Compiler Construction

Lecture 16: Semantic Analysis 11
(Circularity of Attribute Grammars)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

© Repetition: Attribute Grammars

Rm Compiler Construction nter semester 2010/11

Attribute Grammars 1

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

—> Semantic analysis = attribute evaluation

Result: attributed syntax tree

In greater detail:
o With every nonterminal a set of attributes is associated.
o Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leaves to the root)
Inherited: top-down computation (from the root to the leaves)

o With every production a set of semantic rules is associated.

m' Compiler Construction Winter semester 2010/11 3

Binary Numbers with Inherited Attributes I

Example (synthesized + inherited attributes)

Binary numbers (with fraction):
G5 : Numbers S — L v.0 = v.1
p.l =0
S—L.L v0 = vl+wv3
p.l =0
p.3 = —1.3
Lists L— B v.0 = v.1
.0 =1
p.l = p.0
L—-LB v.0 = vl+wv2
.0 =11+1
p.l = pO0+1
p.2 = p.0
Bits B —0 v.0 = 0
Bits B—1 v.0 = 2r0
Synthesized attributes of S, L, B: v (value; domain: V' := Q)
of L: I (length; domain: V! :=N)
Inherited attribute of L, B: p (position; domain: VP :=7)

m Compiler Construction Winter semester 2010/11 4

Binary Numbers with Inherited Attributes II

Example (continued)

Syntax tree for 10. 1:

L—>B:l0=1L—>LB:1.0=101+
S—>LL pl1=0S—L.L:p3=—-l3L—-LB:pl=p0+1L —
LB : p2—p0L—>B p.1=p0B - 0:v.0=0B —1:v.0=2"L —

m Compiler Construction Winter semester 2010/11 5

Formal Definition of Attribute Grammars

Definition (Attribute grammar)
Let G = (N, X, P,S) € CFGs, with X := N W 3.

@ Let Att = Syn W Inh be a set of (synthesized or inherited) attributes, and
let V =,can V* be a union of value sets.

@ Let att : X — 24% be an attribute assignment, and let
syn(Y) := att(Y) N Syn and inh(Y) := att(Y") N Inh for every Y € X.
@ Every production m = Yy — Y;...Y, € P determines the set
Var, = {a.i| o € att(Y;),i € {0,...,r}}
of attribute variables of w with the subsets of inner and outer variables:
Ing :={a.i| (i =0,a €syn(Y;)) or (i € [r],« € inh(Y;))}
Out, = Vary \ In,
@ A semantic rule of 7 is an equation of the form
ot = fag.01,. .., 0pn.0p)
where n € N, a.i € Ing, 5.1 € Outr, and f: V1 x ... x Vo — Ve,
@ For each m € P, let E; be a set with exactly one semantic rule for every
inner variable of m, and let E := (E, | m € P).

Then A := (G, E, V) is called an attribute grammar: 2 € AG.

m Compiler Construction Winter semester 2010/11 6

© The Attribute Equation System

Rm Compiler Construction ter semester 2010/11

Attribution of Syntax Trees I

Definition 16.1 (Attribution of syntax trees)

Let A = (G, E, V) € AG, and let t be a syntax tree of G with the set
of nodes K.

o K determines the set of attribute variables of ¢:
Vary := {a.k | k € K labelled with Y € X, o € att(Y)}.

o Let kp € K be an (inner) node where production
m=Yy—Y;...Y, € Pis applied, and let k;,..., k. € K be the
corresponding successor nodes. The attribute equation system Ej,
of ko is obtained from F, by substituting every attribute index
i€{0,...,r} by k;.

o The attribute equation system of ¢ is given by

E; :=|J{Ex | k inner node of t}.

m Compiler Construction Winter semester 2010/11 8

Attribution of Syntax Trees II

Example 16.2 (cf. Example 16.1)

|
7 ~N I
//// \\\\ i
@kQI:L@@ @k5I:B@ @ ko I: B®
l l l
| | |
@ks : BO ke : O ko @ 1
|
i
kg1
Es ;1 p: vO=v1+v3 et B, : v.ky = v.k1 +v.kg
p.l =0 st p.ky =0
p.3 =-1.3 p.k‘g = —l.kg

Er_rg: v.0=v1+v.2 Fr. : v.ky =v.ko+v.ks
RWNTH

Compiler Construction Winter semester 2010/11 9

Attribution of Syntax Trees 111

For each a.k € Var; except the inherited attribute variables at the root
and the synthesized attribute variables at the leaves of t, E; contains
exactly one equation with left-hand side a.k.

