
Compiler Construction

Lecture 17: Semantic Analysis III
(Circularity Test & Attribute Evaluation)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Outline

1 Repetition: Attribute Grammars

2 The Circularity Test

3 Correctness and Complexity of the Circularity Test

4 Attribute Evaluation

5 Attribute Evaluation by Topological Sorting

Compiler Construction Winter semester 2010/11 2

Formal Definition of Attribute Grammars

Definition (Attribute grammar)

Let G = 〈N, Σ, P, S〉 ∈ CFGΣ with X := N] Σ.

Let Att = Syn] Inh be a set of (synthesized or inherited) attributes, and
let V =

⋃

α∈Att
V α be a union of value sets.

Let att : X → 2Att be an attribute assignment, and let
syn(Y) := att(Y) ∩ Syn and inh(Y) := att(Y) ∩ Inh for every Y ∈ X .

Every production π = Y0 → Y1 . . . Yr ∈ P determines the set
Varπ := {α.i | α ∈ att(Yi), i ∈ {0, . . . , r}}

of attribute variables of π with the subsets of inner and outer variables:
Inπ := {α.i | (i = 0, α ∈ syn(Yi)) or (i ∈ [r], α ∈ inh(Yi))}

Outπ := Varπ \ Inπ

A semantic rule of π is an equation of the form
α.i = f(α1.i1, . . . , αn.in)

where n ∈ N, α.i ∈ Inπ, αj .ij ∈ Outπ, and f : V α1 × . . . × V αn → V α.

For each π ∈ P , let Eπ be a set with exactly one semantic rule for every
inner variable of π, and let E := (Eπ | π ∈ P).

Then A := 〈G,E ,V 〉 is called an attribute grammar: A ∈ AG.
Compiler Construction Winter semester 2010/11 3

Circularity of Attribute Grammars

Goal: unique solvability of equation system
=⇒ avoid cyclic dependencies

Definition (Circularity)

An attribute grammar A = 〈G,E ,V 〉 ∈ AG is called circular if there
exists a syntax tree t such that the attribute equation system Et is
recursive (i.e., some attribute variable of t depends on itself).
Otherwise it is called noncircular.

Remark: because of the division of Varπ into Inπ and Outπ, cyclic
dependencies cannot occur at production level (see Corollary 16.8).

Compiler Construction Winter semester 2010/11 4

Attribute Dependency Graphs and Circularity I

Observation: a cycle in the dependency graph Dt of a given syntax
tree t is caused by the occurrence of a “cover” production
π = A0 → w0A1w1 . . . Arwr ∈ P in a node k0 of t such that

the dependencies in Ek0 yield the “upper end” of the cycle and

for at least one i ∈ [r], some attributes in syn(Ai) depend on
attributes in inh(Ai).

Example

on the board

To identify such “critical” situations we need to determine for each
i ∈ [r] the possible ways in which attributes in syn(Ai) can depend on
attributes in inh(Ai).

Compiler Construction Winter semester 2010/11 5

Attribute Dependency Graphs and Circularity II

Definition (Attribute dependence)

Let A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉.

If t is a syntax tree with root label A ∈ N and root node k,
α ∈ syn(A), and β ∈ inh(A) such that β.k →+

t α.k, then α is

dependent on β below A in t (notation: β
A
↪→ α).

For every syntax tree t with root label A ∈ N ,

is(A, t) := {(β, α) ∈ inh(A) × syn(A) | β
A
↪→ α in t}.

For every A ∈ N ,
IS (A) := {is(A, t) | t syntax tree with root label A}

⊆ 2Inh×Syn .

Remark: it is important that IS (A) is a system of attribute
dependence sets, not a union (later: strong noncircularity).

