Compiler Construction

Lecture 20: Code Generation II1
(Translation to Intermediate Code)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

@ Repetition: Intermediate Code

Rm Compiler nstruction nter semester 2010/11

Syntax of EPL

Definition (Syntax of EPL)

The syntax of EPL is defined as follows:
Z: z (* z is an integer *)
Ide : I (* I is an identifier *)
AEzp: Au=z|I|A+As|...
BEzp: B :u= A; <Ay|not B|Bj and By | B; or By
Cmd : C:u=1:=A]|C1;Cy|if B then C] else (s |
while Bdo C | I(Q)
Dcl : D ::= Do Dy Dp
Do ::=¢|const Iy :=21,...,I, := z;
Dy :=c¢|var I, ... ,I,;
Dp ::=¢|proc [1;Ky; ... ;1 Ky
Bk - K:=DC
Pgm : P = in/out I, ...,I,; K.

m Compiler Construction Winter semester 2010/11

The Abstract Machine AM

Definition (Abstract machine for EPL)

The abstract machine for EPL (AM) is defined by the state space
S:=PC x DS x PS

with
@ the program counter PC' := N,
o the data stack DS := Z* (top of stack to the right), and

@ the procedure stack (or: runtime stack) PS := Z*
(top of stack to the left).

Thus a state s = (I,d,p) € S is given by
@ a program label [€ PC,
o adatastack d=d.r:...:d.1 € DS, and
@ a procedure stack p=p.1:...:pt € PS.

m Compiler Construction Winter semester 2010/11

AM Instructions

Definition (AM instructions)

The set of AM instructions is divided into

arithmetic instructions: ADD, MULT, ...

Boolean instructions: NOT, AND, OR, LT, ...

jumping instructions: JMP(ca), JFALSE(ca) (ca € PC)

procedure instructions: CALL(ca, dif ,loc) (ca € PC, dif,loc € N), RET

transfer instructions: LOAD(dif , off), STORE(dif , off) (dif, off € N),
LIT(2) (z € Z)

m Compiler Construction Winter semester 2010/11 5

Structure of Procedure Stack 1

The semantics of procedure and transfer instructions requires a
particular structure of the procedure stack p € PS: is must be
composed of frames (or: activation records) of the form

sl:dl:ra:vy:...: v

where

static link s/: points to frame of surrounding declaration environment
= used to access non-local variables

dynamic link dl: points to previous frame (i.e., of calling procedure)

= used to remove topmost frame after termination of
procedure call

return address ra: program label after termination of procedure call
—> used to continue program execution after
termination of procedure call

local variables v;: values of locally declared variables

m' Compiler Construction Winter semester 2010/11 6

Structure of Procedure Stack 11

Observation:
@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a
chain of dif static links has to be followed to access the corresponding frame.

Rm Compiler Construction Winter semester 2010/11

Structure of Procedure Stack 11

Observation:

@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a
chain of dif static links has to be followed to access the corresponding frame.

Example (cf. Example 19.5)

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;

[.. PO ..]

[x.o ¥y ... QO ...

proc R;
[PO]
[.. PO ...

Procedure stack after second call of P:

| 5 [1 [i —

Wo[a] [| [5[4f [[[5]4f [[[4[3] [[ofo]o] |
y z- X 7z y z- y sl dlra x

PO : QO ﬁ PO . MAIN . I/O

Compiler Construction Winter semester 2010/11

Structure of Procedure Stack 11

Observation:

@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a
chain of dif static links has to be followed to access the corresponding frame.

Example (cf. Example 19.5)

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;

[.. PO ..]

[%oy . QO ..

proc R;
[PO]
[.. PO ...

Procedure stack after second call of P:

| 5 [1 [i —
Lofa] | [[5]4] [[[s]4] [[[4[3] | [ofo]oO] |
y z- X 7z y z- y sl dlra x
PO : QO : PO . MAIN . I/O
] Pusesx =— dif =2

Compiler Construction Winter semester 2010/11

Structure of Procedure Stack 11

Observation:

@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a
chain of dif static links has to be followed to access the corresponding frame.

Example (cf. Example 19.5)

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;

[.. PO ..]

[%oy . QO ..

proc R;
[PO]
[.. PO ...

Procedure stack after second call of P:

L 5 [1 [[——
Wo[a] [| [5[4f [[[5]4] [[[4[3] [[ofo]o] |
y z° X 7z y z- y sl dlra x
PO : QO : PO . MAIN . I/O
] Pusesy = dif =0

Compiler Construction Winter semester 2010/11

AM Programs and Their Semantics

Definition (Semantics of AM programs)

An AM program is a sequence of k > 1 labeled AM instructions:
P=1:01;...;k: 0

The set of all AM programs is denoted by AM.

