
Compiler Construction

Lecture 18: Semantic Analysis IV
(L-Attributed Grammars)/

Code Generation I (Introduction)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Outline

1 Repetition: Attribute Evaluation

2 L-Attributed Grammars

3 Generation of Intermediate Code

4 The Example Programming Language EPL

5 Static Semantics of EPL

Compiler Construction Winter semester 2010/11 2

Attribute Evaluation Methods

Given: noncircular attribute grammar A = 〈G,E ,V 〉 ∈ AG
syntax tree t of G

valuation v : SynΣ → V where
SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Methods: 1 Topological sorting of Dt:
1 start with attribute variables which depend at most

on synthesized attributes of terminals (SynΣ)
2 proceed by successive substitution

2 Recursive functions (for strongly noncircular AGs; later):
1 for every A ∈ N and α ∈ syn(A), define evaluation

function gA,α with the following parameters:
the node of t where α has to be evaluated and
all inherited attributes of A on which α (potentially)

depends

2 for every α ∈ syn(S), evaluate gS,α(k0) where k0

denotes the root of t
3 Special cases: S-attributed grammars (yacc), L-attributed

grammars

Compiler Construction Winter semester 2010/11 3

Attribute Evaluation by Topological Sorting

Algorithm (Evaluation by topological sorting)

Input: noncircular A = 〈G,E ,V 〉 ∈ AG, syntax tree t of G,
valuation v : SynΣ → V

Procedure: 1 let Var := Var t \ SynΣ (* attributes to be evaluated *)
2 while Var 6= ∅ do

1 let x ∈ Var such that {y ∈ Var | y →t x} = ∅
2 let x = f(x1, . . . , xn) ∈ Et

3 let v(x) := f(v(x1), . . . , v(xn))
4 let Var := Var \ {x}

Output: solution v : Var t → V

Remark: noncircularity guarantees that in step 2.1 at least one such x

is available

Example

see Examples 15.1 and 15.2 (Knuth’s binary numbers)

Compiler Construction Winter semester 2010/11 4

Outline

1 Repetition: Attribute Evaluation

2 L-Attributed Grammars

3 Generation of Intermediate Code

4 The Example Programming Language EPL

5 Static Semantics of EPL

Compiler Construction Winter semester 2010/11 5

L-Attributed Grammars I

In an L-attributed grammar, attribute dependencies on the right-hand
sides of productions are only allowed to run from left to right.

Definition 18.1 (L-attributed grammar)

Let A = 〈G,E ,V 〉 ∈ AG such that, for every π ∈ P and
β.i = f(. . . , α.j, . . .) ∈ Eπ with β ∈ Inh and α ∈ Syn, j < i. Then A is
called an L-attributed grammar (notation: A ∈ LAG).

Remark: note that no restrictions are imposed for β ∈ Syn (for i = 0)
or α ∈ Inh (for j = 0). Thus, in an L-attributed grammar,

synthesized attributes of the left-hand side can depend on any
outer variable and
every inner variable can depend on any inherited attribute of the
left-hand side.

Corollary 18.2

Every A ∈ LAG is noncircular.

Compiler Construction Winter semester 2010/11 6

L-Attributed Grammars II

Example 18.3

L-attributed grammar:

S → AB i.1 = 0
i.2 = s.1 + 1
s.0 = s.2 + 1

A → aA i.2 = i.0 + 1
s.0 = s.2 + 1

A → c s.0 = i.0 + 1
B → b s.0 = i.0 + 1

S

A B

a A

c

b

0

1 2

3 4 5

6

Compiler Construction Winter semester 2010/11 7

Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be
attributed by a depth-first, left-to-right tree traversal with two visits to
each node

1 top-down: evaluation of inherited attributes

2 bottom-up: evaluation of synthesized attributes

Observation 2: visit sequence fits nicely with parsing

1 top-down: expansion steps

2 bottom-up: reduction steps

Idea: extend LL parsing to support reduction steps, and integrate
attribute evaluation =⇒

use recursive-descent parser

add variables and operations for attribute evaluation

Compiler Construction Winter semester 2010/11 8

Recursive-Descent Parsing and Evaluation I

Ingredients: variable token for current token
function next() for invoking the scanner
procedure print(i) for displaying the leftmost
analysis (or errors)

