
Compiler Construction

Lecture 1: Introduction

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/


Outline

1 Preliminaries

2 Introduction

Compiler Construction Winter semester 2010/11 2



People

Lectures: Thomas Noll

Lehrstuhl für Informatik 2, Room 4211
E-mail noll@cs.rwth-aachen.de
Phone (0241)80-21213

Exercise classes: Christina Jansen

E-mail christina.jansen@cs.rwth-aachen.de

Student assistants:

Stefan Breuer
Ernst Wrtal

Compiler Construction Winter semester 2010/11 3

noll@cs.rwth-aachen.de
christina.jansen@cs.rwth-aachen.de


Target Audience

BSc Informatik: V3 Ü2, 6 credits

Wahlpflichtfach Theorie

MSc Informatik: V3 Ü2, 6 credits

Theoretische Informatik

MSc Software Systems Engineering: V4 Ü2, 8 credits

Theoretical CS
Specialization Formal Methods, Programming Languages and

Software Validation

Diplomstudiengang Informatik: V4 Ü2

Theoretische (+ Praktische) Informatik
Vertiefungsfach Formale Methoden, Programmiersprachen und

Softwarevalidierung

Combination with Katoen, Thomas, Vöcking, ...; Kobbelt, Seidl, ...

Compiler Construction Winter semester 2010/11 4



Expectations

What you can expect:

how to implement (imperative) programming languages
application of theoretical concepts
compiler = example of a complex software architecture
gaining experience with tool support

What we expect: basic knowledge in

imperative programming languages
formal languages and automata theory

Compiler Construction Winter semester 2010/11 5



Organization

Schedule:

Lecture Tue 14:00–15:30 AH2 (starting October 19)
Lecture Thu 13:30–15:00 AH1 (starting October 14)
Exercise class Wed 10:00–11:30 AH2 (starting October 20)
see overview at http://www-i2.informatik.rwth-aachen.de/i2/cc10/

1st assignment sheet next week, presented October 27

Work on assignments in groups of three

Written exam on Tue February 1

for BSc/MSc candidates (6/8 credits)
for Diplom candidates (Übungsschein)

Admission requires at least 50% of the points in the exercises

Written material in English, lecture and exercise classes in
German, rest up to you

Compiler Construction Winter semester 2010/11 6

http://www-i2.informatik.rwth-aachen.de/i2/cc10/


Outline

1 Preliminaries

2 Introduction

Compiler Construction Winter semester 2010/11 7



What Is It All About?

Compiler = Program: Source code → Target code

Source code: in high-level programming language, tailored to problem

imperative vs. declarative (functional, logic) vs.
object-oriented
sequential vs. concurrent

Target code: usually machine code

architecture dependent (RISC/CISC/parallel)

More applications of compiler techniques:

Parsing of structured data (HTML, XML, ...)

Cross-compiling: Java → C

File conversion: LATEX→ PDF

PostScript interpreters

...

Compiler Construction Winter semester 2010/11 8



Properties of a Good Compiler

Correctness

Goals: conformance to source and target language specifications;
“equivalence” of source and target code

compiler validation and verification
proof-carrying code, ...

Efficiency of generated code

Goal: target code as fast and/or memory efficient as possible
program analysis and optimization

Efficiency of compiler

Goal: translation process as fast and/or memory efficient as possible
(for inputs of arbitrary size)

fast (linear-time) algorithms
sophisticated data structures

Remark: mutual tradeoffs!
Compiler Construction Winter semester 2010/11 9



Aspects of a Programming Language

Syntax: “How does a program look like?”

hierarchical composition of programs from structural components

Semantics: “What does this program mean?”

“Static semantics”: properties which are not (easily) definable in
syntax
(declaredness of identifiers, type correctness, ...)

“Dynamic semantics”: execution evokes state transformations of an
(abstract) machine

Pragmatics

length and understandability of programs

learnability of programming language

appropriateness for specific applications

...

