
Compiler Construction

Lecture 16: Semantic Analysis II
(Circularity of Attribute Grammars)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Outline

1 Repetition: Attribute Grammars

2 The Attribute Equation System

3 Circularity of Attribute Grammars

4 Attribute Dependency Graphs

5 Testing Attribute Grammars for Circularity

6 The Circularity Test

7 Correctness and Complexity of the Circularity Test

Compiler Construction Winter semester 2010/11 2

Attribute Grammars I

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

=⇒ Semantic analysis = attribute evaluation

Result: attributed syntax tree

In greater detail:

With every nonterminal a set of attributes is associated.

Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leaves to the root)
Inherited: top-down computation (from the root to the leaves)

With every production a set of semantic rules is associated.

Compiler Construction Winter semester 2010/11 3

Binary Numbers with Inherited Attributes I

Example (synthesized + inherited attributes)

Binary numbers (with fraction):
G′

B : Numbers S → L v.0 = v.1
p.1 = 0

S → L.L v.0 = v.1 + v.3
p.1 = 0
p.3 = − l.3

Lists L → B v.0 = v.1
l.0 = 1
p.1 = p.0

L → LB v.0 = v.1 + v.2
l.0 = l.1 + 1
p.1 = p.0 + 1
p.2 = p.0

Bits B → 0 v.0 = 0
Bits B → 1 v.0 = 2p.0

Synthesized attributes of S,L,B: v (value; domain: V v := Q)
of L: l (length; domain: V l := N)

Inherited attribute of L,B: p (position; domain: V p := Z)

Compiler Construction Winter semester 2010/11 4

Binary Numbers with Inherited Attributes II

Example (continued)

Syntax tree for 10.1:

S

L . L

L B

B

B

0

1

1

v : 2.5

v : 2 l : 2p : 0

v : 2 l : 1p : 1

v : 0.5 l : 1p : −1

v : 0p : 0

v : 2p : 1

v : 0.5p : −1

L → B : l.0 = 1L → LB : l.0 = l.1 +
1S → L.L : p.1 = 0S → L.L : p.3 = −l.3L → LB : p.1 = p.0 + 1L →
LB : p.2 = p.0L → B : p.1 = p.0B → 0 : v.0 = 0B → 1 : v.0 = 2p.0L →
B : v.0 = v.1L → LB : v.0 = v.1 + v.2S → L.L : v.0 = v.1 + v.3Compiler Construction Winter semester 2010/11 5

Formal Definition of Attribute Grammars

Definition (Attribute grammar)

Let G = 〈N, Σ, P, S〉 ∈ CFGΣ with X := N] Σ.

Let Att = Syn] Inh be a set of (synthesized or inherited) attributes, and
let V =

⋃

α∈Att
V α be a union of value sets.

Let att : X → 2Att be an attribute assignment, and let
syn(Y) := att(Y) ∩ Syn and inh(Y) := att(Y) ∩ Inh for every Y ∈ X .

Every production π = Y0 → Y1 . . . Yr ∈ P determines the set
Varπ := {α.i | α ∈ att(Yi), i ∈ {0, . . . , r}}

of attribute variables of π with the subsets of inner and outer variables:
Inπ := {α.i | (i = 0, α ∈ syn(Yi)) or (i ∈ [r], α ∈ inh(Yi))}

Outπ := Varπ \ Inπ

A semantic rule of π is an equation of the form
α.i = f(α1.i1, . . . , αn.in)

where n ∈ N, α.i ∈ Inπ, αj .ij ∈ Outπ, and f : V α1 × . . . × V αn → V α.

For each π ∈ P , let Eπ be a set with exactly one semantic rule for every
inner variable of π, and let E := (Eπ | π ∈ P).

Then A := 〈G,E ,V 〉 is called an attribute grammar: A ∈ AG.
Compiler Construction Winter semester 2010/11 6

Outline

1 Repetition: Attribute Grammars

2 The Attribute Equation System

3 Circularity of Attribute Grammars

4 Attribute Dependency Graphs

5 Testing Attribute Grammars for Circularity

6 The Circularity Test

7 Correctness and Complexity of the Circularity Test

Compiler Construction Winter semester 2010/11 7

Attribution of Syntax Trees I

Definition 16.1 (Attribution of syntax trees)

Let A = 〈G,E ,V 〉 ∈ AG , and let t be a syntax tree of G with the set
of nodes K.

