Compiler Construction

Lecture 1: Introduction

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

@ Preliminaries

Rm Compiler Construction inter semester 2010/11



@ Lectures: Thomas Noll

o Lehrstuhl fiir Informatik 2, Room 4211
o E-mail noll@cs.rwth-aachen.de

o Phone (0241)80-21213
o Exercise classes: Christina Jansen

o E-mail christina. jansen@cs.rwth-aachen.de
o Student assistants:

o Stefan Breuer
o Ernst Wrtal

Rm Compiler Construction Winter semester 2010/11 3


noll@cs.rwth-aachen.de
christina.jansen@cs.rwth-aachen.de

Target Audience

BSc Informatik: V3 U2, 6 credits
¢ Wahlpflichtfach Theorie

MSe Informatik: V3U2, 6 credits
o Theoretische Informatik

MSc Software Systems Engineering: V4 U2, 8 credits
o Theoretical CS
o Specialization Formal Methods, Programming Languages and
Software Validation

Diplomstudiengang Informatik: V4 U2
¢ Theoretische (+ Praktische) Informatik
o Vertiefungsfach Formale Methoden, Programmiersprachen und
Softwarevalidierung
¢ Combination with Katoen, Thomas, Vicking, ...; Kobbelt, Seidl, ...

Rm Compiler Construction Winter semester 2010/11



Expectations

o What you can expect:
o how to implement (imperative) programming languages
@ application of theoretical concepts
@ compiler = example of a complex software architecture
e gaining experience with tool support

@ What we expect: basic knowledge in
o imperative programming languages
o formal languages and automata theory

m' Compiler Construction Winter semester 2010/11



Organization

Schedule:

Lecture Tue 14:00-15:30 AH 2 (starting October 19)

o Lecture Thu 13:30-15:00 AH 1 (starting October 14)

o Exercise class Wed 10:00-11:30 AH2 (starting October 20)
o

see overview at http://www-i2.informatik.rwth-aachen.de/i2/cc10/

©

©

1st assignment sheet next week, presented October 27

©

Work on assignments in groups of three

(2

Written exam on Tue February 1

o for BSc/MSc candidates (6/8 credits)
o for Diplom candidates (Ubungsschein)

©

Admission requires at least 50% of the points in the exercises

©

Written material in English, lecture and exercise classes in
German, rest up to you

m' Compiler Construction Winter semester 2010/11


http://www-i2.informatik.rwth-aachen.de/i2/cc10/

© Introduction

Rm Compiler Construction inter semester 2010/11



What Is It All About?

= Program: Source code — Target code

Source code: in high-level programming language, tailored to problem
@ imperative vs. declarative (functional, logic) vs.
object-oriented
@ sequential vs. concurrent
Target code: usually machine code
o architecture dependent (RISC/CISC /parallel)

More applications of compiler techniques:

Parsing of structured data (HTML, XML, ...)
Cross-compiling: Java — C

File conversion: WTEX— PDF

PostScript interpreters

(2

m Compiler Construction Winter semester 2010/11



Properties of a Good Compiler

Correctness

Goals: conformance to source and target language specifications;
“equivalence” of source and target code

o compiler validation and verification

@ proof-carrying code, ...

Efficiency of generated code

Goal: target code as fast and/or memory efficient as possible
@ program analysis and optimization

Efficiency of compiler

Goal: translation process as fast and/or memory efficient as possible
(for inputs of arbitrary size)

o fast (linear-time) algorithms

@ sophisticated data structures

Remark: mutual tradeoffs!
m Compiler Construction Winter semester 2010/11




Aspects of a Programming Language

Syntax: “How does a program look like?”

@ hierarchical composition of programs from structural components

Semantics: “What does this program mean?”

“Static semantics”: properties which are not (easily) definable in
syntax
(declaredness of identifiers, type correctness, ...)

“Dynamic semantics”: execution evokes state transformations of an
(abstract) machine

Pragmatics

@ length and understandability of programs
learnability of programming language

°
@ appropriateness for specific applications
°

m Compiler Construction Winter semester 2010/11



Motivation for Rigorous Formal Treatment

@ From NASA’s Mercury Project: FORTRAN DO loop

o DO 5 K 1,3: DO loop with index variable K
@ DO 5 K = 1.3: assignment to (real) variable DO5SK

© How often is the following loop traversed?
for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

© What if p = nil in the following program?

while p <> nil and p~.key < val do ...