Method: to every A ∈ N we assign a procedure

A(in: inh(A), out: syn(A))

which

declares local variables for synthesized attributes on
right-hand sides,
tests token with regard to the lookahead sets of the
A-productions,
prints the corresponding rule number and
evaluates the corresponding right-hand side as
follows:

for a ∈ Σ: check token; call next()
for A ∈ N : call A with appropriate parameters

Compiler Construction Winter semester 2010/11 9

Recursive-Descent Parsing II

Example 18.4 (cf. Example 18.3)

proc main();
token := next(); S()

proc S(); (* S → A B *)
if token in {’a’,’c’} then

print(1); A(); B()
else print(error); stop fi

proc A(); (* A → a A | c *)
if token = ’a’ then

print(2); token := next(); A()
elsif token = ’c’ then

print(3); token := next()
else print(error); stop fi

proc B(); (* B → b *)
if token = ’b’ then

print(4); token := next()
else print(error); stop fi

Compiler Construction Winter semester 2010/11 10

Recursive-Descent Parsing and Evaluation II

Example 18.5 (cf. Example 18.3)

proc main(); var s;
token := next(); S(s); print(s)

proc S(out s0); var s1,s2; (* S → A B *)
if token in {’a’,’c’} then

print(1); A(0,s1); B(s1 + 1,s2); s0 := s2 + 1
else print(error); stop fi

proc A(in i0,out s0); var s2; (* A → a A | c *)
if token = ’a’ then

print(2); token := next(); A(i0 + 1,s2); s0 := s2 + 1
elsif token = ’c’ then

print(3); token := next(); s0 := i0 + 1
else print(error); stop fi

proc B(in i0,out s0); (* B → b *)
if token = ’b’ then

print(4); token := next(); s0 := i0 + 1
else print(error); stop fi

Compiler Construction Winter semester 2010/11 11

Outline

1 Repetition: Attribute Evaluation

2 L-Attributed Grammars

3 Generation of Intermediate Code

4 The Example Programming Language EPL

5 Static Semantics of EPL

Compiler Construction Winter semester 2010/11 12

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntactic analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
Compiler Construction Winter semester 2010/11 13

Modularization of Code Generation I

Splitting of code generation for programming language PL:

PL
trans
−→ IC

code
−→ MC

Frontend: trans generates machine-independent intermediate code
(IC) for abstract (stack) machine

Backend: code generates actual machine code (MC)

Advantages: IC machine independent =⇒

Portability: much easier to write IC compiler/interpreter for a new
machine (as opposed to rewriting the whole compiler)

Fast compiler implementation: generating IC much easier than
generating MC

Code size: IC programs usually smaller than corresponding MC
programs

Code optimization: division into machine-independent and
machine-dependent parts

Compiler Construction Winter semester 2010/11 14

Modularization of Code Generation II

Example 18.6

1 UNiversal Computer-Oriented Language (UNCOL; ≈ 1960;
http://en.wikipedia.org/wiki/UNCOL):
universal intermediate language for compilers (never fully specified or
implemented; too ambitious)

PL1

...

PLn

UNCOL

MC1

...

MCm

only n + m translations
(in place of n · m)

2 Pascal’s pseudocode (P-code; ≈ 1975;
http://en.wikipedia.org/wiki/P-Code_machine)

3 The Amsterdam Compiler Kit (TACK; ≈ 1980;
http://tack.sourceforge.net/)

4 Java Virtual Machine (JVM; Sun; ≈ 1996;
http://en.wikipedia.org/wiki/Java_Virtual_Machine)

5 Common Intermediate Language (CIL; Microsoft .NET; ≈ 2002;
http://en.wikipedia.org/wiki/Common_Intermediate_Language)

Compiler Construction Winter semester 2010/11 15

http://en.wikipedia.org/wiki/UNCOL
http://en.wikipedia.org/wiki/P-Code_machine
http://tack.sourceforge.net/
http://en.wikipedia.org/wiki/Java_Virtual_Machine
http://en.wikipedia.org/wiki/Common_Intermediate_Language

Language Structures I

Structures in imperative programming languages:
(object-oriented, declarative [functional/logic]: see special courses)

Basic data types and basic operations

Static and dynamic data structures

Expressions and assignments

Control structures (sequences, branching statements, loops, ...)

