Compiler Construction

Lecture 15: Semantic Analysis I (Attribute Grammars)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

© Regular vs. LR(0) Languages

Rm Compiler Construction ter semester 2010/11

Repetition: Overview of Language Classes

(cf. O. Mayer: Syntaxanalyse, BI-Verlag, 1978, p. 409ff)

L(LL(1))
REC Moreover:
o L(LL(k)) G
L(LL(0)) L(LL(k+1)) S
L(LR(1)
for every k € N
@ L(LR(k)) =
= = L(LR(1))
= det. CFL for every k > 1
unambiguous CFL
CFL

Winter semester 2010/11

m Compiler Construction

Why REG ¢ L(LR(0))?

Definition (cf. Exercise 6.2)

A language L C X* is called prefix-free if LN L- X% =, i.e., if no
proper prefix of an element of L is again in L.

Lemma (cf. Exercise 6.2)

G € LR(0) = L(G) prefiz-free

{a,aa} € REG \ L(LR(0))

Conjecture: L € REG \ L(LR(0)) = L(G) not prefix-free?
(cf. Exercise 7)

m Compiler Construction Winter semester 2010/11 4

© Overview

Rm iler Construction /inter semester

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

Y
Syntactic analysis (Parser))

Y
(Somantic analysis)

Y
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code)

Target code

Rm Compiler Construction Winter semester 2010/11

© Semantic Analysis

Rm Compiler Construction nter semester 2010/11

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many
questions:

o Are there identifiers that are not declared? Declared but not used?
o Is x a scalar, an array, or a procedure? Of which type?

@ Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?

Where should the value of x be stored (register/stack/heap)?

Do p and q refer to the same memory location (aliasing)?

¢ & ¢ ¢

o ...

These cannot be expressed using context-free grammars!

(e.g., {ww | we X*} ¢ CFLy)

Rm Compiler Construction Winter semester 2010/11

Static Semantics

Static semantics refers to properties of program constructs

@ which are true for every occurrence of this construct in every
program execution (static) and

@ can be decided at compile time

@ but are context-sensitive and thus not expressible using
context-free grammars (semantics).

Example properties:

Static: type or declaredness of an identifier, number of registers
required to evaluate an expression, ...

Dynamic: value of an expression, size of runtime stack, ...

Among others, these properties are determined by
Scope rules: defines part of program where a declaration is valid

Typing rules: defines type consistency of expressions, statements, ...

m' Compiler Construction Winter semester 2010/11

@ Attribute Grammars

Rm Compiler Construction inter semester 2010/11 10

Attribute Grammars 1

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

—> Semantic analysis = attribute evaluation

Result: attributed syntax tree

In greater detail:
o With every nonterminal a set of attributes is associated.
o Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leaves to the root)
Inherited: top-down computation (from the root to the leaves)

o With every production a set of semantic rules is associated.

m' Compiler Construction Winter semester 2010/11 11

Attribute Grammars 11

Advantage: attribute grammars provide a very flexible and broadly
applicable mechanism for transporting information throught the syntax
tree (“syntax-directed translation”)

o Attribute values: symbol tables, data types, code, error flags, ...
@ Application in Compiler Construction:

o static semantics

@ program analysis for optimization

e code generation

e error handling
o Automatic attribute evaluation by compiler generators

(cf. yacc’s synthesized attributes)

o Originally designed by D. Knuth for defining the semantics of
context-free languages (Math. Syst. Theory 2 (1968), pp. 127-145)

m' Compiler Construction Winter semester 2010/11 12

Example: Knuth’s Binary Numbers I

Example 15.1 (only synthesized attributes)

Binary numbers (with fraction):

Gp: Numbers S — L v.0 = v.1
S—L.L v0 = vl+0v3/23
Lists L — B v.0 = v.l
[0 =1
L—LB v0 = 2%xv.l1+wv2
[0 =1011+1
Bits B —0 v.0 = 0
Bits B—1 v.0 = 1

Synthesized attributes of S,L,B: v (value; domain: V¥ := Q)
of L: I (length; domain: V!:=N)

Semantic rules: equations with attribute variables
(index = position of symbol; 0 = left-hand side)

m Compiler Construction Winter semester 2010/11 13

Example: Knuth’s Binary Numbers 11

Example 15.1 (continued)

