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Attribute Evaluation Methods

Given: noncircular attribute grammar A = 〈G,E ,V 〉 ∈ AG
syntax tree t of G

valuation v : SynΣ → V where
SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Methods: 1 Topological sorting of Dt:
1 start with attribute variables which depend at most

on synthesized attributes of terminals (SynΣ)
2 proceed by successive substitution

2 Recursive functions (for strongly noncircular AGs; later):
1 for every A ∈ N and α ∈ syn(A), define evaluation

function gA,α with the following parameters:
the node of t where α has to be evaluated and
all inherited attributes of A on which α (potentially)

depends

2 for every α ∈ syn(S), evaluate gS,α(k0) where k0

denotes the root of t
3 Special cases: S-attributed grammars (yacc), L-attributed

grammars
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Attribute Evaluation by Topological Sorting

Algorithm (Evaluation by topological sorting)

Input: noncircular A = 〈G,E ,V 〉 ∈ AG, syntax tree t of G,
valuation v : SynΣ → V

Procedure: 1 let Var := Var t \ SynΣ (* attributes to be evaluated *)
2 while Var 6= ∅ do

1 let x ∈ Var such that {y ∈ Var | y →t x} = ∅
2 let x = f(x1, . . . , xn) ∈ Et

3 let v(x) := f(v(x1), . . . , v(xn))
4 let Var := Var \ {x}

Output: solution v : Var t → V

Remark: noncircularity guarantees that in step 2.1 at least one such x

is available

Example

see Examples 15.1 and 15.2 (Knuth’s binary numbers)
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L-Attributed Grammars I

In an L-attributed grammar, attribute dependencies on the right-hand
sides of productions are only allowed to run from left to right.

Definition 18.1 (L-attributed grammar)

Let A = 〈G,E ,V 〉 ∈ AG such that, for every π ∈ P and
β.i = f(. . . , α.j, . . .) ∈ Eπ with β ∈ Inh and α ∈ Syn, j < i. Then A is
called an L-attributed grammar (notation: A ∈ LAG).

Remark: note that no restrictions are imposed for β ∈ Syn (for i = 0)
or α ∈ Inh (for j = 0). Thus, in an L-attributed grammar,

synthesized attributes of the left-hand side can depend on any
outer variable and
every inner variable can depend on any inherited attribute of the
left-hand side.

Corollary 18.2

Every A ∈ LAG is noncircular.
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L-Attributed Grammars II

Example 18.3

L-attributed grammar:

S → AB i.1 = 0
i.2 = s.1 + 1
s.0 = s.2 + 1

A → aA i.2 = i.0 + 1
s.0 = s.2 + 1

A → c s.0 = i.0 + 1
B → b s.0 = i.0 + 1

S

A B

a A

c

b

0

1 2

3 4 5

6
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Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be
attributed by a depth-first, left-to-right tree traversal with two visits to
each node

1 top-down: evaluation of inherited attributes

2 bottom-up: evaluation of synthesized attributes

Observation 2: visit sequence fits nicely with parsing

1 top-down: expansion steps

2 bottom-up: reduction steps

Idea: extend LL parsing to support reduction steps, and integrate
attribute evaluation =⇒

use recursive-descent parser

add variables and operations for attribute evaluation
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Recursive-Descent Parsing and Evaluation I

Ingredients: variable token for current token
function next() for invoking the scanner
procedure print(i) for displaying the leftmost
analysis (or errors)

Method: to every A ∈ N we assign a procedure

A(in: inh(A), out: syn(A))

which

declares local variables for synthesized attributes on
right-hand sides,
tests token with regard to the lookahead sets of the
A-productions,
prints the corresponding rule number and
evaluates the corresponding right-hand side as
follows:

for a ∈ Σ: check token; call next()
for A ∈ N : call A with appropriate parameters
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Recursive-Descent Parsing II

Example 18.4 (cf. Example 18.3)

proc main();
token := next(); S()

proc S(); (* S → A B *)
if token in {’a’,’c’} then

print(1); A(); B()
else print(error); stop fi

proc A(); (* A → a A | c *)
if token = ’a’ then

print(2); token := next(); A()
elsif token = ’c’ then

print(3); token := next()
else print(error); stop fi

proc B(); (* B → b *)
if token = ’b’ then

print(4); token := next()
else print(error); stop fi
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Recursive-Descent Parsing and Evaluation II

Example 18.5 (cf. Example 18.3)

proc main(); var s;
token := next(); S(s); print(s)

proc S(out s0); var s1,s2; (* S → A B *)
if token in {’a’,’c’} then

print(1); A(0,s1); B(s1 + 1,s2); s0 := s2 + 1
else print(error); stop fi

proc A(in i0,out s0); var s2; (* A → a A | c *)
if token = ’a’ then

print(2); token := next(); A(i0 + 1,s2); s0 := s2 + 1
elsif token = ’c’ then

print(3); token := next(); s0 := i0 + 1
else print(error); stop fi

proc B(in i0,out s0); (* B → b *)
if token = ’b’ then

print(4); token := next(); s0 := i0 + 1
else print(error); stop fi
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Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntactic analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
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Modularization of Code Generation I