The semantics of AM programs is determined by
[.]: AM xS --» S

with

[P, d,p) := {E[P E[[Oz]](l,d,p)) if I € [k]

P otherwise

m Compiler Construction Winter semester 2010/11

© The Symbol Table

Rm Compiler Construction ter semester 2010/11

Translation of EPL into AM Programs

Goal: define translation mapping
trans : Pgm --» AM

Rm Compiler Construction Winter semester 2010/11 10

Translation of EPL into AM Programs

Goal: define translation mapping
trans : Pgm --» AM
The translation employs a symbol table:
Tab := {st | st : Ide --» ({const} x Z)
U ({var} x Lev x Off)
U ({proc} x PC x Lev x Size)}
whose entries are created by declarations:
@ constant declarations: (const, z)
e value z € Z
@ variable declarations: (var, lev, off)
o declaration level lev € Lev :=N (0 = 1/0, 1 = MAIN, ...)
o offset off € Off :=N
o offset and difference between usage and declaration level determine
procedure stack entry
@ procedure declarations: (proc, ca, lev, loc)

o code address ca € PC
o declaration level lev € Lev
o number of local variables loc € Size := N

Rm Compiler Construction Winter semester 2010/11 10

Maintaining the Symbol Table

The symbol table is maintained by the function update(D, st,) which
specifies the update of symbol table st according to declaration D (with
respect to current level [):

Rm Compiler Construction Winter semester 2010/11 11

Maintaining the Symbol Table

The symbol table is maintained by the function update(D, st,) which
specifies the update of symbol table st according to declaration D (with
respect to current level [):

Definition 20.1 (update function)
update : Decl x Tab X Lev --» Tab

is defined by
update(D¢o Dy Dp,st,l)
:= update(Dp,update(Dy, update(D¢, st, 1),1),1)
if all identifiers in Do Dy Dp different
update(e, st,)

= st
update(const Iy := z1,...,L, := z,;,st,1)
:= st[[; — (comst, z1),..., I, — (const, z,)]

update(var Iy, ..., L,;,st,1)
= sty — (var,l,1),..., I, — (var,l,n)]
update(proc I1; K15 ... ;1 Kpj;,st,l)
.= st[[; — (proc,as,l,size(K1)),. .., I — (proc,an,l,size(K,))]
with “fresh” addresses a1, ...,a,
where size(D¢ var Iy, ...,I,; DpC):=n
RWTH Compiler Construction Winter semester 2010/11

The Initial Symbol Table

An EPL program P = in/out I, ...,I,; K. € Pgm has a semantics
of type Z™ --+ 7.

Rm Compiler Construction Winter semester 2010/11 12

The Initial Symbol Table

An EPL program P = in/out I, ...,I,; K. € Pgm has a semantics
of type Z™ --+ 7.

Given (z1,...,2,) € Z"™, we choose the initial state

s:=(1,6,0:0:0:21:...:2,) €S =PC x DS x PS

I/0 frame

Rm Compiler Construction Winter semester 2010/11 12

The Initial Symbol Table

An EPL program P = in/out I, ...,I,; K. € Pgm has a semantics
of type Z™ --+ 7.

Given (z1,...,2,) € Z"™, we choose the initial state
s:=(1,6,0:0:0:27:...:2,) €S =PCx DS xPS
I/0 frame

Thus the corresponding initial symbol table has n entries:

str/o(lj) == (var,0,) for every j € [n]

Rm Compiler Construction Winter semester 2010/11

© Translation of Programs

Rm Compiler nstruction nter semester 2010/11 13

Translation of Programs

Translation of in/out Iy, ... ,I,;D C.:
@ Create MAIN frame for executing C'

@ Stop program execution after return

Rm Compiler Construction Winter semester 2010/11 14

Translation of Programs

Translation of in/out I1,...,1,;D C.:
@ Create MAIN frame for executing C'

@ Stop program execution after return

Definition 20.2 (Translation of programs)

The mapping
trans : Pgm --» AM

is defined by
trans(in/out Iy, ... ,[,;K.):=1:CALL(a,0,size(K)) ;

2 : JMP(0);
kt(Kv StI/Ov a, 1)

m Compiler Construction Winter semester 2010/11

@ Translation of Blocks

Rm Compiler nstruction nter semester 2010/11 15

Translation of Blocks

Translation of D C"
© Update symbol table according to D

@ Create code for procedures declared in D
(using the updated symbol table — recursion!)