Example

on the board
Compiler Construction Winter semester 2010/11 6

Outline

1 Repetition: Attribute Grammars

2 The Circularity Test

3 Correctness and Complexity of the Circularity Test

4 Attribute Evaluation

5 Attribute Evaluation by Topological Sorting

Compiler Construction Winter semester 2010/11 7

The Circularity Test I

In the circularity test, the dependency systems IS (A) are iteratively
computed. It employs the following notation:

Definition 17.1

Given π = A → w0A1w1 . . . Arwr ∈ P and is i ⊆ inh(Ai) × syn(Ai) for
every i ∈ [r], let

is [π; is1, . . . , isr] ⊆ inh(A) × syn(A)
be given by

is[π; is1, . . . , isr] :=
{

(β, α) | (β.0, α.0) ∈ (→π ∪
⋃r

i=1{(β
′.pi, α

′.pi) | (β′, α′) ∈ is i})
+
}

where pi :=
∑i

j=1 |wj−1| + i.

Compiler Construction Winter semester 2010/11 8

The Circularity Test I

In the circularity test, the dependency systems IS (A) are iteratively
computed. It employs the following notation:

Definition 17.1

Given π = A → w0A1w1 . . . Arwr ∈ P and is i ⊆ inh(Ai) × syn(Ai) for
every i ∈ [r], let

is [π; is1, . . . , isr] ⊆ inh(A) × syn(A)
be given by

is[π; is1, . . . , isr] :=
{

(β, α) | (β.0, α.0) ∈ (→π ∪
⋃r

i=1{(β
′.pi, α

′.pi) | (β′, α′) ∈ is i})
+
}

where pi :=
∑i

j=1 |wj−1| + i.

Example 17.2

on the board

Compiler Construction Winter semester 2010/11 8

The Circularity Test II

Algorithm 17.3 (Circularity test for attribute grammars)

Input: A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉

Compiler Construction Winter semester 2010/11 9

The Circularity Test II

Algorithm 17.3 (Circularity test for attribute grammars)

Input: A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉

Procedure: 1 for every A ∈ N , iteratively construct IS (A) as
follows:

1 if π = A → w ∈ P , then is [π] ∈ IS (A)
2 if π = A → w0A1w1 . . . Arwr ∈ P and is i ∈ IS(Ai)

for every i ∈ [r], then is [π; is1, . . . , isr] ∈ IS (A)

Compiler Construction Winter semester 2010/11 9

The Circularity Test II

Algorithm 17.3 (Circularity test for attribute grammars)

Input: A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉

Procedure: 1 for every A ∈ N , iteratively construct IS (A) as
follows:

1 if π = A → w ∈ P , then is [π] ∈ IS (A)
2 if π = A → w0A1w1 . . . Arwr ∈ P and is i ∈ IS(Ai)

for every i ∈ [r], then is [π; is1, . . . , isr] ∈ IS (A)

2 test whether A is circular by checking if there exist
π = A → w0A1w1 . . . Arwr ∈ P and isi ∈ IS (Ai) for
every i ∈ [r] such that the following relation is cyclic:

→π ∪
⋃r

i=1{(β.pi, α.pi) | (β, α) ∈ isi}

(where pi :=
∑i

j=1 |wj−1| + i)

Compiler Construction Winter semester 2010/11 9

The Circularity Test II

Algorithm 17.3 (Circularity test for attribute grammars)

Input: A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉

Procedure: 1 for every A ∈ N , iteratively construct IS (A) as
follows:

1 if π = A → w ∈ P , then is [π] ∈ IS (A)
2 if π = A → w0A1w1 . . . Arwr ∈ P and is i ∈ IS(Ai)

for every i ∈ [r], then is [π; is1, . . . , isr] ∈ IS (A)

2 test whether A is circular by checking if there exist
π = A → w0A1w1 . . . Arwr ∈ P and isi ∈ IS (Ai) for
every i ∈ [r] such that the following relation is cyclic:

→π ∪
⋃r

i=1{(β.pi, α.pi) | (β, α) ∈ isi}

(where pi :=
∑i

j=1 |wj−1| + i)

Output: “yes” or “no”

Compiler Construction Winter semester 2010/11 9

The Circularity Test III

Example 17.4

DS→AB: S

A B

α

α1 α2β α1 α2β

DB→AB: B

A B

α1 α2β

α1 α2β α1 α2β

DA→B: A

B

α1 α2β

α1 α2β

DA→a: A

a

α1 α2β

DA→c: A

c

α1 α2β

DB→b: B

b

α1 α2β

Application of Algorithm 17.3: on the board

Compiler Construction Winter semester 2010/11 10

Outline

1 Repetition: Attribute Grammars

2 The Circularity Test

3 Correctness and Complexity of the Circularity Test

4 Attribute Evaluation

5 Attribute Evaluation by Topological Sorting

Compiler Construction Winter semester 2010/11 11

Correctness and Complexity of Circularity Test

Theorem 17.5 (Correctness of circularity test)

An attribute grammar is circular iff Algorithm 17.3 yields the answer “yes”.

