/11 14



Example: Knuth’s Binary Numbers II

Example 15.1 (continued)

Attributed syntax tree for 1101.01: S

L . L

L B

L B

L B

B

1

0

1

1

L B

B 1

0

v :

v : v : l :

v : v : 1

v : v : 0

v : 1 v : 1

v : 1

v : 0 l : 1 v : 1

v : 0

L → B : l.0 = 1

Compiler Construction Winter semester 2010/11 14



Example: Knuth’s Binary Numbers II

Example 15.1 (continued)

Attributed syntax tree for 1101.01: S

L . L

L B

L B

L B

B

1

0

1

1

L B

B 1

0

v :

v : v : 1 l :

v : v : 1

v : 3 v : 0

v : 1 v : 1

v : 1

v : 0 l : 1 v : 1

v : 0

L → LB : v.0 = 2 ∗ v.1 + v.2

Compiler Construction Winter semester 2010/11 14



Example: Knuth’s Binary Numbers II

Example 15.1 (continued)

Attributed syntax tree for 1101.01: S

L . L

L B

L B

L B

B

1

0

1

1

L B

B 1

0

v :

v : v : 1 l :

v : 6 v : 1

v : 3 v : 0

v : 1 v : 1

v : 1

v : 0 l : 1 v : 1

v : 0

L → LB : v.0 = 2 ∗ v.1 + v.2

Compiler Construction Winter semester 2010/11 14



Example: Knuth’s Binary Numbers II

Example 15.1 (continued)

Attributed syntax tree for 1101.01: S

L . L

L B

L B

L B

B

1

0

1

1

L B

B 1

0

v :

v : 13 v : 1 l :

v : 6 v : 1

v : 3 v : 0

v : 1 v : 1

v : 1

v : 0 l : 1 v : 1

v : 0

L → LB : v.0 = 2 ∗ v.1 + v.2

Compiler Construction Winter semester 2010/11 14



Example: Knuth’s Binary Numbers II

Example 15.1 (continued)

Attributed syntax tree for 1101.01: S

L . L

L B

L B

L B

B

1

0

1

1

L B

B 1

0

v :

v : 13 v : 1 l : 2

v : 6 v : 1

v : 3 v : 0

v : 1 v : 1

v : 1

v : 0 l : 1 v : 1

v : 0

L → LB : l.0 = l.1 + 1

Compiler Construction Winter semester 2010/11 14



Example: Knuth’s Binary Numbers II

Example 15.1 (continued)

Attributed syntax tree for 1101.01: S

L . L

L B

L B

L B

B

1

0

1

1

L B

B 1

0

v : 13.25

v : 13 v : 1 l : 2

v : 6 v : 1

v : 3 v : 0

v : 1 v : 1

v : 1

v : 0 l : 1 v : 1

v : 0

S → L.L : v.0 = v.1 + v.3/2l.3

Compiler Construction Winter semester 2010/11 14



Outline

1 Regular vs. LR(0) Languages

2 Overview

3 Semantic Analysis

4 Attribute Grammars

5 Adding Inherited Attributes

6 Formal Definition of Attribute Grammars

Compiler Construction Winter semester 2010/11 15



Adding Inherited Attributes I

Example 15.2 (synthesized + inherited attributes)

Binary numbers (with fraction):
G′

B : Numbers S → L

S → L.L

Lists L → B

L → LB

Bits B → 0

Bits B → 1

Compiler Construction Winter semester 2010/11 16



Adding Inherited Attributes I

Example 15.2 (synthesized + inherited attributes)

Binary numbers (with fraction):
G′

B : Numbers S → L v.0 = v.1
p.1 = 0

S → L.L v.0 = v.1 + v.3
p.1 = 0
p.3 = − l.3

Lists L → B v.0 = v.1
l.0 = 1
p.1 = p.0

L → LB v.0 = v.1 + v.2
l.0 = l.1 + 1
p.1 = p.0 + 1
p.2 = p.0

Bits B → 0 v.0 = 0
Bits B → 1 v.0 = 2p.0

Synthesized attributes of S,L,B: v (value; domain: V v := Q)
of L: l (length; domain: V l := N)

Inherited attribute of L,B: p (position; domain: V p := Z)

Compiler Construction Winter semester 2010/11 16



Adding Inherited Attributes II

Example 15.2 (continued)

Syntax tree for 10.1:

S

L . L

L B

B

B

0

1

1

Compiler Construction Winter semester 2010/11 17



Adding Inherited Attributes II

Example 15.2 (continued)

Attributed syntax tree for 10.1:

S

L . L

L B

B

B

0

1

1

v :

v : l :p :

v : l :p :

v : l :p :

v :p :

v :p :

v :p :

Compiler Construction Winter semester 2010/11 17



Adding Inherited Attributes II

Example 15.2 (continued)