K determines the set of attribute variables of t:
Var t := {α.k | k ∈ K labelled with Y ∈ X,α ∈ att(Y)}.

Let k0 ∈ K be an (inner) node where production
π = Y0 → Y1 . . . Yr ∈ P is applied, and let k1, . . . , kr ∈ K be the
corresponding successor nodes. The attribute equation system Ek0

of k0 is obtained from Eπ by substituting every attribute index
i ∈ {0, . . . , r} by ki.

The attribute equation system of t is given by
Et :=

⋃

{Ek | k inner node of t}.

Compiler Construction Winter semester 2010/11 8

Attribution of Syntax Trees II

Example 16.2 (cf. Example 16.1)

Attributed syntax tree for 10.1: k0 : S

k1 : L k7 : . k8 : L

k2 : L k5 : B

k3 : B

k9 : B

k6 : 0

k4 : 1

k10 : 1

v

v lp

v lp

v lp

vp

vp

vp

ES→L.L : v.0 = v.1 + v.3
p.1 = 0
p.3 = −l.3

subst
−→

Ek0 : v.k0 = v.k1 + v.k8

p.k1 = 0
p.k8 = −l.k8

EL→LB : v.0 = v.1 + v.2
l.0 = l.1 + 1 subst

−→

Ek1 : v.k1 = v.k2 + v.k5

l.k1 = l.k2 + 1Compiler Construction Winter semester 2010/11 9

Attribution of Syntax Trees III

Corollary 16.3

For each α.k ∈ Var t except the inherited attribute variables at the root
and the synthesized attribute variables at the leaves of t, Et contains
exactly one equation with left-hand side α.k.

Assumptions:

The start symbol does not have inherited attributes: inh(S) = ∅.

Synthesized attributes of terminal symbols are provided by the
scanner.

Compiler Construction Winter semester 2010/11 10

Outline

1 Repetition: Attribute Grammars

2 The Attribute Equation System

3 Circularity of Attribute Grammars

4 Attribute Dependency Graphs

5 Testing Attribute Grammars for Circularity

6 The Circularity Test

7 Correctness and Complexity of the Circularity Test

Compiler Construction Winter semester 2010/11 11

Solvability of Attribute Equation System I

Definition 16.4 (Solution of attribute equation system)

Let A = 〈G,E ,V 〉 ∈ AG , and let t be a syntax tree of G. A solution of
Et is a mapping

v : Var t → V

such that, for every α.k ∈ Var t and α.k = f(α.k1, . . . , α.kn) ∈ Et,

v(α.k) = f(v(α.k1), . . . , v(α.kn)).

In general, the attribute equation system Et of a given syntax tree t

can have

no solution,

exactly one solution, or

several solutions.

Compiler Construction Winter semester 2010/11 12

Solvability of Attribute Equation System II

Example 16.5

A → aB,B → b ∈ P

α ∈ syn(B), β ∈ inh(B)

β.2 = f(α.2) ∈ EA→aB

α.0 = g(β.0) ∈ EB→b

=⇒ for V α := V β := N, g(x) := x, and

f(x) := x + 1: no solution

f(x) := 2x: exactly one solution
(v(α.k) = v(β.k) = 0)

f(x) := x: infinitely many solutions
(v(α.k) = v(β.k) = y for any y ∈ N)

=⇒ cyclic dependency:

A

a k : B

b

β α

Et : β.k = f(α.k)
α.k = g(β.k)

Compiler Construction Winter semester 2010/11 13

Circularity of Attribute Grammars

Goal: unique solvability of equation system
=⇒ avoid cyclic dependencies

Definition 16.6 (Circularity)

An attribute grammar A = 〈G,E ,V 〉 ∈ AG is called circular if there
exists a syntax tree t such that the attribute equation system Et is
recursive (i.e., some attribute variable of t depends on itself).
Otherwise it is called noncircular.

Remark: because of the division of Varπ into Inπ and Outπ, cyclic
dependencies cannot occur at production level (see Corollary 16.8
later).