Syntax tree for 1101.01:

B—0:v0=0B—1:v.0=1L — B :
v.0=0v1L - B:l0=1L—-LB:v.0=2%v.1+v2L —- LB :10=

ooty

Compiler Construction Winter semester 2010/11 14

@ Adding Inherited Attributes

Rm Compiler Construction ter semester 2010/11 15

Adding Inherited Attributes I

Example 15.2 (synthesized + inherited attributes)

Binary numbers (with fraction):
G5 : Numbers S — L v.0 = v.1
p.l =0
S—L.L v0 = vl+wv3
p.l =0
p.3 = —1.3
Lists L— B v.0 = v.1
.0 =1
p.l = p.0
L—-LB v.0 = vl+wv2
.0 =11+1
p.l = pO0+1
p.2 = p.0
Bits B —0 v.0 = 0
Bits B—1 v.0 = 2r0
Synthesized attributes of S, L, B: v (value; domain: V' := Q)
of L: I (length; domain: V! :=N)
Inherited attribute of L, B: p (position; domain: VP :=7)

m Compiler Construction Winter semester 2010/11 16

Adding Inherited Attributes 11

Example 15.2 (continued)

Syntax tree for 10. 1:

L—>B:l0=1L—>LB:1.0=101+
S—>LL pl1=0S—L.L:p3=—-l3L—-LB:pl=p0+1L —
LB : p2—p0L—>B p.1=p0B - 0:v.0=0B —1:v.0=2"L —

m Compiler Construction Winter semester 2010/11 17

© Formal Definition of Attribute Grammars

Rm Compiler Construction nter semester 2010/11

Formal Definition of Attribute Grammars 1

Definition 15.3 (Attribute grammar)
Let G = (N, 3, P,S) € CFGx;, with X := N W ¥.

@ Let Att = Syn W Inh be a set of (synthesized or inherited) attributes, and
let V =,can V* be a union of value sets.

@ Let att : X — 24% be an attribute assignment, and let
syn(Y) := att(Y) N Syn and inh(Y) := att(Y") N Inh for every Y € X.
@ Every production m = Yy — Y;...Y, € P determines the set
Var, = {a.i| o € att(Y;),i € {0,...,r}}
of attribute variables of w with the subsets of inner and outer variables:
Ing :={a.i| (i =0,a €syn(Y;)) or (i € [r],« € inh(Y;))}
Out, = Vary \ In,
@ A semantic rule of 7 is an equation of the form
ot = fag.01,. .., 0pn.0p)
where n € N, a.i € Ing, 5.1 € Outr, and f: V1 x ... x Vo — Ve,
@ For each m € P, let E; be a set with exactly one semantic rule for every
inner variable of m, and let E := (E, | m € P).

Then A := (G, E, V) is called an attribute grammar: 2 € AG.

m Compiler Construction Winter semester 2010/11 19

Formal Definition of Attribute Grammars II

Example 15.4 (cf. Example 15.2)

Ap € AG for binary numbers:
o Attributes: Att = Syn W Inh with Syn = {v,l} and Inh = {p}

o Value sets: V' =Q, V!=N, VP =7
o Attribute assignment: | Y € X | S L B 01
syn(Y) [{v} {v, i} {v} 0 0
inh(Y) | 0 {p} {p} 0 0

o Attribute variables:

me P S—L S—L.L L— B
Ing {v.0,p.1} {v.0,p.1,p.3} {v.0,1.0,p.1}
Out, {v.1,1.1} {v.1,01.1,0.3,1.3} {v.1,p.0}
meP L— LB B—0 B—1
Ing {v.0,1.0,p.1,p.2} {v.0} {v.0}
Out, | {v.1,v.2,1.1,p.0} {p.0} {p.0}

o Semantic rules: see Example 15.2
(e.g., Es—.p, ={v.0 =v.1,p.1 =0})

m Compiler Construction Winter semester 2010/11 20

	Regular vs. LR(0) Languages
	Overview
	Semantic Analysis
	Attribute Grammars
	Adding Inherited Attributes
	Formal Definition of Attribute Grammars

