Compiler Construction

Lecture 18: Semantic Analysis IV
(L-Attributed Grammars)/
Code Generation I (Introduction)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

@ Repetition: Attribute Evaluation

Rm Compiler Construction ter semester 2010/11

Attribute Evaluation Methods

Given: @ noncircular attribute grammar A = (G, E, V) € AG
@ syntax tree ¢ of G
@ valuation v : Syny, — V where
Syny, := {a.k | k labelled by a € ¥, a € syn(a)} C Var;
Goal: extend v to (partial) solution v : Vary — V
Methods: @ Topological sorting of D;:
@ start with attribute variables which depend at most
on synthesized attributes of terminals (Syny,)
© proceed by successive substitution
© Recursive functions (for strongly noncircular AGs; later):
@ for every A € N and « € syn(A), define evaluation
function ga . with the following parameters:
@ the node of ¢t where a has to be evaluated and
o all inherited attributes of A on which « (potentially)
depends
@ for every o € syn(S), evaluate gg o (ko) where kg
denotes the root of ¢
© Special cases: S-attributed grammars (yacc), L-attributed
grammars

m' Compiler Construction Winter semester 2010/11 3

Attribute Evaluation by Topological Sorting

Algorithm (Evaluation by topological sorting)

Input: noncircular A = (G, E, V) € AG, syntax tree t of G,
valuation v : Syns, — V
Procedure: @ let Var := Vary \ Syny, (* attributes to be evaluated *)
Q while Var # 0 do

@ let x € Var such that {y € Var |y — x} =10
Q letx = f(x1,...,2,) € By

@ let v(z) = f(v(z1),...,v(xn))

@ let Var := Var \ {z}

Output: solution v : Vary — V

Remark: noncircularity guarantees that in step 2.1 at least one such x
is available

see Examples 15.1 and 15.2 (Knuth’s binary numbers)

m Compiler Construction Winter semester 2010/11 4

© L-Attributed Grammars

Rm Compiler Construction nter semester 2010/11

L-Attributed Grammars 1

In an L-attributed grammar, attribute dependencies on the right-hand
sides of productions are only allowed to run from left to right.

Definition 18.1 (L-attributed grammar)

Let 2 = (G, E, V) € AG such that, for every m € P and
Bi=f(...,a.j,...) € Ex with 8 € Inh and o € Syn, j < i. Then U is
called an L-attributed grammar (notation: 2 € LAG).

Remark: note that no restrictions are imposed for g € Syn (for i = 0)
or « € Inh (for j =0). Thus, in an L-attributed grammar,

o synthesized attributes of the left-hand side can depend on any
outer variable and

@ every inner variable can depend on any inherited attribute of the
left-hand side.

Every A € LAG is noncircular.

m Compiler Construction Winter semester 2010/11 6

L-Attributed Grammars 11

L-attributed grammar:
S— AB il =0

1.2 =s.1+1

s.0=s52+1 .
A—aAd 12 =i0+1

5.0 = s2+1 a

A—c s.0 =40+1
B —b s.0 =30+1

m Compiler Construction Winter semester 2010/11

Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be
attributed by a depth-first, left-to-right tree traversal with two visits to
each node

@ top-down: evaluation of inherited attributes

© bottom-up: evaluation of synthesized attributes

Observation 2: visit sequence fits nicely with parsing
@ top-down: expansion steps

@ bottom-up: reduction steps

Idea: extend LL parsing to support reduction steps, and integrate
attribute evaluation —

@ use recursive-descent parser

o add variables and operations for attribute evaluation

Rm Compiler Construction Winter semester 2010/11

Recursive-Descent Parsing |

Ingredients: @ variable token for current token
o function next () for invoking the scanner
o procedure print (i) for displaying the leftmost
analysis (or errors)
Method: to every A € N we assign a procedure
A(in: inh(A), out: syn(A))

which

@ declares local variables for synthesized attributes on
right-hand sides,

@ tests token with regard to the lookahead sets of the
A-productions,

@ prints the corresponding rule number and

@ evaluates the corresponding right-hand side as
follows:

o for a € X: check token; call next ()
o for A € N: call A with appropriate parameters