@ Create code for C' (using the updated symbol table)

m' Compiler Construction Winter semester 2010/11 16

Translation of Blocks

Translation of D C"
© Update symbol table according to D

@ Create code for procedures declared in D
(using the updated symbol table — recursion!)

@ Create code for C' (using the updated symbol table)

Definition 20.3 (Translation of blocks)

The mapping
kt : Blk x Tab x PC x Lev --+ AM
(“block translation”) is defined by
kt(D C,st,a,l) := dt(D,update(D,st,1),1)

ct(C, update(D, st, 1), a,l)
a' : RET;

m Compiler Construction Winter semester 2010/11

16

© Translation of Declarations

Rm Compiler nstruction nter semester 2010/11 17

Translation of Declarations

Translation of D:
@ Generate code for the procedures declared in D

Rm Compiler Construction Winter semester 2010/11 18

Translation of Declarations

Translation of D:

@ Generate code for the procedures declared in D

Definition 20.4 (Translation of declarations)

The mapping
dt : Decl x Tab x Lev --» AM
(“declaration translation”) is defined by
dt(DC Dy DP,St,l)
= dt(Dp,st,l)
dt(e, st, 1)
= €
dt(proc I1; Ky ... ;I ; Ky s, st, 1)
= kt(Ky,st,a,l+1)

kt(Ky, st, an,l + 1)
where st(I;) = (proc,aj,...,...) for every j € [n]

m Compiler Construction Winter semester 2010/11 18

© Translation of Commands

Rm Compiler nstruction nter semester 2010/11 19

Translation of Commands

Definition 20.5 (Translation of commands)

The mapping
ct : Cmd x Tab x PC x Lev --» AM
(“command translation”) is defined by
ct(:= A,st,a,l) := at(4,st,a,l)
a' : STORE(I — lev, off) ;
if st(I) = (var, lev, off)
ct(IQ,st,a,l) :== a: CALL(ca,l — lev,loc) ;
if st(I) = (proc, ca, lev, loc)
ct(Cq;Ca,st, a,l) := ct(Ch,st, a,l)
ct(Cs, st, a’,1)
ct(if B then C4 else Cy,st,a,l) := bt(B,st,a,l)
a' : JFALSE(a") ;
ct(C’l,st,a’ +1,10)
=1z JMP @
(Cz,bt a’,l)
/// .

ct(while B do C,st,a,l) := bt(B,bt,a,l)
a' 1 JFALSE(a” +1);
ct(C,st,a’ + 1,1)
. JMP (a) ;

m Compiler Construction Winter semester 2010/11

@ Translation of Expressions

Rm Compiler nstruction nter semester 2010/11 21

Translation of Boolean Expressions

Definition 20.6 (Translation of Boolean expressions)

The mapping
bt : BExzp x Tab x PC x Lev --» AM
(“Boolean expression translation”) is defined by
bt(A; < Ag,st,a,l) = at(Ay,st,a,l)
at(Asg,st,d’,1)
a” : LT;
bt(not B,st,a,l) := bt(B,st,a,l)
a’ : NOT;
bt(B; and Ba,st,a,l) := bt(Bi,st, a,l)
bt(Ba,st,a’, 1)
a” : AND;
bt(B; or Bg,st,a,l) := bt(By,st,a,l)
bt(Ba,st,a’, 1)
a” : OR;

m Compiler Construction Winter semester 2010/11

Translation of Arithmetic Expressions

Definition 20.7 (Translation of arithmetic expressions)

The mapping
at : AFxp x Tab x PC x Lev --» AM

(“arithmetic expression translation”) is defined by

at(z,st,a,l) := a: LIT(2);
a:LIT(2); if st(I) = (const, 2z
2l) == a: LOAD(l — lev,off); if stEI% = Evar, lev,)oﬁ)
at(A; + Ag,st,a,l) := at(Ay,st,a,l)
at(Asg,st,d’,1)
a” : ADD;

m Compiler Construction Winter semester 2010/11 23

© A Translation Example

Rm Compiler nstruction nter semester 2010/11 24

Example: Factorial Function I

Example 20.8 (Factorial function (cf. Ex. 19.1))

Source code: Intermediate code:
in/out x;
var y;
proc F;
if x > 1 then
y =y *x;
X :=x - 1;
FO
y &= ig
FOj;
X 1= y.

