Compiler Construction

Lecture 2: Lexical Analysis I (Introduction)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Conceptual Structure of a Compiler

Source code

@Cxical analysis (Scannor)

Y
Syntactic analysis (Parser))

y
Semantic analysis)

Y
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code)

Target code

Rm Compiler Construction Winter semester 2010/11 2

@ Problem Statement

Rm Compiler Construction nter semester 2010/11

Lexical Structures

From Merriam-Webster’s Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as
distinguished from its grammar and construction

m' Compiler Construction Winter semester 2010/11 4

Lexical Structures

From Merriam-Webster’s Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as
distinguished from its grammar and construction

@ Starting point: source program P as a character sequence
o () (finite) character set (e.g., ASCII, ISO Latin-1, Unicode, ...)
o a,b,c,... € characters (= lexical atoms)
e P € O source program
(of course, not every w € * is a valid program)

m' Compiler Construction Winter semester 2010/11

Lexical Structures

From Merriam-Webster’s Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as
distinguished from its grammar and construction

@ Starting point: source program P as a character sequence
o () (finite) character set (e.g., ASCII, ISO Latin-1, Unicode, ...)
o a,b,c,... € characters (= lexical atoms)
e P € O source program
(of course, not every w € * is a valid program)

@ P exhibits lexical structures:

e natural language for keywords, identifiers, ...

o mathematical notation for numbers, formulae, ...
(e.g., 12 ~ x*x2)

spaces, linebreaks, indentation

¢ comments and compiler directives (pragmas)

©

o Translation of P follows its hierarchical structure (later)

m' Compiler Construction Winter semester 2010/11

Observations

@ Syntactic atoms (called symbols) are represented as sequences of
input characters, called lexemes

First goal of lexical analysis

Decomposition of P into a sequence of lexemes

Rm Compiler Construction Winter semester 2010/11

Observations

@ Syntactic atoms (called symbols) are represented as sequences of
input characters, called lexemes

First goal of lexical analysis

Decomposition of P into a sequence of lexemes

© Differences between similar lexemes are (mostly) irrelevant
(e.g., identifiers do not need to be distinguished)
e lexemes grouped into symbol classes
(e.g., identifiers, numbers, ...)
o symbol classes abstractly represented by tokens
o symbols identified by additional attributes
(e.g., identifier names, numerical values, ...; required for semantic
analysis and code generation)
= symbol = (token, attribute)

Second goal of lexical analysis

Transformation of a sequence of lexemes into a sequence of symbols

m' Compiler Construction Winter semester 2010/11

Lexical Analysis

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of
symbols.

m' Compiler Construction ter semester 2010/11

Lexical Analysis

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of
symbols.

The corresponding program is called a scanner:

(token,[attribute])
Source program —><Scanner Je i(Parser)— --->

get next token

Symbol table

m' Compiler Construction Winter semester 2010/11 6

Lexical Analysis

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of
symbols.

The corresponding program is called a scanner:

(token,[attribute])
Source program —><Scanner Je i(Parser)— --->

get next token

Symbol table

Example: coenxlgiEy2+ 0100,

4
... (id, p1)(gets,)(id, p2)(plus,) (int, 1)(sem,) . ..

m' Compiler Construction Winter semester 2010/11

Important Symbol Classes

Identifiers: @ for naming variables, constants, types, procedures, classes,

@ usually a sequence of letters and digits (and possibly
special symbols), starting with a letter
® keywords usually forbidden; length possibly restricted

Rm Compiler Construction Winter semester 2010/11 7

Important Symbol Classes

Identifiers: @ for naming variables, constants, types, procedures, classes,

@ usually a sequence of letters and digits (and possibly
special symbols), starting with a letter
® keywords usually forbidden; length possibly restricted

Keywords: @ identifiers with a predefined meaning
@ for representing control structures (while), operators
(and), ...

Rm Compiler Construction Winter semester 2010/11

Important Symbol Classes

Identifiers: @ for naming variables, constants, types, procedures, classes,

@ usually a sequence of letters and digits (and possibly
special symbols), starting with a letter
® keywords usually forbidden; length possibly restricted

Keywords: @ identifiers with a predefined meaning
@ for representing control structures (while), operators
(and), ...

Numerals: certain sequences of digits, +, -, ., letters (for exponent and
hexadecimal representation)

m' Compiler Construction Winter semester 2010/11

Important Symbol Classes

Identifiers: @ for naming variables, constants, types, procedures, classes,

@ usually a sequence of letters and digits (and possibly
special symbols), starting with a letter
® keywords usually forbidden; length possibly restricted

Keywords: @ identifiers with a predefined meaning
@ for representing control structures (while), operators
(and), ...

