Compiler Construction

Lecture 19: Code Generation IT (Intermediate Code)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

@ Repetition: The Example Programming Language EPL

Rm Compiler Construction Winter semester 2010/11 2

Syntax of EPL

Definition (Syntax of EPL)

The syntax of EPL is defined as follows:
Z: z (* z is an integer *)
Ide : I (* I is an identifier *)
AEzp: Au=z|I|A+As|...
BEzp: B :u= A; <Ay|not B|Bj and By | B; or By
Cmd : C:u=1:=A]|C1;Cy|if B then C] else (s |
while Bdo C | I(Q)
Dcl : D ::= Do Dy Dp
Do ::=¢|const Iy :=21,...,I, := z;
Dy :=c¢|var I, ... ,I,;
Dp ::=¢|proc [1;Ky; ... ;1 Ky
Bk - K:=DC
Pgm : P = in/out I, ...,I,; K.

m Compiler Construction Winter semester 2010/11

Another Example: Factorial Function

Example 19.1 (Factorial function)

in/out x;
var y;
proc F;
if x > 1 then
y =Y kX
X :=x - 1;

m Compiler Construction Winter semester 2010/11

Dynamic Semantics of EPL

(omitting the details)

@ To “run” a program, execute the main block in the state which is
given by the input values
o FEffect of statement = modification of state
e assignment I := A: update of I by value of A
e composition C;Cy: sequential execution
o branching if B then C] else C5: test of B, followed by jump to
respective brnach
¢ iteration while B do C': execution of C as long as B is true
e call I(): transfer control to body of I and return to subsequent
statement afterwards

@ Consequently, an EPL program P = in/out 1, ...,I,; K. € Pgm
has as semantics a function

M[P] : Z" --» Z"

m' Compiler Construction Winter semester 2010/11 5

© Intermediate Code for EPL

Rm Compiler Construction ter semester 2010/11

The Abstract Machine AM

Definition 19.2 (Abstract machine for EPL)

The abstract machine for EPL (AM) is defined by the state space
S:=PC x DS x PS

with
@ the program counter PC' := N,
o the data stack DS := Z* (top of stack to the right), and

@ the procedure stack (or: runtime stack) PS := Z*
(top of stack to the left).

Thus a state s = (I,d,p) € S is given by
@ a program label [€ PC,
o adatastack d=d.r:...:d.1 € DS, and
@ a procedure stack p=p.1:...:pt € PS.

m Compiler Construction Winter semester 2010/11

AM Instructions

Definition 19.3 (AM instructions)

The set of AM instructions is divided into

arithmetic instructions: ADD, MULT, ...

Boolean instructions: NOT, AND, OR, LT, ...

jumping instructions: JMP(ca), JFALSE(ca) (ca € PC)

procedure instructions: CALL(ca, dif ,loc) (ca € PC, dif,loc € N), RET

transfer instructions: LOAD(dif , off), STORE(dif , off) (dif, off € N),
LIT(2) (z € Z)

m Compiler Construction Winter semester 2010/11 8

Semantics of Instructions

Definition 19.4 (Semantics of AM instructions (1st part))

The semantics of an AM instruction O
[O]:S--»S
is defined as follows:
[ADD[(l,d : 21 : z2,p) := (I 4+ 1,d: 21 + 22,p)
[NOT](l,d : b,p) := (I 4+ 1,d : =b,p) if b e {0,1}
[[AND]](Z d: by : bs,) = (l +1,d:b1 A bg,p) if b1,b9 € {0,1}
[[OR]](l,delibg, p):=(l+1,d:byVby,p) ifbl,bQE{O,l}
o _J+1,d:1,p) ifz1 < 29
[LT](l,d : 21 : 22,D) _{(l+1,d 0,p) if 21 > 2
[3MP(cad (1, d,p) = (ca,d,p)
_ J(ea,d,p) ifb=
[JFALSE(ca)](l,d : b,p) := {(+1’d’p) Fb—1

m Compiler Construction Winter semester 2010/11

© The Procedure Stack

Rm Compiler Construction nter semester 2010/11 10

Structure of Procedure Stack 1

The semantics of procedure and transfer instructions requires a
particular structure of the procedure stack p € PS: is must be
composed of frames (or: activation records) of the form

sl:dl:ra:vy:...: v

where

static link s/: points to frame of surrounding declaration environment
= used to access non-local variables

dynamic link dl: points to previous frame (i.e., of calling procedure)