Winter semester 2010/11 25

m' Compiler Construction

Example: Factorial Function I

Example 20.8 (Factorial function (cf. Ex. 19.1))

Source code: Intermediate code:
in/out x; trans(in/out x;K.)
var y;
proc F;
if x > 1 then
y =y *x;
X s = ilg
FO
y &= ig
FO;
X 1= y.
trans(in/out I, ..., Ih; K.) =
1:CALL(a,0,size(K));
2 : JMP(0) ;
kt(K,St[/O,a,l)

st;jo = [x — (var,0,1)]

m Compiler Construction Winter semester 2010/11 25

Example: Factorial Function I

Example 20.8 (Factorial function (cf. Ex. 19.1))

Source code: Intermediate code:
in/out x; 1:CALL(ap,0,1);
var y; 2: JMP(0);
proc F; kt(K,st;/0,a0,1)
if x > 1 then
y 1=y * x;
X :=x - 1;
FO
y &= ig
FO;
X = y.
kt(D C,st,a,l) :=
dt(D, update(D, st,1),1)
ct(C, update(D, st, 1), a,)
a' : RET;
strjo =[x — (var,0,1)]

m Compiler Construction Winter semester 2010/11

Example: Factorial Function I

Example 20.8 (Factorial function (cf. Ex. 19.1))

Source code: Intermediate code:
in/out x; 1: CALL(ap,0,1);
var y; 2 : JMP(0) ;
proc F; dt(D, update(D,st;/0,1),1)
if x > 1 then ct(C, update(D,st; /0, 1), a0, 1)
g asy v az : RET;
X :=x - 1;
FO
y &= ig
FOj;
x = y.
update(var Iy, ... In”st7) o=
st[[1 — (var,l,l) — (var,l,n)]
update(proc [1; K1 ; .. I,L,K,L,,st,l) o=
st[[1 — (proc,al,l,size(Kl))7 .oy Iy — (proc, an,l, size(K,))]
st’ = [x — (var, 0, 1),
y => (var7 1’ 1)’
Fi— (proc,al, 15 O)]

m Compiler Construction Winter semester 2010/11 25

Example: Factorial Function I

Example 20.8 (Factorial function (cf. Ex. 19.1))

Source code: Intermediate code:
in/out x; 1: CALL(ap,0,1);
var y; 2 : JMP(0);
proc F; dt(D,st’, 1)
if x > 1 then ct(C, st’, ao, 1)
y =Yy * X5 as : RET;
X :=x - 1;
FO
y &= ig
FO;
X = y.
dt(proc I1;K1; ... ;1n; Knj,st,l) =

kt(Kl,st,al,l+ 1)

Kt(Kn,st, an, | + 1)
where st(I;) = (proc,aj,...,...) for every j € [n]
[x — (var, 0 1)

— (var
F — (proc al, 1, 0)]

m Compiler Construction Winter semester 2010/11 25

Example: Factorial Function I

Example 20.8 (Factorial function (cf. Ex. 19.1))

Source code: Intermediate code:
in/out x; 1:CALL(Cap,0,1);
var y; 2: JMP(0);
proc F; kt(Ke, st a1, 2)
if x > 1 then ct(C,st',ao,l)
g =y v o as : RET;
X :=x - 1;
FO
y :=1;
FO;
X = y.

kt(D C,st,a,l) :=
dt(D, update(D, st,1),1)
ct(C, update(D, st, 1), a,)
a' : RET;
st’ = [x — (var, 0, 1),
y Land (var7 1’ 1)
Fi— (PI'OC, art, 15 O)]

m Compiler Construction Winter semester 2010/11 25

Example: Factorial Function I

Example 20.8 (Factorial function (cf. Ex. 19.1))

Intermediate code:

Source code:

in/out x;
var y;
proc F;
if x > 1 then
y o* x5
x - 1;

y
X

FO
y &= ig
FOj;
X = y.

1: CALL(ap,0,1);
2 : JMP(0) ;
ct(Cr, st’, a1, 2)
RET;

ct(C, st’; ao, 1)
RET;

as

a

ct(if B then () else Cb,st,a,l) :=

bt(B,st,a, l)

JFALSE(a”);
c (Cl,st a' +1,1)
o’ —1: JMP(a”’)
ct(Ca,st,a”, 1)
am .

st’ = [x — (var, 0, 1),
F — (proc,ai, 1, 0)]

Winter semester 2010/11

Compiler Construction

25

Example: Factorial Function I

Example 20.8 (Factorial function (cf. Ex. 19.1))

Source code: Intermediate code:
in/out x; 1: CALL(ap,0,1);
var y; 2: JMP(0) ;
proc F; bt(x > 1,st’; a1, 2)
if x i 1 then a4 : JFALSE(a3);
SR ct(Ch,st’, as + 1,2)
;o- x -1 a3 : RET;
1 ct(C, st’, ao, 1)
g(ﬁ) as : RET;
X = y.

