
Compiler Construction

Lecture 2: Lexical Analysis I (Introduction)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntactic analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
Compiler Construction Winter semester 2010/11 2

Outline

1 Problem Statement

2 Specification of Symbol Classes

3 The Simple Matching Problem

Compiler Construction Winter semester 2010/11 3

Lexical Structures

From Merriam-Webster’s Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as
distinguished from its grammar and construction

Compiler Construction Winter semester 2010/11 4

Lexical Structures

From Merriam-Webster’s Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as
distinguished from its grammar and construction

Starting point: source program P as a character sequence

Ω (finite) character set (e.g., ASCII, ISO Latin-1, Unicode, ...)
a, b, c, . . . ∈ Ω characters (= lexical atoms)
P ∈ Ω∗ source program
(of course, not every w ∈ Ω∗ is a valid program)

Compiler Construction Winter semester 2010/11 4

Lexical Structures

From Merriam-Webster’s Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as
distinguished from its grammar and construction

Starting point: source program P as a character sequence

Ω (finite) character set (e.g., ASCII, ISO Latin-1, Unicode, ...)
a, b, c, . . . ∈ Ω characters (= lexical atoms)
P ∈ Ω∗ source program
(of course, not every w ∈ Ω∗ is a valid program)

P exhibits lexical structures:

natural language for keywords, identifiers, ...
mathematical notation for numbers, formulae, ...
(e.g., x2

 x**2)
spaces, linebreaks, indentation
comments and compiler directives (pragmas)

Translation of P follows its hierarchical structure (later)

Compiler Construction Winter semester 2010/11 4

Observations

1 Syntactic atoms (called symbols) are represented as sequences of
input characters, called lexemes

First goal of lexical analysis

Decomposition of P into a sequence of lexemes

Compiler Construction Winter semester 2010/11 5

Observations

1 Syntactic atoms (called symbols) are represented as sequences of
input characters, called lexemes

First goal of lexical analysis

Decomposition of P into a sequence of lexemes

2 Differences between similar lexemes are (mostly) irrelevant
(e.g., identifiers do not need to be distinguished)

lexemes grouped into symbol classes
(e.g., identifiers, numbers, ...)
symbol classes abstractly represented by tokens
symbols identified by additional attributes
(e.g., identifier names, numerical values, ...; required for semantic
analysis and code generation)

=⇒ symbol = (token, attribute)

Second goal of lexical analysis

Transformation of a sequence of lexemes into a sequence of symbols

Compiler Construction Winter semester 2010/11 5

Lexical Analysis

Definition 2.1

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of
symbols.

Compiler Construction Winter semester 2010/11 6

Lexical Analysis

Definition 2.1

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of
symbols.

The corresponding program is called a scanner:

Source program Scanner Parser

Symbol table

(token,[attribute])

get next token

Compiler Construction Winter semester 2010/11 6

Lexical Analysis

Definition 2.1

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of
symbols.

The corresponding program is called a scanner:

Source program Scanner Parser

Symbol table

(token,[attribute])

get next token

Example: . . . x1 :=y2+ 1 ; . . .
⇓

. . . (id, p1)(gets,)(id, p2)(plus,)(int, 1)(sem,) . . .

Compiler Construction Winter semester 2010/11 6

Important Symbol Classes

Identifiers: for naming variables, constants, types, procedures, classes,
...
usually a sequence of letters and digits (and possibly
special symbols), starting with a letter
keywords usually forbidden; length possibly restricted

Compiler Construction Winter semester 2010/11 7

Important Symbol Classes

Identifiers: for naming variables, constants, types, procedures, classes,
...
usually a sequence of letters and digits (and possibly
special symbols), starting with a letter
keywords usually forbidden; length possibly restricted

Keywords: identifiers with a predefined meaning
for representing control structures (while), operators
(and), ...

Compiler Construction Winter semester 2010/11 7

Important Symbol Classes

Identifiers: for naming variables, constants, types, procedures, classes,
...
usually a sequence of letters and digits (and possibly
special symbols), starting with a letter
keywords usually forbidden; length possibly restricted

Keywords: identifiers with a predefined meaning
for representing control structures (while), operators
(and), ...

Numerals: certain sequences of digits, +, -, ., letters (for exponent and
hexadecimal representation)

Compiler Construction Winter semester 2010/11 7

Important Symbol Classes

Identifiers: for naming variables, constants, types, procedures, classes,
...
usually a sequence of letters and digits (and possibly
special symbols), starting with a letter
keywords usually forbidden; length possibly restricted

Keywords: identifiers with a predefined meaning
for representing control structures (while), operators
(and), ...

Numerals: certain sequences of digits, +, -, ., letters (for exponent and
hexadecimal representation)

Special symbols: one special character, e.g., +, *, <, (, ;, ...
... or two or more special characters, e.g., :=, **, <=, ...
each makes up a symbol class (plus, gets, ...)
... or several combined into one class (arithOp)

Compiler Construction Winter semester 2010/11 7

Important Symbol Classes

Identifiers: for naming variables, constants, types, procedures, classes,
...
usually a sequence of letters and digits (and possibly
special symbols), starting with a letter
keywords usually forbidden; length possibly restricted

Keywords: identifiers with a predefined meaning
for representing control structures (while), operators
(and), ...

