

Compiler Construction

Lecture 17: Semantic Analysis III (Circularity Test & Attribute Evaluation)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/cc10/>

Winter semester 2010/11

- 1 Repetition: Attribute Grammars
- 2 The Circularity Test
- 3 Correctness and Complexity of the Circularity Test
- 4 Attribute Evaluation
- 5 Attribute Evaluation by Topological Sorting

Formal Definition of Attribute Grammars

Definition (Attribute grammar)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ with $X := N \uplus \Sigma$.

- Let $Att = Syn \uplus Inh$ be a set of (synthesized or inherited) attributes, and let $V = \bigcup_{\alpha \in Att} V^{\alpha}$ be a union of value sets.
- Let $att : X \rightarrow 2^{Att}$ be an attribute assignment, and let $syn(Y) := att(Y) \cap Syn$ and $inh(Y) := att(Y) \cap Inh$ for every $Y \in X$.
- Every production $\pi = Y_0 \rightarrow Y_1 \dots Y_r \in P$ determines the set

$$Var_{\pi} := \{\alpha.i \mid \alpha \in att(Y_i), i \in \{0, \dots, r\}\}$$

of attribute variables of π with the subsets of inner and outer variables:

$$In_{\pi} := \{\alpha.i \mid (i = 0, \alpha \in syn(Y_i)) \text{ or } (i \in [r], \alpha \in inh(Y_i))\}$$
$$Out_{\pi} := Var_{\pi} \setminus In_{\pi}$$

- A semantic rule of π is an equation of the form

$$\alpha.i = f(\alpha_1.i_1, \dots, \alpha_n.i_n)$$

where $n \in \mathbb{N}$, $\alpha.i \in In_{\pi}$, $\alpha_j.i_j \in Out_{\pi}$, and $f : V^{\alpha_1} \times \dots \times V^{\alpha_n} \rightarrow V^{\alpha}$.

- For each $\pi \in P$, let E_{π} be a set with exactly one semantic rule for every inner variable of π , and let $E := (E_{\pi} \mid \pi \in P)$.

Then $\mathfrak{A} := \langle G, E, V \rangle$ is called an attribute grammar: $\mathfrak{A} \in AG$.

Goal: **unique solvability** of equation system
⇒ avoid cyclic dependencies

Definition (Circularity)

An attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$ is called **circular** if there exists a syntax tree t such that the attribute equation system E_t is recursive (i.e., some attribute variable of t depends on itself). Otherwise it is called **noncircular**.

Remark: because of the division of Var_π into In_π and Out_π , cyclic dependencies cannot occur at production level (see Corollary 16.8).

Observation: a cycle in the dependency graph D_t of a given syntax tree t is caused by the occurrence of a “cover” production

$\pi = A_0 \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ in a node k_0 of t such that

- the dependencies in E_{k_0} yield the “upper end” of the cycle and
- for at least one $i \in [r]$, some attributes in $\text{syn}(A_i)$ depend on attributes in $\text{inh}(A_i)$.

Example

on the board

To identify such “critical” situations we need to determine for each $i \in [r]$ the possible ways in which attributes in $\text{syn}(A_i)$ can depend on attributes in $\text{inh}(A_i)$.

Definition (Attribute dependence)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

- If t is a syntax tree with root label $A \in N$ and root node k , $\alpha \in \text{syn}(A)$, and $\beta \in \text{inh}(A)$ such that $\beta.k \rightarrow_t^+ \alpha.k$, then α is **dependent on β below A in t** (notation: $\beta \xrightarrow{A} \alpha$).
- For every syntax tree t with root label $A \in N$,
$$\text{is}(A, t) := \{(\beta, \alpha) \in \text{inh}(A) \times \text{syn}(A) \mid \beta \xrightarrow{A} \alpha \text{ in } t\}.$$
- For every $A \in N$,
$$\begin{aligned} \text{IS}(A) &:= \{\text{is}(A, t) \mid t \text{ syntax tree with root label } A\} \\ &\subseteq 2^{\text{Inh} \times \text{Syn}}. \end{aligned}$$

Remark: it is important that $\text{IS}(A)$ is a **system** of attribute dependence sets, not a **union** (later: **strong noncircularity**).

Example

on the board

- 1 Repetition: Attribute Grammars
- 2 The Circularity Test
- 3 Correctness and Complexity of the Circularity Test
- 4 Attribute Evaluation
- 5 Attribute Evaluation by Topological Sorting

The Circularity Test I

In the circularity test, the dependency systems $IS(A)$ are iteratively computed. It employs the following notation:

Definition 17.1

Given $\pi = A \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ and $is_i \subseteq \text{inh}(A_i) \times \text{syn}(A_i)$ for every $i \in [r]$, let

$$is[\pi; is_1, \dots, is_r] \subseteq \text{inh}(A) \times \text{syn}(A)$$

be given by

$$is[\pi; is_1, \dots, is_r] := \left\{ (\beta, \alpha) \mid (\beta.0, \alpha.0) \in (\rightarrow_\pi \cup \bigcup_{i=1}^r \{(\beta'.p_i, \alpha'.p_i) \mid (\beta', \alpha') \in is_i\})^+ \right\}$$

where $p_i := \sum_{j=1}^i |w_{j-1}| + i$.