Attributed syntax tree for 10.1:

S

L . L

L B

B

B

0

1

1

v :

v : l :p :

v : l : 1p :

v : l : 1p :

v :p :

v :p :

v :p :

L → B : l.0 = 1

Compiler Construction Winter semester 2010/11 17



Adding Inherited Attributes II

Example 15.2 (continued)

Attributed syntax tree for 10.1:

S

L . L

L B

B

B

0

1

1

v :

v : l : 2p :

v : l : 1p :

v : l : 1p :

v :p :

v :p :

v :p :

L → LB : l.0 = l.1 + 1

Compiler Construction Winter semester 2010/11 17



Adding Inherited Attributes II

Example 15.2 (continued)

Attributed syntax tree for 10.1:

S

L . L

L B

B

B

0

1

1

v :

v : l : 2p : 0

v : l : 1p :

v : l : 1p :

v :p :

v :p :

v :p :

S → L.L : p.1 = 0

Compiler Construction Winter semester 2010/11 17



Adding Inherited Attributes II

Example 15.2 (continued)

Attributed syntax tree for 10.1:

S

L . L

L B

B

B

0

1

1

v :

v : l : 2p : 0

v : l : 1p :

v : l : 1p : −1

v :p :

v :p :

v :p :

S → L.L : p.3 = −l.3

Compiler Construction Winter semester 2010/11 17



Adding Inherited Attributes II

Example 15.2 (continued)

Attributed syntax tree for 10.1:

S

L . L

L B

B

B

0

1

1

v :

v : l : 2p : 0

v : l : 1p : 1

v : l : 1p : −1

v :p :

v :p :

v :p :

L → LB : p.1 = p.0 + 1

Compiler Construction Winter semester 2010/11 17



Adding Inherited Attributes II

Example 15.2 (continued)

Attributed syntax tree for 10.1:

S

L . L

L B

B

B

0

1

1

v :

v : l : 2p : 0

v : l : 1p : 1

v : l : 1p : −1

v :p : 0

v :p :

v :p :

L → LB : p.2 = p.0

Compiler Construction Winter semester 2010/11 17



Adding Inherited Attributes II

Example 15.2 (continued)

Attributed syntax tree for 10.1:

S

L . L

L B

B

B

0

1

1

v :

v : l : 2p : 0

v : l : 1p : 1

v : l : 1p : −1

v :p : 0

v :p : 1

v :p : −1

L → B : p.1 = p.0

Compiler Construction Winter semester 2010/11 17



Adding Inherited Attributes II

Example 15.2 (continued)

Attributed syntax tree for 10.1:

S

L . L

L B

B

B

0

1

1

v :

v : l : 2p : 0

v : l : 1p : 1

v : l : 1p : −1

v : 0p : 0

v :p : 1

v :p : −1

B → 0 : v.0 = 0

Compiler Construction Winter semester 2010/11 17



Adding Inherited Attributes II

Example 15.2 (continued)

Attributed syntax tree for 10.1:

S

L . L

L B

B

B

0

1

1

v :

v : l : 2p : 0

v : l : 1p : 1

v : l : 1p : −1

v : 0p : 0

v : 2p : 1

v : 0.5p : −1

B → 1 : v.0 = 2p.0

Compiler Construction Winter semester 2010/11 17



Adding Inherited Attributes II

Example 15.2 (continued)

Attributed syntax tree for 10.1:

S

L . L

L B

B

B

0

1

1

v :

v : l : 2p : 0

v : 2 l : 1p : 1

v : 0.5 l : 1p : −1

v : 0p : 0

v : 2p : 1

v : 0.5p : −1

L → B : v.0 = v.1

Compiler Construction Winter semester 2010/11 17



Adding Inherited Attributes II

Example 15.2 (continued)

Attributed syntax tree for 10.1:

S

L . L

L B

B

B

0

1

1

v :

v : 2 l : 2p : 0

v : 2 l : 1p : 1

v : 0.5 l : 1p : −1

v : 0p : 0

v : 2p : 1

v : 0.5p : −1

L → LB : v.0 = v.1 + v.2

Compiler Construction Winter semester 2010/11 17



Adding Inherited Attributes II

Example 15.2 (continued)

Attributed syntax tree for 10.1:

S

L . L

L B

B

B

0

1

1

v : 2.5

v : 2 l : 2p : 0

v : 2 l : 1p : 1

v : 0.5 l : 1p : −1

v : 0p : 0

v : 2p : 1

v : 0.5p : −1

S → L.L : v.0 = v.1 + v.3

Compiler Construction Winter semester 2010/11 17



Outline

1 Regular vs. LR(0) Languages

2 Overview

3 Semantic Analysis

4 Attribute Grammars

5 Adding Inherited Attributes

6 Formal Definition of Attribute Grammars

Compiler Construction Winter semester 2010/11 18



Formal Definition of Attribute Grammars I

Definition 15.3 (Attribute grammar)

Let G = 〈N, Σ, P, S〉 ∈ CFGΣ with X := N ] Σ.