Compiler Construction Winter semester 2010/11 14

Outline

1 Repetition: Attribute Grammars

2 The Attribute Equation System

3 Circularity of Attribute Grammars

4 Attribute Dependency Graphs

5 Testing Attribute Grammars for Circularity

6 The Circularity Test

7 Correctness and Complexity of the Circularity Test

Compiler Construction Winter semester 2010/11 15

Attribute Dependency Graphs I

Goal: graphic representation of attribute dependencies

Definition 16.7 (Production dependency graph)

Let A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉. Every production
π ∈ P determines the dependency graph Dπ := 〈Varπ,→π〉 where the
set of edges →π⊆ Varπ × Varπ is given by

x →π y iff y = f(. . . , x, . . .) ∈ Eπ.

Corollary 16.8

The dependency graph of a production is acyclic
(since →π⊆ Outπ × Inπ).

Compiler Construction Winter semester 2010/11 16

Attribute Dependency Graphs II

Example 16.9 (cf. Example 16.1)

1 N → L.L :
v.0 = v.1 + v.3
p.1 = 0
p.3 = −l.3

=⇒ DN→L.L :
N

L . L

v.0

v.1 l.1p.1 v.3 l.3p.3

2 L → LB :
v.0 = v.1 + v.2
l.0 = l.1 + 1
p.1 = p.0 + 1
p.2 = p.0

=⇒ DN→LB :
L

L B

v.0 l.0p.0

v.1 l.1p.1 v.2p.2

Compiler Construction Winter semester 2010/11 17

Attribute Dependency Graphs III

Just as the attribute equation system Et of a syntax tree t is obtained
from the semantic rules of the contributing productions, the
dependency graph of t is obtained by “glueing together” the
dependency graphs of the productions.

Definition 16.10 (Tree dependency graph)

Let A = 〈G,E ,V 〉 ∈ AG , and let t be a syntax tree of G.

The dependency graph of t is defined by
Dt := 〈Var t,→t〉 where the set of edges →t⊆ Var t×Var t is given by

x →t y iff y = f(. . . , x, . . .) ∈ Et.

Dt is called cyclic if there exists x ∈ Var t such that x →+
t x.

Corollary 16.11

An attribute grammar A = 〈G,E ,V 〉 ∈ AG is circular iff there exists a
syntax tree t of G such that Dt is cyclic.

Compiler Construction Winter semester 2010/11 18

Attribute Dependency Graphs IV

Example 16.12 (cf. Example 16.1)

(Acyclic) dependency graph of the syntax tree for 10.1:

k0 : N

k1 : L k7 : . k8 : L

k2 : L

k3 : B

k5 : B k9 : B

k6 : 0

k4 : 1

k10 : 1

v.k0

v.k1 l.k1p.k1

v.k2 l.k2p.k2

v.k8 l.k8p.k8

v.k5p.k5

v.k3p.k3

v.k9p.k9

Compiler Construction Winter semester 2010/11 19

Outline

1 Repetition: Attribute Grammars

2 The Attribute Equation System

3 Circularity of Attribute Grammars

4 Attribute Dependency Graphs

5 Testing Attribute Grammars for Circularity

6 The Circularity Test

7 Correctness and Complexity of the Circularity Test

Compiler Construction Winter semester 2010/11 20

Attribute Dependency Graphs and Circularity I

Observation: a cycle in the dependency graph Dt of a given syntax
tree t is caused by the occurrence of a “cover” production
π = A0 → w0A1w1 . . . Arwr ∈ P in a node k0 of t such that

the dependencies in Ek0 yield the “upper end” of the cycle and

for at least one i ∈ [r], some attributes in syn(Ai) depend on
attributes in inh(Ai).

Example 16.13

on the board

To identify such “critical” situations we need to determine for each
i ∈ [r] the possible ways in which attributes in syn(Ai) can depend on
attributes in inh(Ai).

Compiler Construction Winter semester 2010/11 21

Attribute Dependency Graphs and Circularity II

Definition 16.14 (Attribute dependence)

Let A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉.

If t is a syntax tree with root label A ∈ N and root node k,
α ∈ syn(A), and β ∈ inh(A) such that β.k →+

t α.k, then α is

dependent on β below A in t (notation: β
A
↪→ α).

