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Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntactic analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
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Outline

1 Problem Statement

2 Specification of Symbol Classes

3 The Simple Matching Problem
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Lexical Structures

From Merriam-Webster’s Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as
distinguished from its grammar and construction
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Lexical Structures

From Merriam-Webster’s Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as
distinguished from its grammar and construction

Starting point: source program P as a character sequence

Ω (finite) character set (e.g., ASCII, ISO Latin-1, Unicode, ...)
a, b, c, . . . ∈ Ω characters (= lexical atoms)
P ∈ Ω∗ source program
(of course, not every w ∈ Ω∗ is a valid program)
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Lexical Structures

From Merriam-Webster’s Online Dictionary

Lexical: of or relating to words or the vocabulary of a language as
distinguished from its grammar and construction

Starting point: source program P as a character sequence

Ω (finite) character set (e.g., ASCII, ISO Latin-1, Unicode, ...)
a, b, c, . . . ∈ Ω characters (= lexical atoms)
P ∈ Ω∗ source program
(of course, not every w ∈ Ω∗ is a valid program)

P exhibits lexical structures:

natural language for keywords, identifiers, ...
mathematical notation for numbers, formulae, ...
(e.g., x2

 x**2)
spaces, linebreaks, indentation
comments and compiler directives (pragmas)

Translation of P follows its hierarchical structure (later)
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Observations

1 Syntactic atoms (called symbols) are represented as sequences of
input characters, called lexemes

First goal of lexical analysis

Decomposition of P into a sequence of lexemes
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Observations

1 Syntactic atoms (called symbols) are represented as sequences of
input characters, called lexemes

First goal of lexical analysis

Decomposition of P into a sequence of lexemes

2 Differences between similar lexemes are (mostly) irrelevant
(e.g., identifiers do not need to be distinguished)

lexemes grouped into symbol classes
(e.g., identifiers, numbers, ...)
symbol classes abstractly represented by tokens
symbols identified by additional attributes
(e.g., identifier names, numerical values, ...; required for semantic
analysis and code generation)

=⇒ symbol = (token, attribute)

Second goal of lexical analysis

Transformation of a sequence of lexemes into a sequence of symbols
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Lexical Analysis

Definition 2.1

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of
symbols.
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Lexical Analysis

Definition 2.1

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of
symbols.

The corresponding program is called a scanner:

Source program Scanner Parser

Symbol table

(token,[attribute])

get next token
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Lexical Analysis

Definition 2.1

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of
symbols.

The corresponding program is called a scanner:

Source program Scanner Parser

Symbol table

(token,[attribute])

get next token

Example: . . .  x1 :=y2+ 1 ; . . .
⇓

. . . (id, p1)(gets, )(id, p2)(plus, )(int, 1)(sem, ) . . .
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Important Symbol Classes

Identifiers: for naming variables, constants, types, procedures, classes,
...
usually a sequence of letters and digits (and possibly
special symbols), starting with a letter
keywords usually forbidden; length possibly restricted
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Important Symbol Classes

Identifiers: for naming variables, constants, types, procedures, classes,
...
usually a sequence of letters and digits (and possibly
special symbols), starting with a letter
keywords usually forbidden; length possibly restricted

Keywords: identifiers with a predefined meaning
for representing control structures (while), operators
(and), ...
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Important Symbol Classes

Identifiers: for naming variables, constants, types, procedures, classes,
...
usually a sequence of letters and digits (and possibly
special symbols), starting with a letter
keywords usually forbidden; length possibly restricted

Keywords: identifiers with a predefined meaning
for representing control structures (while), operators
(and), ...

Numerals: certain sequences of digits, +, -, ., letters (for exponent and
hexadecimal representation)
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Important Symbol Classes

Identifiers: for naming variables, constants, types, procedures, classes,
...
usually a sequence of letters and digits (and possibly
special symbols), starting with a letter
keywords usually forbidden; length possibly restricted

Keywords: identifiers with a predefined meaning
for representing control structures (while), operators
(and), ...

Numerals: certain sequences of digits, +, -, ., letters (for exponent and
hexadecimal representation)

Special symbols: one special character, e.g., +, *, <, (, ;, ...
... or two or more special characters, e.g., :=, **, <=, ...
each makes up a symbol class (plus, gets, ...)
... or several combined into one class (arithOp)
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Important Symbol Classes

Identifiers: for naming variables, constants, types, procedures, classes,
...
usually a sequence of letters and digits (and possibly
special symbols), starting with a letter
keywords usually forbidden; length possibly restricted

Keywords: identifiers with a predefined meaning
for representing control structures (while), operators
(and), ...