Compiler Construction Winter semester 2010/11 19



Formal Definition of Attribute Grammars I

Definition 15.3 (Attribute grammar)

Let G = 〈N, Σ, P, S〉 ∈ CFGΣ with X := N ] Σ.

Let Att = Syn ] Inh be a set of (synthesized or inherited) attributes, and
let V =

⋃
α∈Att

V α be a union of value sets.

Compiler Construction Winter semester 2010/11 19



Formal Definition of Attribute Grammars I

Definition 15.3 (Attribute grammar)

Let G = 〈N, Σ, P, S〉 ∈ CFGΣ with X := N ] Σ.

Let Att = Syn ] Inh be a set of (synthesized or inherited) attributes, and
let V =

⋃
α∈Att

V α be a union of value sets.

Let att : X → 2Att be an attribute assignment, and let
syn(Y ) := att(Y ) ∩ Syn and inh(Y ) := att(Y ) ∩ Inh for every Y ∈ X .

Compiler Construction Winter semester 2010/11 19



Formal Definition of Attribute Grammars I

Definition 15.3 (Attribute grammar)

Let G = 〈N, Σ, P, S〉 ∈ CFGΣ with X := N ] Σ.

Let Att = Syn ] Inh be a set of (synthesized or inherited) attributes, and
let V =

⋃
α∈Att

V α be a union of value sets.

Let att : X → 2Att be an attribute assignment, and let
syn(Y ) := att(Y ) ∩ Syn and inh(Y ) := att(Y ) ∩ Inh for every Y ∈ X .

Every production π = Y0 → Y1 . . . Yr ∈ P determines the set
Varπ := {α.i | α ∈ att(Yi), i ∈ {0, . . . , r}}

of attribute variables of π with the subsets of inner and outer variables:
Inπ := {α.i | (i = 0, α ∈ syn(Yi)) or (i ∈ [r], α ∈ inh(Yi))}

Outπ := Varπ \ Inπ

Compiler Construction Winter semester 2010/11 19



Formal Definition of Attribute Grammars I

Definition 15.3 (Attribute grammar)

Let G = 〈N, Σ, P, S〉 ∈ CFGΣ with X := N ] Σ.

Let Att = Syn ] Inh be a set of (synthesized or inherited) attributes, and
let V =

⋃
α∈Att

V α be a union of value sets.

Let att : X → 2Att be an attribute assignment, and let
syn(Y ) := att(Y ) ∩ Syn and inh(Y ) := att(Y ) ∩ Inh for every Y ∈ X .

Every production π = Y0 → Y1 . . . Yr ∈ P determines the set
Varπ := {α.i | α ∈ att(Yi), i ∈ {0, . . . , r}}

of attribute variables of π with the subsets of inner and outer variables:
Inπ := {α.i | (i = 0, α ∈ syn(Yi)) or (i ∈ [r], α ∈ inh(Yi))}

Outπ := Varπ \ Inπ

A semantic rule of π is an equation of the form
α.i = f(α1.i1, . . . , αn.in)

where n ∈ N, α.i ∈ Inπ, αj .ij ∈ Outπ, and f : V α1 × . . . × V αn → V α.

Compiler Construction Winter semester 2010/11 19



Formal Definition of Attribute Grammars I

Definition 15.3 (Attribute grammar)

Let G = 〈N, Σ, P, S〉 ∈ CFGΣ with X := N ] Σ.

Let Att = Syn ] Inh be a set of (synthesized or inherited) attributes, and
let V =

⋃
α∈Att

V α be a union of value sets.

Let att : X → 2Att be an attribute assignment, and let
syn(Y ) := att(Y ) ∩ Syn and inh(Y ) := att(Y ) ∩ Inh for every Y ∈ X .

Every production π = Y0 → Y1 . . . Yr ∈ P determines the set
Varπ := {α.i | α ∈ att(Yi), i ∈ {0, . . . , r}}

of attribute variables of π with the subsets of inner and outer variables:
Inπ := {α.i | (i = 0, α ∈ syn(Yi)) or (i ∈ [r], α ∈ inh(Yi))}

Outπ := Varπ \ Inπ

A semantic rule of π is an equation of the form
α.i = f(α1.i1, . . . , αn.in)

where n ∈ N, α.i ∈ Inπ, αj .ij ∈ Outπ, and f : V α1 × . . . × V αn → V α.

For each π ∈ P , let Eπ be a set with exactly one semantic rule for every
inner variable of π, and let E := (Eπ | π ∈ P ).