bt(A1 > Aa,st, a,l) := at(Ai,st, a,l)
at(As,st,a’,l)
a’ : GT;
st’ = [x — (var, 0, 1),
y = (var, 17 1)7
F — (proc,ai,1,0)]

m Compiler Construction Winter semester 2010/11 25

Example: Factorial Function I

Example 20.8 (Factorial function (cf. Ex. 19.1))

Source code:

in/out x;
var y;
proc F;

if x
y
X :

1 then
y * x5
s = ilg

nnwv

y :=1;

BOF

X 1= y.
at(I,st,a,l) :=
{a:LIT(z);

a : LOAD(l — lev, off) ;

st’ = [x — (var, 0, 1),
y => (var7 1’ 1)’

Intermediate code:

1:
2:

[0/

CALL(ao,0,1);
JMP(0) ;
at(x,st’, a1, 2)
at(1,st’,a’,2)

GT;

JFALSE(a3) ;
ct(Cy,st’ a4 +1,2)

a3 : RET;
ct(C, st’; ao, 1)
as : RET;
if st(I) = (const, z)
if st(I) = (var, lev, off)

Compiler Construction

Winter semester 2010/11

25

Example: Factorial Function I

Example 20.8 (Factorial function (cf. Ex. 19.1))

Source code: Intermediate code:
in/out x; 1: CALL(ap,0,1);
var y; 2: JMP(0);
proc F; a1 : LOAD(2,1);
if x > 1 then at(17st'7a/72)
y =y * X; GT;
X :=x - 1; a4 : JFALSE(a3);
FO ct(Cy,st’ a4 +1,2)
PG a3 : RET;
z()-i ct(C, st’; ao, 1)
=y a2 : RET;
at(z,st,a,l) :=a: LIT(2);
st’ = [x — (var,0,1),
y Land (var7 1’ 1)’
F — (proc,ai,1,0)]

m Compiler Construction Winter semester 2010/11 25

Example: Factorial Function I

Example 20.8 (Factorial function (cf. Ex. 19.1))

Source code: Intermediate code:
in/out x; 1:CALL(Cap,0,1);
var y; 2: JMP(0);
proc F; a1 : LOAD(2,1);
if x > 1 then LIT(1);
y =y * x; GT;
X :=x - 1; a4 : JFALSE(as) ;
FO ct(Ch,st’, as + 1,2)
y :=1; as : RET;
FO; ct(C, st’; ao, 1)
% 5= Yo az : RET;
ct(I := A,st,a,l) =
at(A,st, a,l)
a’ : STORE(l — lev,off);
if st(I) = (var, lev, off)
st’ = [x — (var, 0, 1),
y Land (var7 1’ 1)
Fi— (proc,al, 15 O)]

m Compiler Construction Winter semester 2010/11 25

Example: Factorial Function I

Example 20.8 (Factorial function (cf. Ex. 19.1))

Source code: Intermediate code:
in/out x; 1: CALL(ap,0,1);
var y; 2: JMP(0) ;
proc F; a1 : LOAD(2,1);
if x > 1 then LIT(1);
y =y * X; GT;
X 1=x -1 a4 : JFALSE(a3) ;
FO at(y * x,st’,as +1,2)
y =1 STORE(1,1) ;
F()i at(x - 1,st’,d’,2)
X:=7y STORE(2,1) ;
at(Aq + Az, st,a,l) := at(Ag, st, a,l) ct(FO,st’,a”,2)
at(As,st,a’,l) a3 : RET;
a” : ADD; ct(C, st’, ao, 1)
as : RET;
st’ = [x — (var, 0, 1),
y = (var’ 17 1)7
F — (proc,ai,1,0)]

m Compiler Construction Winter semester 2010/11 25

Example: Factorial Function I

Example 20.8 (Factorial function (cf. Ex. 19.1))

Source code: Intermediate code:
in/out x; 1: CALL(ap,0,1);
var y; 2: JMP(0);
proc F; a1 : LOAD(2,1);
if x > 1 then LIT(1);
V=Y oxx; GT;
x :=x - 1; a4 : JFALSE(a3) ;
FO LOAD(1,1);
y = 1; LOAD(2,1);
FO; MULT;
X = y. STORE(1,1);
ct(IQ,st,a,l):= LOADZ i) ¢
LIT(1);
a : CALL(ca,l — lev,loc) ; SUB;
if st(I) = (proc, ca, lev, loc) STORE(2,1) ;
st’ = [x — (var,0,1), E%(TF()7S‘DI,GH7 2)
y»—>(var,1,1), & 2 ’
F 1.0 ct(C, st’, ao, 1)
=> (proc,al,))] as RET,

m Compiler Construction Winter semester 2010/11 25

Example: Factorial Function I

Example 20.8 (Factorial function (cf. Ex. 19.1))