Procedures and functions

Modularity: blocks, modules, and classes

Use of procedures and blocks:

FORTRAN: non-recursive and non-nested procedures
=⇒ static memory management (memory requirement determined at
compile time)

C: recursive and non-nested procedures
=⇒ dynamic memory management using runtime stack (memory
requirement only known at runtime), no static links

Algol-like languages (Pascal, Modula): recursive and nested procedures
=⇒ dynamic memory management using runtime stack with static links

Compiler Construction Winter semester 2010/11 16

Language Structures II

Structures in machine code: (von Neumann/SISD)

Memory hierarchy: accumulators, registers, cache, main memory,
background storage

Instruction types: arithmetic/Boolean/... operation, test/jump
instruction, transfer instruction, I/O instruction, ...

Address modes: direct/indirect, absolute/relative, ...

Architectures: RISC (few [fast but simple] instructions, many
registers), CISC (many [complex but slow] instructions,
few registers)

Structures in intermediate code:

Data types and operations like PL

Data stack with basic operations

Jumping instructions for control structures

Runtime stack for blocks, procedures, and static data structures

Heap for dynamic data structures

Compiler Construction Winter semester 2010/11 17

Outline

1 Repetition: Attribute Evaluation

2 L-Attributed Grammars

3 Generation of Intermediate Code

4 The Example Programming Language EPL

5 Static Semantics of EPL

Compiler Construction Winter semester 2010/11 18

The Example Programming Language EPL

Structures of EPL:

Only integer and Boolean values

Arithmetic and Boolean expressions with strict and non-strict
semantics

Control structures: sequence, branching, iteration

Nested blocks and recursive procedures with local and global
variables
(=⇒ dynamic memory management using runtime stack with
static links)

Procedure parameters and data structures later

Compiler Construction Winter semester 2010/11 19

Syntax of EPL

Definition 18.7 (Syntax of EPL)

The syntax of EPL is defined as follows:

Z : z (* z is an integer *)

Ide : I (* I is an identifier *)

AExp : A ::= z | I | A1 + A2 | . . .

BExp : B ::= A1 < A2 | not B | B1 and B2 | B1 or B2

Cmd : C ::= I := A | C1;C2 | if B then C1 else C2 |
while B do C | I()

Dcl : D ::= DC DV DP

DC ::= ε | const I1 := z1, . . . ,In := zn;
DV ::= ε | var I1, . . . ,In;
DP ::= ε | proc I1;K1; . . . ;In;Kn;

Block : K ::= D C

Pgm : P ::= in/out I1, . . . ,In;K.

Compiler Construction Winter semester 2010/11 20

Outline

1 Repetition: Attribute Evaluation

2 L-Attributed Grammars

3 Generation of Intermediate Code

4 The Example Programming Language EPL

5 Static Semantics of EPL

Compiler Construction Winter semester 2010/11 21

Static Semantics of EPL I

All identifiers in a declaration D have to be different.

Every identifier occurring in the command C of a block D C must
be declared

in D or
in the declaration list of a surrounding block.

Multiple declarations of an identifier in different blocks are
possible. Each usage in a command C refers to the “innermost”
declaration.

Static scoping: the usage of an identifier in the body of a called
procedure refers to its declaration environment (and not to its
calling environment).

Compiler Construction Winter semester 2010/11 22

Static Semantics of EPL II

Example 18.8

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... z := 1; P() ...]
[... P() ... R() ...]

proc R;

[... P() ...]
[... x := 0; P() ...] .

“Innermost” principle

Static scoping: body of P can
refer to x, y, z

Later declaration: call of R in
P followed by declaration (in
Pascal: forward declarations
for one-pass compilation)

Compiler Construction Winter semester 2010/11 23

Dynamic Semantics of EPL

(omitting the details)

To “run” a program, execute the main block in the state which is
given by the input values

Effect of statement = modification of state

assignment I := A: update of I by value of A

composition C1;C2: sequential execution
branching if B then C1 else C2: test of B, followed by jump to
respective brnach
iteration while B do C: execution of C as long as B is true
call I(): transfer control to body of I and return to subsequent
statement afterwards

Consequently, an EPL program P = in/out I1, . . . ,In;K. ∈ Pgm
has as semantics a function

MJP K : Z
n

99K Z
n

Compiler Construction Winter semester 2010/11 24

	Repetition: Attribute Evaluation
	L-Attributed Grammars
	Generation of Intermediate Code
	The Example Programming Language EPL
	Static Semantics of EPL