Compiler Construction Winter semester 2010/11 19



Formal Definition of Attribute Grammars I

Definition 15.3 (Attribute grammar)

Let G = 〈N, Σ, P, S〉 ∈ CFGΣ with X := N ] Σ.

Let Att = Syn ] Inh be a set of (synthesized or inherited) attributes, and
let V =

⋃
α∈Att

V α be a union of value sets.

Let att : X → 2Att be an attribute assignment, and let
syn(Y ) := att(Y ) ∩ Syn and inh(Y ) := att(Y ) ∩ Inh for every Y ∈ X .

Every production π = Y0 → Y1 . . . Yr ∈ P determines the set
Varπ := {α.i | α ∈ att(Yi), i ∈ {0, . . . , r}}

of attribute variables of π with the subsets of inner and outer variables:
Inπ := {α.i | (i = 0, α ∈ syn(Yi)) or (i ∈ [r], α ∈ inh(Yi))}

Outπ := Varπ \ Inπ

A semantic rule of π is an equation of the form
α.i = f(α1.i1, . . . , αn.in)

where n ∈ N, α.i ∈ Inπ, αj .ij ∈ Outπ, and f : V α1 × . . . × V αn → V α.

For each π ∈ P , let Eπ be a set with exactly one semantic rule for every
inner variable of π, and let E := (Eπ | π ∈ P ).

Then A := 〈G,E ,V 〉 is called an attribute grammar: A ∈ AG.
Compiler Construction Winter semester 2010/11 19



Formal Definition of Attribute Grammars II

Example 15.4 (cf. Example 15.2)

AB ∈ AG for binary numbers:

Attributes: Att = Syn ] Inh with Syn = {v, l} and Inh = {p}

Compiler Construction Winter semester 2010/11 20



Formal Definition of Attribute Grammars II

Example 15.4 (cf. Example 15.2)

AB ∈ AG for binary numbers:

Attributes: Att = Syn ] Inh with Syn = {v, l} and Inh = {p}

Value sets: V v = Q, V l = N, V p = Z

Compiler Construction Winter semester 2010/11 20



Formal Definition of Attribute Grammars II

Example 15.4 (cf. Example 15.2)

AB ∈ AG for binary numbers:

Attributes: Att = Syn ] Inh with Syn = {v, l} and Inh = {p}

Value sets: V v = Q, V l = N, V p = Z

Attribute assignment: Y ∈ X S L B 0 1
syn(Y ) {v} {v, l} {v} ∅ ∅
inh(Y ) ∅ {p} {p} ∅ ∅

Compiler Construction Winter semester 2010/11 20



Formal Definition of Attribute Grammars II

Example 15.4 (cf. Example 15.2)

AB ∈ AG for binary numbers:

Attributes: Att = Syn ] Inh with Syn = {v, l} and Inh = {p}

Value sets: V v = Q, V l = N, V p = Z

Attribute assignment: Y ∈ X S L B 0 1
syn(Y ) {v} {v, l} {v} ∅ ∅
inh(Y ) ∅ {p} {p} ∅ ∅

Attribute variables:

π ∈ P S → L S → L.L L → B
Inπ {v.0, p.1} {v.0, p.1, p.3} {v.0, l.0, p.1}
Outπ {v.1, l.1} {v.1, l.1, v.3, l.3} {v.1, p.0}

π ∈ P L → LB B → 0 B → 1

Inπ {v.0, l.0, p.1, p.2} {v.0} {v.0}
Outπ {v.1, v.2, l.1, p.0} {p.0} {p.0}

Compiler Construction Winter semester 2010/11 20



Formal Definition of Attribute Grammars II

Example 15.4 (cf. Example 15.2)

AB ∈ AG for binary numbers:

Attributes: Att = Syn ] Inh with Syn = {v, l} and Inh = {p}

Value sets: V v = Q, V l = N, V p = Z

Attribute assignment: Y ∈ X S L B 0 1
syn(Y ) {v} {v, l} {v} ∅ ∅
inh(Y ) ∅ {p} {p} ∅ ∅

Attribute variables:

π ∈ P S → L S → L.L L → B
Inπ {v.0, p.1} {v.0, p.1, p.3} {v.0, l.0, p.1}
Outπ {v.1, l.1} {v.1, l.1, v.3, l.3} {v.1, p.0}

π ∈ P L → LB B → 0 B → 1

Inπ {v.0, l.0, p.1, p.2} {v.0} {v.0}
Outπ {v.1, v.2, l.1, p.0} {p.0} {p.0}

Semantic rules: see Example 15.2
(e.g., ES→L = {v.0 = v.1, p.1 = 0})

Compiler Construction Winter semester 2010/11 20


	Regular vs. LR(0) Languages
	Overview
	Semantic Analysis
	Attribute Grammars
	Adding Inherited Attributes
	Formal Definition of Attribute Grammars

