
Compiler Construction

Lecture 19: Code Generation II (Intermediate Code)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Outline

1 Repetition: The Example Programming Language EPL

2 Intermediate Code for EPL

3 The Procedure Stack

Compiler Construction Winter semester 2010/11 2

Syntax of EPL

Definition (Syntax of EPL)

The syntax of EPL is defined as follows:

Z : z (* z is an integer *)

Ide : I (* I is an identifier *)

AExp : A ::= z | I | A1 + A2 | . . .

BExp : B ::= A1 < A2 | not B | B1 and B2 | B1 or B2

Cmd : C ::= I := A | C1;C2 | if B then C1 else C2 |
while B do C | I()

Dcl : D ::= DC DV DP

DC ::= ε | const I1 := z1, . . . ,In := zn;
DV ::= ε | var I1, . . . ,In;
DP ::= ε | proc I1;K1; . . . ;In;Kn;

Blk : K ::= D C

Pgm : P ::= in/out I1, . . . ,In;K.

Compiler Construction Winter semester 2010/11 3

Another Example: Factorial Function

Example 19.1 (Factorial function)

in/out x;
var y;
proc F;
if x > 1 then
y := y * x;
x := x - 1;
F()

y := 1;
F();
x := y.

Compiler Construction Winter semester 2010/11 4

Dynamic Semantics of EPL

(omitting the details)

To “run” a program, execute the main block in the state which is
given by the input values

Effect of statement = modification of state

assignment I := A: update of I by value of A

composition C1;C2: sequential execution
branching if B then C1 else C2: test of B, followed by jump to
respective brnach
iteration while B do C: execution of C as long as B is true
call I(): transfer control to body of I and return to subsequent
statement afterwards

Consequently, an EPL program P = in/out I1, . . . ,In;K. ∈ Pgm

has as semantics a function

MJP K : Z
n

99K Z
n

Compiler Construction Winter semester 2010/11 5

Outline

1 Repetition: The Example Programming Language EPL

2 Intermediate Code for EPL

3 The Procedure Stack

Compiler Construction Winter semester 2010/11 6

The Abstract Machine AM

Definition 19.2 (Abstract machine for EPL)

The abstract machine for EPL (AM) is defined by the state space

S := PC × DS × PS

with

the program counter PC := N,

the data stack DS := Z
∗ (top of stack to the right), and

the procedure stack (or: runtime stack) PS := Z
∗

(top of stack to the left).

Thus a state s = (l, d, p) ∈ S is given by

a program label l ∈ PC ,

a data stack d = d.r : . . . : d.1 ∈ DS , and

a procedure stack p = p.1 : . . . : p.t ∈ PS .

Compiler Construction Winter semester 2010/11 7

AM Instructions

Definition 19.3 (AM instructions)

The set of AM instructions is divided into

arithmetic instructions: ADD, MULT, ...

Boolean instructions: NOT, AND, OR, LT, ...

jumping instructions: JMP(ca), JFALSE(ca) (ca ∈ PC)

procedure instructions: CALL(ca,dif ,loc) (ca ∈ PC , dif , loc ∈ N), RET

transfer instructions: LOAD(dif ,off), STORE(dif ,off) (dif , off ∈ N),
LIT(z) (z ∈ Z)

Compiler Construction Winter semester 2010/11 8

Semantics of Instructions

Definition 19.4 (Semantics of AM instructions (1st part))

The semantics of an AM instruction O

JOK : S 99K S

is defined as follows:

JADDK(l, d : z1 : z2, p) := (l + 1, d : z1 + z2, p)
JNOTK(l, d : b, p) := (l + 1, d : ¬b, p) if b ∈ {0, 1}

JANDK(l, d : b1 : b2, p) := (l + 1, d : b1 ∧ b2, p) if b1, b2 ∈ {0, 1}
JORK(l, d : b1 : b2, p) := (l + 1, d : b1 ∨ b2, p) if b1, b2 ∈ {0, 1}

JLTK(l, d : z1 : z2, p) :=

{
(l + 1, d : 1, p) if z1 < z2

(l + 1, d : 0, p) if z1 ≥ z2

JJMP(ca)K(l, d, p) := (ca, d, p)

JJFALSE(ca)K(l, d : b, p) :=

{
(ca, d, p) if b = 0
(l + 1, d, p) if b = 1

Compiler Construction Winter semester 2010/11 9

Outline

1 Repetition: The Example Programming Language EPL

2 Intermediate Code for EPL

3 The Procedure Stack

Compiler Construction Winter semester 2010/11 10

Structure of Procedure Stack I

The semantics of procedure and transfer instructions requires a
particular structure of the procedure stack p ∈ PS : is must be
composed of frames (or: activation records) of the form

sl : dl : ra : v1 : . . . : vk

where

static link sl : points to frame of surrounding declaration environment
=⇒ used to access non-local variables

dynamic link dl : points to previous frame (i.e., of calling procedure)
=⇒ used to remove topmost frame after termination of
procedure call

return address ra: program label after termination of procedure call
=⇒ used to continue program execution after
termination of procedure call

local variables vi: values of locally declared variables

Compiler Construction Winter semester 2010/11 11

Structure of Procedure Stack II

Frames are created whenever a procedure call is performed

Two special frames:

I/O frame: for keeping values of in/out variables
(sl = dl = ra = 0)

MAIN frame: for keeping values of top-level block
(sl = dl = I/O frame)

Compiler Construction Winter semester 2010/11 12

Structure of Procedure Stack III

Example 19.5 (cf. Example 18.8)

in/out x;
const c = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;
[... P() ...]