Compiler Construction Winter semester 2010/11 10



Motivation for Rigorous Formal Treatment

Example

1 From NASA’s Mercury Project: FORTRAN DO loop

DO 5 K = 1,3: DO loop with index variable K

DO 5 K = 1.3: assignment to (real) variable DO5K

2 How often is the following loop traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

3 What if p = nil in the following program?

while p <> nil and p^.key < val do ...

Pascal: strict Boolean operations

Modula: non-strict Boolean operations
Compiler Construction Winter semester 2010/11 11





Historical Development

Code generation: since 1940s

ad-hoc techniques
concentration on back-end
first FORTRAN compiler in 1960

Formal syntax: since 1960s

LL/LR parsing
shift towards front-end
semantics defined by compiler/interpreter

Formal semantics: since 1970s

operational
denotational
axiomatic
see course Semantics and Verification of Software

Automatic compiler generation: since 1980s

[f]lex, yacc, ANTLR, action semantics, ...
see http://catalog.compilertools.net/

Compiler Construction Winter semester 2010/11 13

http://catalog.compilertools.net/


Compiler Phases

Lexical analysis (Scanner):

recognition of symbols, delimiters, and comments
by regular expressions and finite automata

Syntactic analysis (Parser):

determination of hierarchical program structure
by context-free grammars and pushdown automata

Semantic analysis:

checking context dependencies, data types, ...
by attribute grammars

Generation of intermediate code:

translation into (target-independent) intermediate
code
by tree translations

Code optimization: to improve runtime and/or memory behavior
Generation of target code: tailored to target system
Additionally: optimization of target code, symbol table, error handling

Compiler Construction Winter semester 2010/11 14



Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntactic analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

regular expressions/finite automata

context-free grammars/pushdown automata

attribute grammars

tree translations

x1 := y2 + 1

(id, x1)(gets, )(id, y2)(plus, )(int, 1)

Assgn

Var Exp

Sum

Var Const

Assgn

Var Exp

Sum

Var Const

Assgn

Var Exp

Sum

Var Const

ok

int int

int

int int

Assgn

Var Exp

Sum

Var Const

ok

int int

int

int int

LOAD y2; LIT 1; ADD; STO x1

...

... [omitted: symbol table, error handling]

Compiler Construction Winter semester 2010/11 15



Classification of Compiler Phases

Analysis vs. synthesis

Analysis: lexical/syntactic/semantic analysis
(determination of syntactic structure, error handling)

Synthesis: generation of (intermediate/machine) code + optimization

Front-end vs. back-end

Front-end: machine-independent parts
(analysis + intermediate code + machine-independent
optimizations)

Back-end: machine-dependent parts
(generation + optimization of machine code)

Historical: n-pass compiler

n = number of runs through source program

nowadays mainly one-pass

Compiler Construction Winter semester 2010/11 16



Literature

(CS Library: “Handapparat Programmiersprachen und Verifikation”)

General

A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman: Compilers – Principles,

Techniques, and Tools; 2nd ed., Addison-Wesley, 2007
A.W. Appel, J. Palsberg: Modern Compiler Implementation in Java,
Cambridge University Press, 2002
D. Grune, H.E. Bal, C.J.H. Jacobs, K.G. Langendoen: Modern Compiler

Design, Wiley & Sons, 2000
R. Wilhelm, D. Maurer: Übersetzerbau, 2. Auflage, Springer, 1997

Special

O. Mayer: Syntaxanalyse, BI-Wissenschafts-Verlag, 1978
D. Brown, R. Levine T. Mason: lex & yacc, O’Reilly, 1995
T. Parr: The Definite ANTLR Reference, Pragmatic Bookshelf, 2007

Historical

W. Waite, G. Goos: Compiler Construction, 2nd edition, Springer, 1985
N. Wirth: Grundlagen und Techniken des Compilerbaus, Addison-Wesley, 1996

Compiler Construction Winter semester 2010/11 17


	Preliminaries
	Introduction