Assumptions:
@ The start symbol does not have inherited attributes: inh(S) = (.

@ Synthesized attributes of terminal symbols are provided by the
scanner.

m' Compiler Construction Winter semester 2010/11 10

© Circularity of Attribute Grammars

Rm Compiler Construction nter semester 2010/11 11

Solvability of Attribute Equation System I

Definition 16.4 (Solution of attribute equation system)

Let A = (G, E, V) € AG, and let t be a syntax tree of G. A solution of
E,; is a mapping
v: Vary — V

such that, for every a.k € Var, and a.k = f(a.ky,...,a.ky,) € Ey,

v(ak) = f(v(a.kr),...,v(aky)).

In general, the attribute equation system FE; of a given syntax tree ¢
can have

@ no solution,
@ exactly one solution, or

@ several solutions.

m Compiler Construction Winter semester 2010/11 12

Solvability of Attribute Equation System II

Example 16.5

e A—aB,B—beP

@ «a €syn(B), § € inh(B) — cyclic dependency:
@ 3.2 = f(a.2) € Eaun

o .0 =g(B.0) € Eg_yp 7

a’/
= for V®:= VP :=N, g(z) := z, and

@ f(z) := z + 1: no solution b
@ f(z) := 2x: exactly one solution E: Bk
(v(ak) = v(B.k) = 0) ok
@ f(z) := x: infinitely many solutions
(v(a.k) = v(B.k) =y for any y € N)

m Compiler Construction Winter semester 2010/11 13

Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies

Definition 16.6 (Circularity)

An attribute grammar A = (G, E, V) € AG is called circular if there
exists a syntax tree t such that the attribute equation system E} is
recursive (i.e., some attribute variable of ¢ depends on itself).
Otherwise it is called noncircular.

Remark: because of the division of Var, into In, and Out,, cyclic
dependencies cannot occur at production level (see Corollary 16.8
later).

m' Compiler Construction Winter semester 2010/11

@ Attribute Dependency Graphs

Rm Compiler Construction ter semester 2010/11 15

Attribute Dependency Graphs I

Goal: graphic representation of attribute dependencies

Definition 16.7 (Production dependency graph)

Let A= (G,E, V) € AG with G = (N, %, P,S). Every production
m € P determines the dependency graph D := (Var,, —,) where the
set of edges —,C Var, x Var, is given by

x—ry iff y=f(_..,z,...)€E,.

The dependency graph of a production is acyclic
(since —C Out, X Ing).

m Compiler Construction Winter semester 2010/11 16

Attribute Dependency Graphs 11

Example 16.9 (cf. Example 16.1)

Compiler Construction Winter semester 2010/11 17

Attribute Dependency Graphs III

Just as the attribute equation system FE; of a syntax tree ¢ is obtained
from the semantic rules of the contributing productions, the
dependency graph of ¢ is obtained by “glueing together” the
dependency graphs of the productions.

Definition 16.10 (Tree dependency graph)

Let A = (G,E, V) € AG, and let t be a syntax tree of G.

@ The dependency graph of ¢ is defined by
Dy := (Vary, —¢) where the set of edges —;C Var; x Vary is given by
x—py it y=f(~..,z,...) € E.

o Dy is called cyclic if there exists x € Var; such that x —; z.