Compiler Construction Winter semester 2010/11 12

Correctness and Complexity of Circularity Test

Theorem 17.5 (Correctness of circularity test)

An attribute grammar is circular iff Algorithm 17.3 yields the answer “yes”.

Proof.
by induction on the syntax tree t with cyclic Dt

Compiler Construction Winter semester 2010/11 12

Correctness and Complexity of Circularity Test

Theorem 17.5 (Correctness of circularity test)

An attribute grammar is circular iff Algorithm 17.3 yields the answer “yes”.

Proof.
by induction on the syntax tree t with cyclic Dt

Lemma 17.6
The time complexity of the circularity test is exponential in the size of the
attribute grammar (= maximal length of right-hand sides of productions).

Compiler Construction Winter semester 2010/11 12

Correctness and Complexity of Circularity Test

Theorem 17.5 (Correctness of circularity test)

An attribute grammar is circular iff Algorithm 17.3 yields the answer “yes”.

Proof.
by induction on the syntax tree t with cyclic Dt

Lemma 17.6
The time complexity of the circularity test is exponential in the size of the
attribute grammar (= maximal length of right-hand sides of productions).

Proof.

by reduction of the word problem of alternating Turing machines (see
M. Jazayeri: A Simpler Construction for Showing the Intrinsically

Exponential Complexity of the Circularity Problem for Attribute Grammars,
Comm. of the ACM 28(4), 1981, pp. 715–720)

Compiler Construction Winter semester 2010/11 12

Outline

1 Repetition: Attribute Grammars

2 The Circularity Test

3 Correctness and Complexity of the Circularity Test

4 Attribute Evaluation

5 Attribute Evaluation by Topological Sorting

Compiler Construction Winter semester 2010/11 13

Attribute Evaluation Methods

Given: noncircular attribute grammar A = 〈G,E ,V 〉 ∈ AG
syntax tree t of G

valuation v : SynΣ → V where
SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Compiler Construction Winter semester 2010/11 14

Attribute Evaluation Methods

Given: noncircular attribute grammar A = 〈G,E ,V 〉 ∈ AG
syntax tree t of G

valuation v : SynΣ → V where
SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Compiler Construction Winter semester 2010/11 14

Attribute Evaluation Methods

Given: noncircular attribute grammar A = 〈G,E ,V 〉 ∈ AG
syntax tree t of G

valuation v : SynΣ → V where
SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Methods: 1 Topological sorting of Dt:
1 start with attribute variables which depend at most

on synthesized attributes of terminals (SynΣ)
2 proceed by successive substitution

Compiler Construction Winter semester 2010/11 14

Attribute Evaluation Methods

Given: noncircular attribute grammar A = 〈G,E ,V 〉 ∈ AG
syntax tree t of G

valuation v : SynΣ → V where
SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Methods: 1 Topological sorting of Dt:
1 start with attribute variables which depend at most

on synthesized attributes of terminals (SynΣ)
2 proceed by successive substitution

2 Recursive functions (for strongly noncircular AGs; later):
1 for every A ∈ N and α ∈ syn(A), define evaluation

function gA,α with the following parameters:
the node of t where α has to be evaluated and
all inherited attributes of A on which α (potentially)

depends

2 for every α ∈ syn(S), evaluate gS,α(k0) where k0

denotes the root of t

Compiler Construction Winter semester 2010/11 14

Attribute Evaluation Methods

Given: noncircular attribute grammar A = 〈G,E ,V 〉 ∈ AG
syntax tree t of G

valuation v : SynΣ → V where
SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Methods: 1 Topological sorting of Dt:
1 start with attribute variables which depend at most

on synthesized attributes of terminals (SynΣ)
2 proceed by successive substitution