Source code: Intermediate code:
in/out x; 1:CALL(Cap,0,1);
var y; 2: JMP(0);
proc F; a1 : LOAD(2,1);
if x > 1 then LIT(1);
y =y * x; GT;
X :=x - 1; a4 : JFALSE(a3) ;
FQO LOAD(1,1);
y =1 LOAD(2,1);
FO; MULT;
X =Y. STORE(1,1);
LOAD(2,1);
r_ LIT(1);
st [x — (var,0,1), SUB;

y = (VaI‘, 17 1)7

F — (proc,ai,1,0)] STORE(2,1) ;

CALL(a;1,1,0);
a3 : RET;

ct(C, st’, ao, 1)
as : RET;

m Compiler Construction Winter semester 2010/11 25

Example: Factorial Function I

Example 20.8 (Factorial function (cf. Ex. 19.1))

Source code:

in/out x;
var y;
proc F;
if x > 1 then
y =y *x;
X :=x - 1;
FO
y &= ig
FO;
X = y.

st’ = [x — (var, 0, 1),
y => (var7 1’ 1)’
F o (proc, a1, 1,0)

Intermediate code:

1: CALL(ap,0,1);

2 : JMP(0) ;

a1 : LOAD(2,1);
LIT(1);
GT;

a4 : JFALSE(a3);
LOAD(1,1);
LOAD(2,1);
MULT;
STORE(1,1);
LOAD(2,1);
LIT(1);
SUB;
STORE(2,1) ;
CALL(a;,1,0);

a3 : RET;

ao : LIT(1);
STORE(0,1);
CALL(a;,0,0);
LOAD(0,1);
STORE(1,1);

as : RET;

Compiler Construction

Winter semester 2010/11

25

Example: Factorial Function I1

Example 20.8 (Factorial function; continued)

Code with symbolic Linearized
addresses: (ap = 17,a1 = 3,a2 = 22,a3 = 16, a4 = 6):
1: CALL(ap,0,1); 1:CALL(17,0,1);
2 : JMP(0) ; 2 : JMP(0) ;

a1 : LOAD(2,1); 3: LOAD(2,1);
LIT(1); 4 :LIT(1);
GT; 5: GT;

a4 : JFALSE(a3) ; 6 : JFALSE(16) ;
LOAD(1,1); 7 : LOAD(1,1);
LOAD(2,1); 8 : LOAD(2,1);
MULT; 9 : MULT;
STORE(1,1); 10 : STORE(1,1);
LOAD(2,1); 11 : LOAD(2,1);
LIT(1); 12 : LIT(1);
SUB; 13 : SUB;
STORE(2,1) ; 14 : STORE(2,1);
CALL(Ca1,1,0); 15 : CALL(3,1,0);

as : RET; 16 : RET;

ao : LIT(1); 17 : LIT(1);
STORE(0,1) ; 18 : STORE(0,1);
CALL(a;,0,0); 19 : CALL(3,0,0);
LOAD(0,1); 20 : LOAD(0,1);
STORE(1,1); 21 : STORE(1,1);

a2 : RET; 22 : RET;

Compiler Construction

Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS

1: CALL(17,0,1); Lz 0:0:0:2
: JMP(0) ;

: LOAD(2,1) ;
:LIT(1);

: GT;

: JFALSE(16) ;
: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1);
: LOAD(2,1);

: LIT(1);

: SUB;

: STORE(2,1) ;
: CALL(3,1,0);
: RET;

: LIT(1);

: STORE(0, 1) ;
: CALL(3,0,0);
: LOAD(0,1) ;

: STORE(1,1);
: RET;

e e Y o
QOO UEREWN R OO0 ULk W

N DN
N —

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
T ¢ 0:0:0:2
: CALL(17,0,1); 17 ¢ 4:3:2:0:0:0:0:2
: JMP(0) ;
: LOAD(2,1);
g Lrr((dl) g
: GT;

: JFALSE(16) ;
: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1);
: LOAD(2,1);

: LIT(1);

: SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;

s LIT(1);

: STORE(0,1) ;
: CALL(3,0,0);
: LOAD(0,1) ;

: STORE(1,1);
: RET;

DO = e e e
QO TOAOUEREWNFRF OO0 UL W -

N DN
N —

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
T ¢ 0:0:0:2
: CALL(17,0,1); 17 ¢ 4:3:2:0:0:0:0:2
: JMP(0) ; 18 1 4:3:2:0:0:0:0:2
: LOAD(2,1);
: LIT(1);
: GT;

