Compiler Construction

Lecture 17: Semantic Analysis 111
(Circularity Test & Attribute Evaluation)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

@ Repetition: Attribute Grammars

Rm Compiler Construction nter semester 2010/11

Formal Definition of Attribute Grammars

Definition (Attribute grammar)
Let G = (N, X, P,S) € CFGs, with X := N W 3.

@ Let Att = Syn W Inh be a set of (synthesized or inherited) attributes, and
let V =,can V* be a union of value sets.

@ Let att : X — 24% be an attribute assignment, and let
syn(Y) := att(Y) N Syn and inh(Y) := att(Y") N Inh for every Y € X.
@ Every production m = Yy — Y;...Y, € P determines the set
Var, = {a.i| o € att(Y;),i € {0,...,r}}
of attribute variables of w with the subsets of inner and outer variables:
Ing :={a.i| (i =0,a €syn(Y;)) or (i € [r],« € inh(Y;))}
Out, = Vary \ In,
@ A semantic rule of 7 is an equation of the form
ot = fag.01,. .., 0pn.0p)
where n € N, a.i € Ing, 5.1 € Outr, and f: V1 x ... x Vo — Ve,
@ For each m € P, let E; be a set with exactly one semantic rule for every
inner variable of m, and let E := (E, | m € P).

Then A := (G, E, V) is called an attribute grammar: 2 € AG.

m Compiler Construction Winter semester 2010/11 3

Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies

Definition (Circularity)

An attribute grammar A = (G, E, V) € AG is called circular if there
exists a syntax tree t such that the attribute equation system FE; is
recursive (i.e., some attribute variable of ¢ depends on itself).
Otherwise it is called noncircular.

Remark: because of the division of Var, into In, and Out,, cyclic
dependencies cannot occur at production level (see Corollary 16.8).

m' Compiler Construction Winter semester 2010/11

Attribute Dependency Graphs and Circularity 1

Observation: a cycle in the dependency graph D; of a given syntax
tree t is caused by the occurrence of a “cover” production
T = Ay — wodjwy ... A,w, € P in a node kg of ¢ such that
o the dependencies in E, yield the “upper end” of the cycle and
o for at least one ¢ € [r], some attributes in syn(4;) depend on
attributes in inh(A;).

on the board l

To identify such “critical” situations we need to determine for each
i € [r] the possible ways in which attributes in syn(4;) can depend on
attributes in inh(4;).

Rm Compiler Construction Winter semester 2010/11 5

Attribute Dependency Graphs and Circularity II

Definition (Attribute dependence)

Let A = (G, E, V) € AG with G = (N, %, P, S).

o If ¢ is a syntax tree with root label A € N and root node k,
a € syn(A), and (3 € inh(A) such that 8.k —; a.k, then o is

dependent on 3 below A in ¢ (notation: [& Q).
o For every syntax tree t with root label A € N,
A
is(A,t) :=={(B,a) € inh(A) x syn(4) | f — « in t}.
o For every A € N,

IS(A) := {is(A,t) | t syntax tree with root label A}
C 2Inh><5’yn‘

Remark: it is important that IS(A) is a system of attribute
dependence sets, not a union (later: strong noncircularity).

on the board ‘

m Compiler Construction Winter semester 2010/11 6

© The Circularity Test

Rm Compiler Construction nter semester 2010/11

The Circularity Test I

In the circularity test, the dependency systems IS(A) are iteratively
computed. It employs the following notation:

Definition 17.1
Given 1 = A — woAjws ... Ayw, € P and is; C inh(A4;) x syn(4;) for

every i € [r], let
is[m;is1, ..., is,] C inh(A) x syn(A)

be given by
STy AS1, .., 1Sp) 1=

{(8,0)1(80,0.0) € (=x VUL {(8"pi,0) | (8,) € isi})* }

where p; := Z;Zl lwj—1| + 4.

on the board

Compiler Construction Winter semester 2010/11 8

The Circularity Test 11

Algorithm 17.3 (Circularity test for attribute grammars)

Input: A= (G,E, V)€ AG with G = (N,%, P, S)
Procedure: @ for every A € N, iteratively construct IS(A) as
follows:
@ ifm=A— weE P, then is[r] € IS(A)
Q@ ifmt=A— widiw ... A,w, € P and is; € IS(4;)
for every i € [r], then is[m;is1,...,1s,] € IS(A)
© test whether A is circular by checking if there exist
T =A— woAdjw; ... Ayw, € P and is; € IS(A;) for
every i € [r] such that the following relation is cyclic:
o UU (B i i) | (B,a) € isi}
(where p; := Y%y |wj—1] + 1)
Output: “yes” or “no”

m Compiler Construction Winter semester 2010/11 9

The Circularity Test 111

Example 17.4

Application of Algorithm 17.3: on the board

m Compiler Construction Winter semester 2010/11 10

© Correctness and Complexity of the Circularity Test

Rm Compiler Construction ter semester 2010/11 11

Correctness and Complexity of Circularity Test

Theorem 17.5 (Correctness of circularity test)

An attribute grammar is circular iff Algorithm 17.8 yields the answer “yes”.

by induction on the syntax tree ¢ with cyclic D;]

Lemma 17.6

The time complexity of the circularity test is exponential in the size of the
attribute grammar (= maximal length of right-hand sides of productions).

by reduction of the word problem of alternating Turing machines (see

M. Jazayeri: A Simpler Construction for Showing the Intrinsically
Exponential Complexity of the Circularity Problem for Attribute Grammars,
Comm. of the ACM 28(4), 1981, pp. 715-720) O

v

Compiler Construction Winter semester 2010/11 12

Q Attribute Evaluation

Rm Compiler Construction nter semester 2010/11 13

Attribute Evaluation Methods

Given: @ noncircular attribute grammar A = (G, E, V) € AG
@ syntax tree ¢ of G
@ valuation v : Syny, — V where
Syny, := {a.k | k labelled by a € ¥, a € syn(a)} C Var;
Goal: extend v to (partial) solution v : Vary — V
Methods: @ Topological sorting of D;:
@ start with attribute variables which depend at most
on synthesized attributes of terminals (Syny,)
© proceed by successive substitution
© Recursive functions (for strongly noncircular AGs; later):
@ for every A € N and « € syn(A), define evaluation
function ga . with the following parameters:
@ the node of ¢t where a has to be evaluated and
o all inherited attributes of A on which « (potentially)
depends
@ for every o € syn(S), evaluate gg o (ko) where kg
denotes the root of ¢
© Special cases: S-attributed grammars (yacc), L-attributed
grammars

m' Compiler Construction Winter semester 2010/11 14

@ Attribute Evaluation by Topological Sorting

Rm Compiler Construction Winter semester 2010/11 15

Attribute Evaluation by Topological Sorting

Algorithm 17.7 (Evaluation by topological sorting)

Input: noncircular A = (G, E, V) € AG, syntax tree t of G,
valuation v : Syns, — V
Procedure: @ let Var := Vary \ Syny, (* attributes to be evaluated *)
Q while Var # 0 do

@ let x € Var such that {y € Var |y — x} =10
Q letx = f(x1,...,2,) € By

@ let v(z) = f(v(z1),...,v(xn))

@ let Var := Var \ {z}

Output: solution v : Vary — V

Remark: noncircularity guarantees that in step 2.1 at least one such x
is available

see Examples 15.1 and 15.2 (Knuth’s binary numbers)

m Compiler Construction Winter semester 2010/11 16

	Repetition: Attribute Grammars
	The Circularity Test
	Correctness and Complexity of the Circularity Test
	Attribute Evaluation
	Attribute Evaluation by Topological Sorting