Rm Compiler Construction Winter semester 2010/11 9

Recursive-Descent Parsing 11

Example 18.4 (cf. Example 18.3)

proc main();
token := next(); SO
proc SO; (xS — A B %)
if token in {’a’,’c’} then
print(1); AQ; BO
else print(error); stop fi
proc AQ); (x A — a A | c %)

if token = ’a’ then
print(2); token := next(); AQ)
elsif token = ’c’ then

print(3); token := next()
else print(error); stop fi
proc BO; (x B — b *)
if token = ’b’ then
print(4); token := next()
else print(error); stop fi

m Compiler Construction Winter semester 2010/11 10

Recursive-Descent Parsing

Example 18.5 (cf. Example 18.3)

proc main(); var s;

token :=

next(); S(s); print(s)
proc S(out s0); var si,s2;

(x S — A B %)
if token in {’a’,’c’} then
print(1); A(O0,s1); B(sl + 1,s2); sO
else print(error); stop fi
proc A(in i0,out s0); var s2;
if token = ’a’ then
print(2); token
elsif token = ’c’

print(3); token := next(); sO := i0 + 1
else print(error); stop fi
proc B(in i0,out s0);
if token = ’b’

s2 + 1

(x A — a A | c*)

next(); A(i0 + 1,s2); sO
then

=82 + 1

(* B — b %)

then
print(4); token := next(); sO := i0 + 1
else print(error); stop fi

Compiler Construction

Winter semester 2010/11 11

© Generation of Intermediate Code

Rm Compiler Construction nter semester 2010/11 12

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

Y
Syntactic analysis (Parser))

y
Semantic analysis)

Y
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code)

Target code

Rm Compiler Construction Winter semester 2010/11 13

Modularization of Code Generation 1

Splitting of code generation for programming language PL:

trans code
— —_—

PL IC MC

Frontend: trans generates machine-independent intermediate code
(IC) for abstract (stack) machine

Backend: code generates actual machine code (MC)

Advantages: 1C machine independent —-

Portability: much easier to write IC compiler/interpreter for a new
machine (as opposed to rewriting the whole compiler)

Fast compiler implementation: generating IC much easier than
generating MC

Code size: 1C programs usually smaller than corresponding MC

programs

Code optimization: division into machine-independent and
machine-dependent parts

m' Compiler Construction Winter semester 2010/11

Modularization of Code Generation 11
Example 18.6

© UNiversal Computer-Oriented Language (UNCOL; & 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL; MCy
T~ 7 only n + m translations
UNCOL (in place of n - m)
- ~
PL, MC,,

@ Pascal’s pseudocode (P-code; ~ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

© The Amsterdam Compiler Kit (TACK; ~ 1980;
http://tack.sourceforge.net/)

© Java Virtual Machine (JVM; Sun; =~ 1996;
http://en.wikipedia.org/wiki/Java_Virtual_Machine)

© Common Intermediate Language (CIL; Microsoft .NET; ~ 2002;
http://en.wikipedia.org/wiki/Common_Intermediate_Language)

RWTH Compiler Construction Winter semester 2010/11

http://en.wikipedia.org/wiki/UNCOL
http://en.wikipedia.org/wiki/P-Code_machine
http://tack.sourceforge.net/
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Common_Intermediate_Language

Language Structures I

Structures in imperative programming languages:

(object-oriented, declarative [functional/logic]: see special courses)
@ Basic data types and basic operations

Static and dynamic data structures

Expressions and assignments

Control structures (sequences, branching statements, loops, ...)