: JFALSE(16) ;
: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1);
: LOAD(2,1);

: LIT(1);

: SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;

: LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1) ;

: STORE(1,1);
: RET;

I e o 1 o e
QOO UEREWN R OO0 ULk W -

N DN
N —

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
T ¢ 0:0:0:2
: CALL(17,0,1); 17 ¢ 4:3:2:0:0:0:0:2
: JMP(0) ; 18 1 4:3:2:0:0:0:0:2
: LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2
: LIT(1);
: GT;

: JFALSE(16) ;
: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1);
: LOAD(2,1);

: LIT(1);

: SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;

: LIT(1);

: STORE(0,1) ;
: CALL(3,0,0);
: LOAD(0,1) ;

: STORE(1,1);
: RET;

I e e o e
QOO UEREWNFRF OO0 ULk WM -

N DN
N —

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS

T 0:0:0:2

1: CALL(17,0,1); 17 e 4:3:2:0:0:0:0:2

: JMP(0) ; 18 1 4:3:2:0:0:0:0:2

: LOAD(2,1); 19 € 4:3:2:1:0:0:0:2

: LIT(1); 3 e 3:2:20:4:3:2:1:0:0:0:2
: GT;

: JFALSE(16) ;
: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1);
: LOAD(2,1);

: LIT(1);

: SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;

: LIT(1);

: STORE(0,1) ;
: CALL(3,0,0);
: LOAD(0,1) ;

: STORE(1,1);
: RET;

e e Y o
QOO UEREWN R OO0 ULk WN

N DN
N —

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
T :0:0:2

: CALL(17,0,1); 17 Z 8:8:8:2

: JMP(0) ; 18 1 0:0:0:2
: LOAD(2,1); 1g g 3.9 8:8:8:2

. . € 3 :0:0:2

t LIT(1); 4 2 3:2 0:0:0:2

: GT;

: JFALSE(16) ;
: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1);
: LOAD(2,1);

: LIT(1);

: SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;

: LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1) ;

: STORE(1,1);
: RET;

e e Y o
QOO UEREWN OO0 Ut W —

N DN
N —

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
I ¢ 0:0:0:2

: CALL(17,0,1); 17 ¢ 4: :0:0:0:2

: JMP(0) ; 18 1 4: :0:0:0:2

: LOAD(2,1); 19 € 4. :0:0:0:2

S LIT(1): 3 € 3:2:20:4: :0:0:0:2
:GT' ’ 4 2 3:2:20:4: :0:0:0:2
: ’ 5 2:1 3:2:20:4: :0:0:0:2

: JFALSE(16) ;
: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1);
: LOAD(2,1);

: LIT(1);

: SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;

: LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1) ;

: STORE(1,1);
: RET;

e e Y o
QOO UEREWN R OO0 ULk W~

N DN
N —

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
T :0:0:2

1:CALL(17,0,1); 17 Z 4 :8:8:8:2
: JMP(0) ; 18 1 4 :0:0:0:2

: LOAD(2,1); 19 € 4 :0:0:0:2

S LIT(1): 3 € 3:2:20:4 :0:0:0:2
:GT' ’ 4 2 3:2:20:4 :0:0:0:2
: ’ 5 2:1 3:2:20:4 :0:0:0:2
: JFALSE(16) ; 6 1 3:2:20:4 : 0202022

: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1);
: LOAD(2,1);

: LIT(1);

: SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;

: LIT(1);

: STORE(0,1) ;
: CALL(3,0,0);
: LOAD(0,1) ;

: STORE(1,1);
: RET;

e e Y o
QOO UEREWN OO0 ULk W

N DN
N —

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
T :0:0:2

1:CALL(17,0,1); 17 Z 4:3:2: :8:8:8:2
: JMP(0) ; 18 1 4:3:2:0:0:0:0:2

: LOAD(2,1); 19 € 4. :1:0:0:0:2

S LIT(1): 3 € 3:2:20:4: :1:0:0:0:2
:GT' ’ 4 2 3:2:20:4: 2:1:0:0:0:2
: ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2
: JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
: LOAD(1,1); 7 ¢ 3:2:20:4:3:2:1:0:0:0:2

: LOAD(2,1);

: MULT;

: STORE(1,1);
: LOAD(2,1);

: LIT(1);

: SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;

: LIT(1);

: STORE(0,1) ;
: CALL(3,0,0);
: LOAD(0,1) ;