Splitting of code generation for programming language PL:

PL
trans
−→ IC

code
−→ MC

Frontend: trans generates machine-independent intermediate code
(IC) for abstract (stack) machine

Backend: code generates actual machine code (MC)

Advantages: IC machine independent =⇒

Portability: much easier to write IC compiler/interpreter for a new
machine (as opposed to rewriting the whole compiler)

Fast compiler implementation: generating IC much easier than
generating MC

Code size: IC programs usually smaller than corresponding MC
programs

Code optimization: division into machine-independent and
machine-dependent parts
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Modularization of Code Generation II

Example 18.6

1 UNiversal Computer-Oriented Language (UNCOL; ≈ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL1

...

PLn

UNCOL

MC1

...

MCm

only n + m translations
(in place of n · m)

2 Pascal’s pseudocode (P-code; ≈ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

3 The Amsterdam Compiler Kit (TACK; ≈ 1980;
http://tack.sourceforge.net/)

4 Java Virtual Machine (JVM; Sun; ≈ 1996;
http://en.wikipedia.org/wiki/Java_Virtual_Machine)

5 Common Intermediate Language (CIL; Microsoft .NET; ≈ 2002;
http://en.wikipedia.org/wiki/Common_Intermediate_Language)
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Language Structures I

Structures in imperative programming languages:
(object-oriented, declarative [functional/logic]: see special courses)

Basic data types and basic operations

Static and dynamic data structures

Expressions and assignments

Control structures (sequences, branching statements, loops, ...)

Procedures and functions

Modularity: blocks, modules, and classes

Use of procedures and blocks:

FORTRAN: non-recursive and non-nested procedures
=⇒ static memory management (memory requirement determined at
compile time)

C: recursive and non-nested procedures
=⇒ dynamic memory management using runtime stack (memory
requirement only known at runtime), no static links

Algol-like languages (Pascal, Modula): recursive and nested procedures
=⇒ dynamic memory management using runtime stack with static links
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Language Structures II

Structures in machine code: (von Neumann/SISD)

Memory hierarchy: accumulators, registers, cache, main memory,
background storage

Instruction types: arithmetic/Boolean/... operation, test/jump
instruction, transfer instruction, I/O instruction, ...

Address modes: direct/indirect, absolute/relative, ...

Architectures: RISC (few [fast but simple] instructions, many
registers), CISC (many [complex but slow] instructions,
few registers)

Structures in intermediate code:

Data types and operations like PL

Data stack with basic operations

Jumping instructions for control structures

Runtime stack for blocks, procedures, and static data structures

Heap for dynamic data structures
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The Example Programming Language EPL

Structures of EPL:

Only integer and Boolean values

Arithmetic and Boolean expressions with strict and non-strict
semantics

Control structures: sequence, branching, iteration

Nested blocks and recursive procedures with local and global
variables
( =⇒ dynamic memory management using runtime stack with
static links)

Procedure parameters and data structures later
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Syntax of EPL

Definition 18.7 (Syntax of EPL)

The syntax of EPL is defined as follows:

Z : z (* z is an integer *)

Ide : I (* I is an identifier *)

AExp : A ::= z | I | A1 + A2 | . . .

BExp : B ::= A1 < A2 | not B | B1 and B2 | B1 or B2

Cmd : C ::= I := A | C1;C2 | if B then C1 else C2 |
while B do C | I()

Dcl : D ::= DC DV DP

DC ::= ε | const I1 := z1, . . . ,In := zn;
DV ::= ε | var I1, . . . ,In;
DP ::= ε | proc I1;K1; . . . ;In;Kn;

Block : K ::= D C

Pgm : P ::= in/out I1, . . . ,In;K.
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Static Semantics of EPL I

All identifiers in a declaration D have to be different.

Every identifier occurring in the command C of a block D C must
be declared

in D or
in the declaration list of a surrounding block.

Multiple declarations of an identifier in different blocks are
possible. Each usage in a command C refers to the “innermost”
declaration.

Static scoping: the usage of an identifier in the body of a called
procedure refers to its declaration environment (and not to its
calling environment).
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Static Semantics of EPL II

Example 18.8

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... z := 1; P() ...]
[... P() ... R() ...]

proc R;

[... P() ...]
[... x := 0; P() ...] .

“Innermost” principle

Static scoping: body of P can
refer to x, y, z

Later declaration: call of R in
P followed by declaration (in
Pascal: forward declarations
for one-pass compilation)
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Dynamic Semantics of EPL

(omitting the details)

To “run” a program, execute the main block in the state which is
given by the input values

Effect of statement = modification of state

assignment I := A: update of I by value of A

composition C1;C2: sequential execution
branching if B then C1 else C2: test of B, followed by jump to
respective brnach
iteration while B do C: execution of C as long as B is true
call I(): transfer control to body of I and return to subsequent
statement afterwards

Consequently, an EPL program P = in/out I1, . . . ,In;K. ∈ Pgm
has as semantics a function

MJP K : Z
n

99K Z
n
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