Numerals: certain sequences of digits, +, -, ., letters (for exponent and
hexadecimal representation)

Special symbols: one special character, e.g., +, *, <, (, ;, ...
... or two or more special characters, e.g., :=, **, <=, ...
each makes up a symbol class (plus, gets, ...)
... or several combined into one class (arithOp)

White spaces: blanks, tabs, linebreaks, ...
usually for separating symbols (exception: FORTRAN)
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Specification and Implementation of Scanners

Representation of symbols: symbol = (token, attribute)

Token: (binary) denotation of symbol class (id, gets, plus, ...)

Attribute: additional information required in later compilation
phases

reference to symbol table,
value of numeral,
concrete arithmetic/relational/Boolean operator, ...
usually unused for singleton symbol classes
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Specification and Implementation of Scanners

Representation of symbols: symbol = (token, attribute)

Token: (binary) denotation of symbol class (id, gets, plus, ...)

Attribute: additional information required in later compilation
phases

reference to symbol table,
value of numeral,
concrete arithmetic/relational/Boolean operator, ...
usually unused for singleton symbol classes

Observation: symbol classes are regular sets

=⇒ specification by regular expressions

recognition by finite automata

enables automatic generation of scanners ([f]lex)
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Outline

1 Problem Statement

2 Specification of Symbol Classes

3 The Simple Matching Problem
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Regular Expressions I

Definition 2.2 (Syntax of regular expressions)

Given some alphabet Ω, the set of regular expressions over Ω, REΩ, is
the least set with

Λ ∈ REΩ,

Ω ⊆ REΩ, and

whenever α, β ∈ REΩ, also α | β, α · β, α∗ ∈ REΩ.
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Regular Expressions I

Definition 2.2 (Syntax of regular expressions)

Given some alphabet Ω, the set of regular expressions over Ω, REΩ, is
the least set with

Λ ∈ REΩ,

Ω ⊆ REΩ, and

whenever α, β ∈ REΩ, also α | β, α · β, α∗ ∈ REΩ.

Remarks:

abbreviations: α+ := α · α∗, ε := Λ∗

α · β often written as αβ

∗ binds stronger than ·, · binds stronger than |
(i.e., a | b · c∗ := a | (b · (c∗)))
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Regular Expressions II

Regular expressions specify regular languages:

Definition 2.3 (Semantics of regular expressions)

The semantics of a regular expression is defined by the mapping

J.K : REΩ → 2Ω∗

where

JΛK := ∅
JaK := {a}

Jα | βK := JαK ∪ JβK
Jα · βK := JαK · JβK

Jα∗K := JαK∗
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Regular Expressions II

Regular expressions specify regular languages:

Definition 2.3 (Semantics of regular expressions)

The semantics of a regular expression is defined by the mapping

J.K : REΩ → 2Ω∗

where

JΛK := ∅
JaK := {a}

Jα | βK := JαK ∪ JβK
Jα · βK := JαK · JβK

Jα∗K := JαK∗

Remarks: for formal languages L,M ⊆ Ω∗, we have

L · M := {vw | v ∈ L,w ∈ M}

L∗ :=
⋃

∞

n=0 Ln where L0 := {ε} and Ln+1 := L · Ln

( =⇒ L∗ = {w1w2 . . . wn | n ∈ N, wi ∈ L} and ε ∈ L∗)

JεK = JΛ∗K = JΛK∗ = ∅∗ = {ε}
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Regular Expressions III

Example 2.4
1 A keyword: begin

Compiler Construction Winter semester 2010/11 12



Regular Expressions III

Example 2.4
1 A keyword: begin

2 Identifiers: (a | . . . | z)(a | . . . | z | 0 | . . . | 9)∗
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Regular Expressions III

Example 2.4
1 A keyword: begin

2 Identifiers: (a | . . . | z)(a | . . . | z | 0 | . . . | 9)∗

3 Integer numbers: (0 | . . . | 9)+
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Regular Expressions III

Example 2.4
1 A keyword: begin

2 Identifiers: (a | . . . | z)(a | . . . | z | 0 | . . . | 9)∗

3 Integer numbers: (0 | . . . | 9)+

4 Real numbers:
((0 | . . . | 9)+.(0 | . . . | 9)∗) | ((0 | . . . | 9)∗.(0 | . . . | 9)+)
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