Pascal: strict Boolean operations @

Modula: non-strict Boolean operations é’
m Compiler Construction Winter semester 2010/11




Microsoft Visual C++ Debug Library l

Ignore



Historical Development

Code generation: since 1940s

@ ad-hoc techniques

@ concentration on back-end

o first FORTRAN compiler in 1960
Formal syntax: since 1960s

o LL/LR parsing

o shift towards front-end

e semantics defined by compiler/interpreter
Formal semantics: since 1970s

@ operational

@ denotational

@ axiomatic

@ see course Semantics and Verification of Software
Automatic compiler generation: since 1980s

o [f]llex, yacc, ANTLR, action semantics, ...

@ see http://catalog.compilertools.net/

Rm Compiler Construction Winter semester 2010/11


http://catalog.compilertools.net/

Compiler Phases

Lexical analysis (Scanner):

@ recognition of symbols, delimiters, and comments

@ by regular expressions and finite automata
Syntactic analysis (Parser):

@ determination of hierarchical program structure

o by context-free grammars and pushdown automata
Semantic analysis:

@ checking context dependencies, data types, ...

@ by attribute grammars
Generation of intermediate code:

o translation into (target-independent) intermediate
code
@ by tree translations
Code optimization: to improve runtime and/or memory behavior
Generation of target code: tailored to target system

Additionally: optimization of target code, symbol table, error handling
m' Compiler Construction Winter semester 2010/11 14




Conceptual Structure of a Compiler

Source code

xl :=y2 + 1
@()Xical analysis (Scanncr) regularA@gpressions /finite automata
! (id, ;i);&%ts )(id, y2) (plus, )(int, 1)

Qyntactic analysis (Parser)) context- freetggmnmars/pushdown automata

A/ssgn int Var ‘fllp int
. . ln G/T ons: lﬂ
Semantic analysis) attribute Sraming
¢ .
Var Const
Assgn ok
7
int Var Ezpmt

(Generation of intermediate code) tree tﬁ%ﬁﬂamons

int Var Constint

LOAD y2; LIT 1; ADD; STO x1

Y
(Code optimization)

Y
(Generation of machine code)

. [omitted: symbol table, error handling]

Target code
Rm Compiler Construction Winter semester 2010/11 15




Classification of Compiler Phases

Analysis: lexical/syntactic/semantic analysis
(determination of syntactic structure, error handling)

Synthesis: generation of (intermediate/machine) code + optimization

VS.
Front-end: machine-independent parts
(analysis + intermediate code + machine-independent
optimizations)
Back-end: machine-dependent parts
(generation + optimization of machine code)

Historical:

@ n = number of runs through source program

@ nowadays mainly one-pass

m Compiler Construction Winter semester 2010/11 16



(CS Library: “Handapparat Programmiersprachen und Verifikation”)

General

@ A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman: Compilers — Principles,

Techniques, and Tools; 2nd ed., Addison-Wesley, 2007

A.W. Appel, J. Palsberg: Modern Compiler Implementation in Java,

Cambridge University Press, 2002

@ D. Grune, H.E. Bal, C.J.H. Jacobs, K.G. Langendoen: Modern Compiler
Design, Wiley & Sons, 2000

@ R. Wilhelm, D. Maurer: Ubersetzerbau, 2. Auflage, Springer, 1997

(4

4

Special

@ O. Mayer: Syntaxanalyse, BI-Wissenschafts-Verlag, 1978
@ D. Brown, R. Levine T. Mason: lex & yacc, O’Reilly, 1995
@ T. Parr: The Definite ANTLR Reference, Pragmatic Bookshelf, 2007

Historical

@ W. Waite, G. Goos: Compiler Construction, 2nd edition, Springer, 1985
® N. Wirth: Grundlagen und Techniken des Compilerbaus, Addison-Wesley, 1996

Compiler Construction Winter semester 2010/11 17



	Preliminaries
	Introduction