For every syntax tree t with root label A ∈ N ,

is(A, t) := {(β, α) ∈ inh(A) × syn(A) | β
A
↪→ α in t}.

For every A ∈ N ,
IS (A) := {is(A, t) | t syntax tree with root label A}

⊆ 2Inh×Syn .

Remark: it is important that IS (A) is a system of attribute
dependence sets, not a union (later: strong noncircularity).

Example 16.15

on the board
Compiler Construction Winter semester 2010/11 22

Outline

1 Repetition: Attribute Grammars

2 The Attribute Equation System

3 Circularity of Attribute Grammars

4 Attribute Dependency Graphs

5 Testing Attribute Grammars for Circularity

6 The Circularity Test

7 Correctness and Complexity of the Circularity Test

Compiler Construction Winter semester 2010/11 23

The Circularity Test I

In the circularity test, the dependency systems IS (A) are iteratively
computed. It employs the following notation:

Definition 16.16

Given π = A → w0A1w1 . . . Arwr ∈ P and is i ⊆ inh(Ai) × syn(Ai) for
every i ∈ [r], let

is [π; is1, . . . , isr] ⊆ inh(A) × syn(A)
be given by

is[π; is1, . . . , isr] :=
{

(β, α) | (β.0, α.0) ∈ (→π ∪
⋃r

i=1{(β
′.pi, α

′.pi) | (β′, α′) ∈ is i})
+
}

where pi :=
∑i

j=1 |wj−1| + i.

Example 16.17

on the board

Compiler Construction Winter semester 2010/11 24

The Circularity Test II

Algorithm 16.18 (Circularity test for attribute grammars)

Input: A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉

Procedure: 1 for every A ∈ N , iteratively construct IS (A) as
follows:

1 if π = A → w ∈ P , then is [π] ∈ IS (A)
2 if π = A → w0A1w1 . . . Arwr ∈ P and is i ∈ IS(Ai)

for every i ∈ [r], then is [π; is1, . . . , isr] ∈ IS (A)

2 test whether A is circular by checking if there exist
π = A → w0A1w1 . . . Arwr ∈ P and isi ∈ IS (Ai) for
every i ∈ [r] such that the following relation is cyclic:

→π ∪
⋃r

i=1{(β.pi, α.pi) | (β, α) ∈ isi}

(where pi :=
∑i

j=1 |wj−1| + i)

Output: “yes” or “no”

Compiler Construction Winter semester 2010/11 25

The Circularity Test III

Example 16.19

DS→AB: S

A B

α

α1 α2β α1 α2β

DB→AB: B

A B

α1 α2β

α1 α2β α1 α2β

DA→B: A

B

α1 α2β

α1 α2β

DA→a: A

a

α1 α2β

DA→c: A

c

α1 α2β

DB→b: B

b

α1 α2β

Application of Algorithm 16.18: on the board

Compiler Construction Winter semester 2010/11 26

Outline

1 Repetition: Attribute Grammars

2 The Attribute Equation System

3 Circularity of Attribute Grammars

4 Attribute Dependency Graphs

5 Testing Attribute Grammars for Circularity

6 The Circularity Test

7 Correctness and Complexity of the Circularity Test

Compiler Construction Winter semester 2010/11 27

Correctness and Complexity of Circularity Test

Theorem 16.20 (Correctness of circularity test)

An attribute grammar is circular iff Algorithm 16.18 yields the answer “yes”.

Proof.
by induction on the syntax tree t with cyclic Dt

Lemma 16.21
The time complexity of the circularity test is exponential in the size of the
attribute grammar (= maximal length of right-hand sides of productions).

Proof.

by reduction of the word problem of alternating Turing machines (see
M. Jazayeri: A Simpler Construction for Showing the Intrinsically

Exponential Complexity of the Circularity Problem for Attribute Grammars,
Comm. of the ACM 28(4), 1981, pp. 715–720)

Compiler Construction Winter semester 2010/11 28

	Repetition: Attribute Grammars
	The Attribute Equation System
	Circularity of Attribute Grammars
	Attribute Dependency Graphs
	Testing Attribute Grammars for Circularity
	The Circularity Test
	Correctness and Complexity of the Circularity Test