Corollary 16.11

An attribute grammar A = (G, E, V') € AG is circular iff there exists a
syntax tree t of G such that Dy is cyclic.

m Compiler Construction Winter semester 2010/11 18

Attribute Dependency Graphs IV

Example 16.12 (cf. Example 16.1)

(Acyclic) dependency graph of the syntax tree for 10.1:

Compiler Construction Winter semester 2010/11 19

@ Testing Attribute Grammars for Circularity

Rm Compiler Construction ter semester 2010/11 20

Attribute Dependency Graphs and Circularity 1

Observation: a cycle in the dependency graph D; of a given syntax
tree t is caused by the occurrence of a “cover” production
T = Ay — wodjwy ... A,w, € P in a node kg of ¢ such that
o the dependencies in E, yield the “upper end” of the cycle and
o for at least one ¢ € [r], some attributes in syn(4;) depend on
attributes in inh(A;).

on the board l

To identify such “critical” situations we need to determine for each
i € [r] the possible ways in which attributes in syn(4;) can depend on
attributes in inh(4;).

Rm Compiler Construction Winter semester 2010/11 21

Attribute Dependency Graphs and Circularity II

Definition 16.14 (Attribute dependence)

Let A = (G, E, V) € AG with G = (N, %, P, S).

o If ¢ is a syntax tree with root label A € N and root node k,
a € syn(A), and (3 € inh(A) such that 8.k —; a.k, then o is

dependent on 3 below A in ¢ (notation: [& Q).
o For every syntax tree t with root label A € N,
A
is(A,t) :=={(B,a) € inh(A) x syn(4) | f — « in t}.
o For every A € N,

IS(A) := {is(A,t) | t syntax tree with root label A}
C 2Inh><5’yn‘

Remark: it is important that IS(A) is a system of attribute
dependence sets, not a union (later: strong noncircularity).

on the board ‘

m Compiler Construction Winter semester 2010/11

© The Circularity Test

Rm Compiler nstruction nter semester 2010/11

The Circularity Test I

In the circularity test, the dependency systems IS(A) are iteratively
computed. It employs the following notation:

Definition 16.16
Given 1 = A — woAjws ... Ayw, € P and is; C inh(A4;) x syn(4;) for

every i € [r], let
is[m;is1, ..., is,] C inh(A) x syn(A)

be given by
STy AS1, .., 1Sp) 1=

{(8,0)1(80,0.0) € (=x VUL {(8"pi,0) | (8,) € isi})* }

where p; := Z;Zl lwj—1| + 4.

on the board

Compiler Construction Winter semester 2010/11 24

The Circularity Test 11

Algorithm 16.18 (Circularity test for attribute grammars)

Input: A= (G,E, V)€ AG with G = (N,%, P, S)
Procedure: @ for every A € N, iteratively construct IS(A) as
follows:
@ ifm=A— weE P, then is[r] € IS(A)
Q@ ifmt=A— widiw ... A,w, € P and is; € IS(4;)
for every i € [r], then is[m;is1,...,1s,] € IS(A)
© test whether A is circular by checking if there exist
T =A— woAdjw; ... Ayw, € P and is; € IS(A;) for
every i € [r] such that the following relation is cyclic:
o UU (B i i) | (B,a) € isi}
(where p; := Y%y |wj—1] + 1)
Output: “yes” or “no”

m Compiler Construction Winter semester 2010/11 25

The Circularity Test 111
2 R

Da—ct (B) A @@

Application of Algorithm 16.18: on the board

m Compiler Construction Winter semester 2010/11 26

@ Correctness and Complexity of the Circularity Test

Rm Compiler Construction ter semester 2010/11

Correctness and Complexity of Circularity Test

Theorem 16.20 (Correctness of circularity test)

An attribute grammar is circular iff Algorithm 16.18 yields the answer “yes”.

by induction on the syntax tree ¢ with cyclic D;]

Lemma 16.21

The time complexity of the circularity test is exponential in the size of the
attribute grammar (= maximal length of right-hand sides of productions).

by reduction of the word problem of alternating Turing machines (see

M. Jazayeri: A Simpler Construction for Showing the Intrinsically
Exponential Complexity of the Circularity Problem for Attribute Grammars,
Comm. of the ACM 28(4), 1981, pp. 715-720) O

Compiler Construction Winter semester 2010/11

	Repetition: Attribute Grammars
	The Attribute Equation System
	Circularity of Attribute Grammars
	Attribute Dependency Graphs
	Testing Attribute Grammars for Circularity
	The Circularity Test
	Correctness and Complexity of the Circularity Test