Procedures and functions

¢ 6 ¢ ¢ ¢

Modularity: blocks, modules, and classes

Use of procedures and blocks:

@ FORTRAN: non-recursive and non-nested procedures
— static memory management (memory requirement determined at
compile time)

@ C: recursive and non-nested procedures
—> dynamic memory management using runtime stack (memory
requirement only known at runtime), no static links

@ Algol-like languages (Pascal, Modula): recursive and nested procedures
= dynamic memory management using runtime stack with static links

m' Compiler Construction Winter semester 2010/11 16

Language Structures I1

Structures in machine code: (von Neumann/SISD)

Memory hierarchy: accumulators, registers, cache, main memory,
background storage

Instruction types: arithmetic/Boolean/... operation, test/jump
instruction, transfer instruction, I/O instruction, ...

Address modes: direct/indirect, absolute/relative, ...

Architectures: RISC (few [fast but simple] instructions, many
registers), CISC (many [complex but slow] instructions,
few registers)

Structures in intermediate code:

Data types and operations like PL
Data stack with basic operations
Jumping instructions for control structures

Runtime stack for blocks, procedures, and static data structures

¢ ¢ ¢ ¢

Heap for dynamic data structures

m' Compiler Construction Winter semester 2010/11

@ The Example Programming Language EPL

Rm Compiler Construction ter semester 2010/11 18

The Example Programming Language EPL

Structures of EPL:
@ Only integer and Boolean values

@ Arithmetic and Boolean expressions with strict and non-strict
semantics

o Control structures: sequence, branching, iteration

@ Nested blocks and recursive procedures with local and global
variables
(= dynamic memory management using runtime stack with
static links)

® Procedure parameters and data structures later

Rm Compiler Construction Winter semester 2010/11

Syntax of EPL

Definition 18.7 (Syntax of EPL)

The syntax of EPL is defined as follows:
Z: z (* z is an integer *)
Ide : I (* I is an identifier *)
AEzp: Au=z|I|A+As|...
BEzp: B :u= A; <Ay|not B|Bj and By | B; or By
Cmd : C:u=1:=A]|C1;Cy|if B then C] else (s |
while Bdo C | I(Q)
Dcl : D ::= Do Dy Dp
Do ::=¢|const Iy :=21,...,I, := z;
Dy :=c¢|var I, ... ,I,;
Dp ::=¢|proc [1;Ky; ... ;1 Ky
Block: K ::=DC
Pgm : P = in/out I, ...,1,; K.

m Compiler Construction Winter semester 2010/11 20

@ Static Semantics of EPL

Rm Compiler Construction nter semester 2010/11 21

Static Semantics of EPL 1

o All identifiers in a declaration D have to be different.
@ Every identifier occurring in the command C of a block D C' must
be declared
e in D or
¢ in the declaration list of a surrounding block.
@ Multiple declarations of an identifier in different blocks are
possible. Each usage in a command C refers to the “innermost”
declaration.

@ Static scoping: the usage of an identifier in the body of a called

procedure refers to its declaration environment (and not to its
calling environment).

m' Compiler Construction Winter semester 2010/11

Static Semantics of EPL 11

in/out x;
const ¢ = 10;
var y; . .
e o “Innermost” principle
var y, z; @ Static scoping: body of P can
proc Q; refer to x, y, z
var x, z; o Later declaration: call of R in
[... z :=1; PO ..] P followed by declaration (in
[... PO ... RO ..] Pascal: forward declarations
proc R; for one-pass compilation)
[... PO ..]
[... x :=0; PO ..] .

Compiler Construction Winter semester 2010/11

Dynamic Semantics of EPL

(omitting the details)

@ To “run” a program, execute the main block in the state which is
given by the input values
o FEffect of statement = modification of state
e assignment I := A: update of I by value of A
e composition C;Cy: sequential execution
o branching if B then C] else C5: test of B, followed by jump to
respective brnach
¢ iteration while B do C': execution of C as long as B is true
e call I(): transfer control to body of I and return to subsequent
statement afterwards

@ Consequently, an EPL program P = in/out 1, ...,I,; K. € Pgm
has as semantics a function

M[P] : Z" --» Z"

m' Compiler Construction Winter semester 2010/11 24

	Repetition: Attribute Evaluation
	L-Attributed Grammars
	Generation of Intermediate Code
	The Example Programming Language EPL
	Static Semantics of EPL