Numerals: certain sequences of digits, +, -, ., letters (for exponent and
hexadecimal representation)

Special symbols: @ one special character, e.g., +, *x, <, (, ;, ...
@ ... or two or more special characters, e.g., :=, ** <= ..
@ each makes up a symbol class (plus, gets, ...
@ ... or several combined into one class (arithOp)

m' Compiler Construction Winter semester 2010/11

Important Symbol Classes

Identifiers: @ for naming variables, constants, types, procedures, classes,

@ usually a sequence of letters and digits (and possibly
special symbols), starting with a letter
® keywords usually forbidden; length possibly restricted

Keywords: @ identifiers with a predefined meaning
@ for representing control structures (while), operators
(and), ...

Numerals: certain sequences of digits, +, -, ., letters (for exponent and
hexadecimal representation)

Special symbols: @ one special character, e.g., +, *x, <, (, ;, ...
@ ... or two or more special characters, e.g., :=, ** <= ..
@ each makes up a symbol class (plus, gets, ...
@ ... or several combined into one class (arithOp)

White spaces: @ blanks, tabs, linebreaks, ...
@ usually for separating symbols (exception: FORTRAN)

m' Compiler Construction Winter semester 2010/11

Specification and Implementation of Scanners

Representation of symbols: symbol = (token, attribute)
Token: (binary) denotation of symbol class (id, gets, plus, ...)
Attribute: additional information required in later compilation
phases
@ reference to symbol table,
o value of numeral,

@ concrete arithmetic/relational/Boolean operator, ...
o usually unused for singleton symbol classes

Rm Compiler Construction Winter semester 2010/11

Specification and Implementation of Scanners

Representation of symbols: symbol = (token, attribute)
Token: (binary) denotation of symbol class (id, gets, plus, ...)

Attribute: additional information required in later compilation
phases

@ reference to symbol table,

o value of numeral,

@ concrete arithmetic/relational/Boolean operator, ...
o usually unused for singleton symbol classes

Observation: symbol classes are regular sets

= @ specification by regular expressions
@ recognition by finite automata

@ enables automatic generation of scanners ([f]lex)

Rm Compiler Construction Winter semester 2010/11

© Specification of Symbol Classes

Rm Compiler Construction ter semester 2010/11

Regular Expressions 1

Definition 2.2 (Syntax of regular expressions)

Given some alphabet 2, the set of regular expressions over 2, REq, is
the least set with

o A € REq,
o (O C REq, and
@ whenever «, 3 € REq, also a | B, - 3,a* € REq.

m' Compiler Construction Winter semester 2010/11 10

Regular Expressions 1

Definition 2.2 (Syntax of regular expressions)

Given some alphabet 2, the set of regular expressions over 2, REq, is
the least set with

o A € REq,
o (O C REq, and
@ whenever «, 3 € REq, also a | B, - 3,a* € REq.

Remarks:
@ abbreviations: a™ := a - a*, £ := A*
@ « - (3 often written as af

@ * binds stronger than -, - binds stronger than |
(ieya|b-c*:=al(b-(c))

m Compiler Construction Winter semester 2010/11

Regular Expressions 11

Regular expressions specify regular languages:

Definition 2.3 (Semantics of regular expressions)

The semantics of a regular expression is defined by the mapping

[]: REq — 2% where
[A] =0
[a] = {a}
[| 8] == [a] U [A]
[o- B] == [e] - [6]
[«*] == [a]”

m Compiler Construction Winter semester 2010/11 11

Regular Expressions 11

Regular expressions specify regular languages:

Definition 2.3 (Semantics of regular expressions)

The semantics of a regular expression is defined by the mapping

[]: REq — 2% where

Remarks: for formal languages L, M C Q*, we have
o L-M:={vw|veLweM}
o L* =2, L™ where LY := {e} and L""! := L. L"
(= L*={wwy...wy, |n€N,w; € L} and ¢ € L*)
o [e] = [A] =[A]" = 0" = {e}

m Compiler Construction Winter semester 2010/11

Regular Expressions I11

Example 2.4
Q A keyword: begin

m' Compiler Construction Winter semester 2010/11 12

Regular Expressions I11

Example 2.4
O A keyword: begin
Q Identifiers: (a|...|z)(a|...|z]|0]...]|9)*

m' Compiler Construction Winter semester 2010/11 12

Regular Expressions I11

Example 2.4
O A keyword: begin
Q Identifiers: (a|...|z)(a|...|z]|0]...]|9)*
@ Integer numbers: (0]...|9)"

m' Compiler Construction Winter semester 2010/11 12

Regular Expressions I11

Example 2.4

O A keyword: begin

Q Identifiers: (a|...|z)(a|...|z]|0]...]|9)*

@ Integer numbers: (0]...|9)"

@ Real numbers:
(Of...19)".0]...19)|(0]...]9*.(0]...]9)7T)

m' Compiler Construction Winter semester 2010/11 12

	Problem Statement
	Specification of Symbol Classes
	The Simple Matching Problem