= used to remove topmost frame after termination of
procedure call

return address ra: program label after termination of procedure call
—> used to continue program execution after
termination of procedure call

local variables v;: values of locally declared variables

m' Compiler Construction Winter semester 2010/11 11

Structure of Procedure Stack 11

o Frames are created whenever a procedure call is performed
o Two special frames:

I/0O frame: for keeping values of in/out variables
(sl=dl=ra=0)
MAIN frame: for keeping values of top-level block
(sl = dl =1/0 frame)

Rm Compiler Construction Winter semester 2010/11 12

Structure of Procedure Stack 111

Example 19.5 (cf. Example 18.8)

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;
[.. PO ..]
[QO]
proc R;
[.. PO ..]
[.. PO ...

Procedure stack after second call of P:

| | Ei|| 4 [33 | —
Ls[al [[[s[af [[[s]af [[[als[[[ofofo] |
y z: x z. y z- y:sl dl ra x
PO QO PO MAIN 1/0

Compiler Construction

Winter semester 2010/11

13

Structure of Procedure Stack IV

Observation:

@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a
chain of dif static links has to be followed to access the corresponding frame.

Example 19.6 (cf. Example 19.5)

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;

[.. PO ..]

[o xo vy ..o QO ...

proc R;
[PO]
[.. PO ...

Procedure stack after second call of P:

| N 3 i —
Lofa] | [[5]4] [[[s]4] [[[4[3[| [ofo]oO] |
y z° X 7z y z- y sl dlra x
PO : QO : PO . MAIN . I/O
] Pusesx — dif =2Pusesy — dif =0
y

Compiler Construction Winter semester 2010/11 14

The base Function

Upon procedure call, the static link information is computed by the
following auxiliary function which, given a procedure stack and a level
difference, determines the begin of the corresponding frame.

Definition 19.7 (base function)

The function
base: PS X N --» N
is given by
base(p,0) =1
base(p, dif + 1) := base(p, dif) + p.base(p, dif)

Example 19.8 (cf. Example 19.6)

In the second call of P (from Q): dif = 2
base(p,0) =
—> base(p,1) = 1—|—p1 =6
= base(p,2) =6+ p.6 =11
=15

= sl = base(p,2) + +

~—~
Y,z
m Compiler Construction Winter semester 2010/11 15

2
~—
ra,dl

Semantics of Procedure Instructions

® CALL(ca,dif ,loc) with
@ code address ca € PC
o level difference dif € N
o number of local variables loc € N
creates the new frame and jumps to the given address
(= starting address of procedure)
@ RET removes the topmost frame and returns to the calling site

Definition 19.9 (Semantics of procedure instructions)

The semantics of a procedure instruction O, [O] : S --+ S, is defined as
follows:

[CALL (ca, dif ,loc)] (I, d, p)

= (ca,d, (base(p, dif) + loc +2) : (loc+2) : (I+1):0:...:0:p
(((3)(dl><>,”,>
s ra oc times
[RET](l,d,p.1:...: p.t)
= (p3,d,p.(p2 +2):...:p.t) ift >p2+2
~— ~
ra dl

m Compiler Construction Winter semester 2010/11

Semantics of Transfer Instructions

o LOAD(dif , off) and STORE(dif , off) with
o level difference dif € N
o variable offset off € N

respectively load and store variable values between data and
procedure stack, following a chain of dif static links

@ LIT(z) loads the literal constant z € Z

Definition 19.10 (Semantics of transfer instructions)

The semantics of a transfer instruction O, [O] : S --» S, is defined as
follows:

[LOAD (dif , off)] (1, d,p) := (I + 1,d : p.(base(p, dif) + off + 2),p)
[STORE(dif , off)] (1,d : z,p) := (I 4+ 1,d, p[base(p, dif) + off + 2+ z])
[LIT(2)](l,d,p) := (I +1,d: z,p)

m Compiler Construction Winter semester 2010/11 17

AM Programs and Their Semantics

Definition 19.11 (Semantics of AM programs)

An AM program is a sequence of k > 1 labeled AM instructions:
P=1:01;...;k: 0

The set of all AM programs is denoted by AM.

The semantics of AM programs is determined by
[.]: AM xS --» S

with

[P, d,p) := {E[P E[[Oz]](l,d,p)) if I € [k]

P otherwise

m Compiler Construction Winter semester 2010/11

	Repetition: The Example Programming Language EPL
	Intermediate Code for EPL
	The Procedure Stack