[... Q() ...]
proc R;

[... P() ...]
[... P() ...].

Procedure stack after second call of P:

0

P() Q() P() MAIN I/O

15 4 5 4 5 4 4 3 0 0

rasl dl xyzyzxzy

Compiler Construction Winter semester 2010/11 13

Structure of Procedure Stack IV

Observation:

The usage of a variable in a procedure body refers to its innermost declaration.

If the level difference between the usage and the declaration is dif , then a
chain of dif static links has to be followed to access the corresponding frame.

Example 19.6 (cf. Example 19.5)

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... P() ...]
[... x ... y ... Q() ...]

proc R;

[... P() ...]
[... P() ...].

Procedure stack after second call of P:

0

P() Q() P() MAIN I/O

15 4 5 4 5 4 4 3 0 0
rasl dl xyzyzxzy

P uses x =⇒ dif = 2 P uses y =⇒ dif = 0

Compiler Construction Winter semester 2010/11 14

The base Function

Upon procedure call, the static link information is computed by the
following auxiliary function which, given a procedure stack and a level
difference, determines the begin of the corresponding frame.

Definition 19.7 (base function)

The function
base : PS × N 99K N

is given by
base(p, 0) := 1

base(p, dif + 1) := base(p, dif) + p.base(p, dif)

Example 19.8 (cf. Example 19.6)

In the second call of P (from Q): dif = 2
base(p, 0) = 1

=⇒ base(p, 1) = 1 + p.1 = 6
=⇒ base(p, 2) = 6 + p.6 = 11

=⇒ sl = base(p, 2) + 2
︸︷︷︸

y,z

+ 2
︸︷︷︸

ra,dl

= 15

Compiler Construction Winter semester 2010/11 15

Semantics of Procedure Instructions

CALL(ca,dif ,loc) with

code address ca ∈ PC

level difference dif ∈ N

number of local variables loc ∈ N

creates the new frame and jumps to the given address
(= starting address of procedure)

RET removes the topmost frame and returns to the calling site

Definition 19.9 (Semantics of procedure instructions)

The semantics of a procedure instruction O, JOK : S 99K S, is defined as
follows:

JCALL(ca,dif ,loc)K(l, d, p)

:= (ca, d, (base(p, dif) + loc + 2)
︸ ︷︷ ︸

sl

: (loc + 2)
︸ ︷︷ ︸

dl

: (l + 1)
︸ ︷︷ ︸

ra

: 0 : . . . : 0
︸ ︷︷ ︸

loc times

: p)

JRETK(l, d, p.1 : . . . : p.t)

:= (p.3
︸︷︷︸

ra

, d, p.(p.2
︸︷︷︸

dl

+2) : . . . : p.t) if t ≥ p.2 + 2

Compiler Construction Winter semester 2010/11 16

Semantics of Transfer Instructions

LOAD(dif ,off) and STORE(dif ,off) with

level difference dif ∈ N

variable offset off ∈ N

respectively load and store variable values between data and
procedure stack, following a chain of dif static links

LIT(z) loads the literal constant z ∈ Z

Definition 19.10 (Semantics of transfer instructions)

The semantics of a transfer instruction O, JOK : S 99K S, is defined as
follows:

JLOAD(dif ,off)K(l, d, p) := (l + 1, d : p.(base(p, dif) + off + 2), p)
JSTORE(dif ,off)K(l, d : z, p) := (l + 1, d, p[base(p, dif) + off + 2 7→ z])

JLIT(z)K(l, d, p) := (l + 1, d : z, p)

Compiler Construction Winter semester 2010/11 17

AM Programs and Their Semantics

Definition 19.11 (Semantics of AM programs)

An AM program is a sequence of k ≥ 1 labeled AM instructions:

P = 1 : O1; . . . ; k : Ok

The set of all AM programs is denoted by AM .

The semantics of AM programs is determined by

J.K : AM × S 99K S

with

JP K(l, d, p) :=

{
JP K(JOlK(l, d, p)) if l ∈ [k]
(l, d, p) otherwise

Compiler Construction Winter semester 2010/11 18

	Repetition: The Example Programming Language EPL
	Intermediate Code for EPL
	The Procedure Stack