Example 17.2

on the board

The Circularity Test II

Algorithm 17.3 (Circularity test for attribute grammars)

Input: $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$

Procedure: ① for every $A \in N$, *iteratively construct $IS(A)$* as follows:

- ① if $\pi = A \rightarrow w \in P$, then $is[\pi] \in IS(A)$
- ② if $\pi = A \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ and $is_i \in IS(A_i)$ for every $i \in [r]$, then $is[\pi; is_1, \dots, is_r] \in IS(A)$

② *test whether \mathfrak{A} is circular* by checking if there exist $\pi = A \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ and $is_i \in IS(A_i)$ for every $i \in [r]$ such that the following relation is cyclic:

$$\rightarrow_\pi \cup \bigcup_{i=1}^r \{(\beta.p_i, \alpha.p_i) \mid (\beta, \alpha) \in is_i\}$$

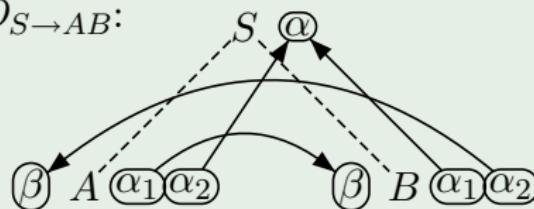
(where $p_i := \sum_{j=1}^i |w_{j-1}| + i$)

Output: “yes” or “no”

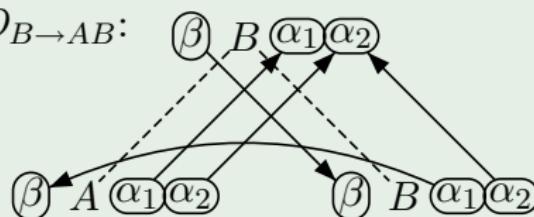
The Circularity Test III

Example 17.4

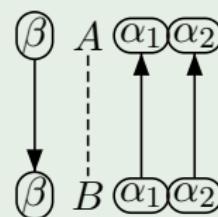
$D_{S \rightarrow AB}$:



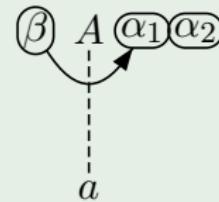
$D_{B \rightarrow AB}$:



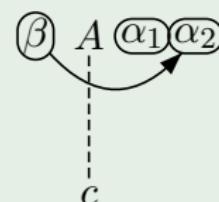
$D_{A \rightarrow B}$:



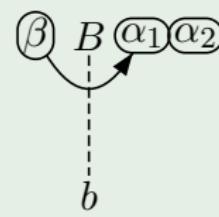
$D_{A \rightarrow a}$:



$D_{A \rightarrow c}$:



$D_{B \rightarrow b}$:



Application of Algorithm 17.3: on the board

- 1 Repetition: Attribute Grammars
- 2 The Circularity Test
- 3 Correctness and Complexity of the Circularity Test
- 4 Attribute Evaluation
- 5 Attribute Evaluation by Topological Sorting

Theorem 17.5 (Correctness of circularity test)

An attribute grammar is circular iff Algorithm 17.3 yields the answer “yes”.

Proof.

by induction on the syntax tree t with cyclic D_t

□

Lemma 17.6

*The time complexity of the circularity test is **exponential** in the size of the attribute grammar (= maximal length of right-hand sides of productions).*

Proof.

by reduction of the word problem of alternating Turing machines (see
M. Jazayeri: *A Simpler Construction for Showing the Intrinsically Exponential Complexity of the Circularity Problem for Attribute Grammars*, Comm. of the ACM 28(4), 1981, pp. 715–720)

□

- 1 Repetition: Attribute Grammars
- 2 The Circularity Test
- 3 Correctness and Complexity of the Circularity Test
- 4 Attribute Evaluation
- 5 Attribute Evaluation by Topological Sorting

Attribute Evaluation Methods

Given:

- noncircular attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$
- syntax tree t of G
- valuation $v : Syn_{\Sigma} \rightarrow V$ where

$$Syn_{\Sigma} := \{ \alpha.k \mid k \text{ labelled by } a \in \Sigma, \alpha \in \text{syn}(a) \} \subseteq Var_t$$

Goal: extend v to (partial) **solution** $v : Var_t \rightarrow V$

Methods:

① Topological sorting of D_t :

- ① start with attribute variables which depend at most on synthesized attributes of terminals (Syn_{Σ})
- ② proceed by successive substitution

② Recursive functions (for strongly noncircular AGs; later):

- ① for every $A \in N$ and $\alpha \in \text{syn}(A)$, define evaluation function $g_{A,\alpha}$ with the following parameters:
 - the node of t where α has to be evaluated and
 - all inherited attributes of A on which α (potentially) depends
- ② for every $\alpha \in \text{syn}(S)$, evaluate $g_{S,\alpha}(k_0)$ where k_0 denotes the root of t

③ Special cases: **S-attributed grammars** (yacc), **L-attributed grammars**

- 1 Repetition: Attribute Grammars
- 2 The Circularity Test
- 3 Correctness and Complexity of the Circularity Test
- 4 Attribute Evaluation
- 5 Attribute Evaluation by Topological Sorting

Attribute Evaluation by Topological Sorting

Algorithm 17.7 (Evaluation by topological sorting)

Input: noncircular $\mathfrak{A} = \langle G, E, V \rangle \in AG$, syntax tree t of G , valuation $v : Syn_{\Sigma} \rightarrow V$

Procedure:

- ① let $Var := Var_t \setminus Syn_{\Sigma}$ (* attributes to be evaluated *)
- ② while $Var \neq \emptyset$ do
 - ① let $x \in Var$ such that $\{y \in Var \mid y \rightarrow_t x\} = \emptyset$
 - ② let $x = f(x_1, \dots, x_n) \in E_t$
 - ③ let $v(x) := f(v(x_1), \dots, v(x_n))$
 - ④ let $Var := Var \setminus \{x\}$

Output: solution $v : Var_t \rightarrow V$

Remark: noncircularity guarantees that in step 2.1 at least one such x is available

Example 17.8

see Examples 15.1 and 15.2 (Knuth's binary numbers)