2 Recursive functions (for strongly noncircular AGs; later):
1 for every A ∈ N and α ∈ syn(A), define evaluation

function gA,α with the following parameters:
the node of t where α has to be evaluated and
all inherited attributes of A on which α (potentially)

depends

2 for every α ∈ syn(S), evaluate gS,α(k0) where k0

denotes the root of t
3 Special cases: S-attributed grammars (yacc), L-attributed

grammars

Compiler Construction Winter semester 2010/11 14

Outline

1 Repetition: Attribute Grammars

2 The Circularity Test

3 Correctness and Complexity of the Circularity Test

4 Attribute Evaluation

5 Attribute Evaluation by Topological Sorting

Compiler Construction Winter semester 2010/11 15

Attribute Evaluation by Topological Sorting

Algorithm 17.7 (Evaluation by topological sorting)

Input: noncircular A = 〈G,E ,V 〉 ∈ AG, syntax tree t of G,
valuation v : SynΣ → V

Compiler Construction Winter semester 2010/11 16

Attribute Evaluation by Topological Sorting

Algorithm 17.7 (Evaluation by topological sorting)

Input: noncircular A = 〈G,E ,V 〉 ∈ AG, syntax tree t of G,
valuation v : SynΣ → V

Procedure: 1 let Var := Var t \ SynΣ (* attributes to be evaluated *)
2 while Var 6= ∅ do

1 let x ∈ Var such that {y ∈ Var | y →t x} = ∅
2 let x = f(x1, . . . , xn) ∈ Et

3 let v(x) := f(v(x1), . . . , v(xn))
4 let Var := Var \ {x}

Compiler Construction Winter semester 2010/11 16

Attribute Evaluation by Topological Sorting

Algorithm 17.7 (Evaluation by topological sorting)

Input: noncircular A = 〈G,E ,V 〉 ∈ AG, syntax tree t of G,
valuation v : SynΣ → V

Procedure: 1 let Var := Var t \ SynΣ (* attributes to be evaluated *)
2 while Var 6= ∅ do

1 let x ∈ Var such that {y ∈ Var | y →t x} = ∅
2 let x = f(x1, . . . , xn) ∈ Et

3 let v(x) := f(v(x1), . . . , v(xn))
4 let Var := Var \ {x}

Output: solution v : Var t → V

Compiler Construction Winter semester 2010/11 16

Attribute Evaluation by Topological Sorting

Algorithm 17.7 (Evaluation by topological sorting)

Input: noncircular A = 〈G,E ,V 〉 ∈ AG, syntax tree t of G,
valuation v : SynΣ → V

Procedure: 1 let Var := Var t \ SynΣ (* attributes to be evaluated *)
2 while Var 6= ∅ do

1 let x ∈ Var such that {y ∈ Var | y →t x} = ∅
2 let x = f(x1, . . . , xn) ∈ Et

3 let v(x) := f(v(x1), . . . , v(xn))
4 let Var := Var \ {x}

Output: solution v : Var t → V

Remark: noncircularity guarantees that in step 2.1 at least one such x

is available

Compiler Construction Winter semester 2010/11 16

Attribute Evaluation by Topological Sorting

Algorithm 17.7 (Evaluation by topological sorting)

Input: noncircular A = 〈G,E ,V 〉 ∈ AG, syntax tree t of G,
valuation v : SynΣ → V

Procedure: 1 let Var := Var t \ SynΣ (* attributes to be evaluated *)
2 while Var 6= ∅ do

1 let x ∈ Var such that {y ∈ Var | y →t x} = ∅
2 let x = f(x1, . . . , xn) ∈ Et

3 let v(x) := f(v(x1), . . . , v(xn))
4 let Var := Var \ {x}

Output: solution v : Var t → V

Remark: noncircularity guarantees that in step 2.1 at least one such x

is available

Example 17.8

see Examples 15.1 and 15.2 (Knuth’s binary numbers)

Compiler Construction Winter semester 2010/11 16

	Repetition: Attribute Grammars
	The Circularity Test
	Correctness and Complexity of the Circularity Test
	Attribute Evaluation
	Attribute Evaluation by Topological Sorting