Numerals: certain sequences of digits, +, -, ., letters (for exponent and
hexadecimal representation)

Special symbols: one special character, e.g., +, *, <, (, ;, ...
... or two or more special characters, e.g., :=, **, <=, ...
each makes up a symbol class (plus, gets, ...)
... or several combined into one class (arithOp)

White spaces: blanks, tabs, linebreaks, ...
usually for separating symbols (exception: FORTRAN)

Compiler Construction Winter semester 2010/11 7

Specification and Implementation of Scanners

Representation of symbols: symbol = (token, attribute)

Token: (binary) denotation of symbol class (id, gets, plus, ...)

Attribute: additional information required in later compilation
phases

reference to symbol table,
value of numeral,
concrete arithmetic/relational/Boolean operator, ...
usually unused for singleton symbol classes

Compiler Construction Winter semester 2010/11 8

Specification and Implementation of Scanners

Representation of symbols: symbol = (token, attribute)

Token: (binary) denotation of symbol class (id, gets, plus, ...)

Attribute: additional information required in later compilation
phases

reference to symbol table,
value of numeral,
concrete arithmetic/relational/Boolean operator, ...
usually unused for singleton symbol classes

Observation: symbol classes are regular sets

=⇒ specification by regular expressions

recognition by finite automata

enables automatic generation of scanners ([f]lex)

Compiler Construction Winter semester 2010/11 8

Outline

1 Problem Statement

2 Specification of Symbol Classes

3 The Simple Matching Problem

Compiler Construction Winter semester 2010/11 9

Regular Expressions I

Definition 2.2 (Syntax of regular expressions)

Given some alphabet Ω, the set of regular expressions over Ω, REΩ, is
the least set with

Λ ∈ REΩ,

Ω ⊆ REΩ, and

whenever α, β ∈ REΩ, also α | β, α · β, α∗ ∈ REΩ.

Compiler Construction Winter semester 2010/11 10

Regular Expressions I

Definition 2.2 (Syntax of regular expressions)

Given some alphabet Ω, the set of regular expressions over Ω, REΩ, is
the least set with

Λ ∈ REΩ,

Ω ⊆ REΩ, and

whenever α, β ∈ REΩ, also α | β, α · β, α∗ ∈ REΩ.

Remarks:

abbreviations: α+ := α · α∗, ε := Λ∗

α · β often written as αβ

∗ binds stronger than ·, · binds stronger than |
(i.e., a | b · c∗ := a | (b · (c∗)))

Compiler Construction Winter semester 2010/11 10

Regular Expressions II

Regular expressions specify regular languages:

Definition 2.3 (Semantics of regular expressions)

The semantics of a regular expression is defined by the mapping

J.K : REΩ → 2Ω∗

where

JΛK := ∅
JaK := {a}

Jα | βK := JαK ∪ JβK
Jα · βK := JαK · JβK

Jα∗K := JαK∗

Compiler Construction Winter semester 2010/11 11

Regular Expressions II

Regular expressions specify regular languages:

Definition 2.3 (Semantics of regular expressions)

The semantics of a regular expression is defined by the mapping

J.K : REΩ → 2Ω∗

where

JΛK := ∅
JaK := {a}

Jα | βK := JαK ∪ JβK
Jα · βK := JαK · JβK

Jα∗K := JαK∗

Remarks: for formal languages L,M ⊆ Ω∗, we have

L · M := {vw | v ∈ L,w ∈ M}

L∗ :=
⋃

∞

n=0 Ln where L0 := {ε} and Ln+1 := L · Ln

(=⇒ L∗ = {w1w2 . . . wn | n ∈ N, wi ∈ L} and ε ∈ L∗)

JεK = JΛ∗K = JΛK∗ = ∅∗ = {ε}

Compiler Construction Winter semester 2010/11 11

Regular Expressions III

Example 2.4
1 A keyword: begin

Compiler Construction Winter semester 2010/11 12

Regular Expressions III

Example 2.4
1 A keyword: begin

2 Identifiers: (a | . . . | z)(a | . . . | z | 0 | . . . | 9)∗

Compiler Construction Winter semester 2010/11 12

Regular Expressions III

Example 2.4
1 A keyword: begin

2 Identifiers: (a | . . . | z)(a | . . . | z | 0 | . . . | 9)∗

3 Integer numbers: (0 | . . . | 9)+

Compiler Construction Winter semester 2010/11 12

Regular Expressions III

Example 2.4
1 A keyword: begin

2 Identifiers: (a | . . . | z)(a | . . . | z | 0 | . . . | 9)∗

3 Integer numbers: (0 | . . . | 9)+

4 Real numbers:
((0 | . . . | 9)+.(0 | . . . | 9)∗) | ((0 | . . . | 9)∗.(0 | . . . | 9)+)

Compiler Construction Winter semester 2010/11 12

	Problem Statement
	Specification of Symbol Classes
	The Simple Matching Problem