: STORE(1,1);
: RET;

e e Y o
QOO UEREWN R OO0 UL WN

N DN
N —

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
T ¢ 0:0:0:2

1:CALL(17,0,1); 17 4:3:2:0:0:0:0:2
: JMP(0) ; 18 1 4:3:2:0:0:0:0:2

: LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2

S LIT(1): 3 € 3:2:20:4:3:2:1:0:0:0:2

:GT' ’ 4 2 3:2:20:4:3:2:1:0:0:0:2

: ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2

: JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2

: LOAD(1,1); 7 € 3:2:20:4:3:2:1:0:0:0:2

: LOAD(2,1); 8 1 3:2:20:4:3:2:1:0:0:0:2

: MULT;

: STORE(1,1);
: LOAD(2,1);

: LIT(1);

: SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;

: LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1) ;

: STORE(1,1);
: RET;

e e Y o
QOO UEREWN R OO0 ULk W

N DN
N —

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
T 0:0:0:2

1:CALL(17,0,1); 17 . 4:3:2:0:0:0:0:2
: JMP(0) ; 18 1 4:3:2:0:0:0:0:2
: LOAD(2,1); 19 € 4:3:2:1:0:0:0:2

S LIT(1): 3 € 3:2:20:4:3:2:1:0:0:0:2
:GT' ’ 4 2 3:2:20:4:3:2:1:0:0:0:2
: ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2
: JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
: LOAD(1,1); g i 222:28:1:3:2: :8:8:8:2

. . 3:2:20:4:3:2:1:0:0:0:2
LI, L) 9 1:2 3:2:20:4:3:2:1:0:0:0:2

: MULT;

: STORE(1,1);
: LOAD(2,1);

: LIT(1);

: SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;

: LIT(1);

: STORE(0,1) ;
: CALL(3,0,0);
: LOAD(0,1) ;

: STORE(1,1);
: RET;

m Compiler Construction Winter semester 2010/11

e e Y o
QOO UEREWN R OO0 ULk W

N DN
N —

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
T ¢ 0:0:0:2

1:CALL(17,0,1); 17 4:3:2:0:0:0:0:2
: JMP(0) ; 18 1 4:3:2:0:0:0:0:2
: LOAD(2,1); 19 ¢ 4:3:2:1:0:0:0:2

S LIT(1): 3 € 3:2:20:4:3:2:1:0:0:0:2
:GT' ’ 4 2 3:2:20:4:3:2:1:0:0:0:2
: ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2
: JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
: LOAD(1,1); g i 222:28:1:3:2: :8:8:8:2

. . 3:2:20:4:3:2:1:0:0:0:2
:hgﬁgFQ’l)’ 9 1:2 3:2:20:4:3:2:1:0:0:0:2

: 0 10 2 3:2:20:4:3:2:1:0:0:0:2

: STORE(1,1);
: LOAD(2,1);

: LIT(1);

: SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;

: LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1) ;

: STORE(1,1);
: RET;

m Compiler Construction Winter semester 2010/11

I e o o W e
QOO UEREWN R OO0 ULk W

N DN
N —

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
T 0:0:0:2

1:CALL(17,0,1); 17 . 4:3:2:0:0:0:0:2
: JMP(0) ; 18 1 4:3:2:0:0:0:0:2
: LOAD(2,1); 19 € 4:3:2:1:0:0:0:2

S LIT(1): 3 € 3:2:20:4:3:2:1:0:0:0:2
:GT' ’ 4 2 3:2:20:4:3:2:1:0:0:0:2
: ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2
: JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
: LOAD(1,1); g i 222:28:1:3:2: :8:8:8:2

. . 3:2:20:4:3:2:1:0:0:0:2
:LOADFQ’l)’ 9 1:2 3:2:20:4:3:2:1:0:0:0:2

: MULT; S5O0 - A3 010009

: 10 2 3:2:20:4:3:2:1:0:0:0:2
: STORE(1,1); 11 ¢ 3:2:20:4:3:2:2:0:0:0:2

: LOAD(2,1);

: LIT(1);

: SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;

: LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1) ;

: STORE(1,1);
: RET;

m Compiler Construction Winter semester 2010/11

DO = e e
QOO UEREWN OO0 ULk W

N DN
N —

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
1: CALL(17,0,1); 1% Z 4:3:2:0:8;8;8;5
2 : JMP(0); 18 1 4:3:2:0:0:0:0:2
3:LOAD(2,1); 1g € 3.9 90 jgg :8:8:8:2
. . € :2:20:4:3:2:1:0:0:0:2
%Lé;]l::‘T(l), 4 2 3:2:20:4:3:2:1:0:0:0:2
: ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); g zi ;228?;2 :8:8:8:2
. . Q. 4.2V s I E g g 5 A
S;I\L,igﬁ?._(Q’l)’ 9 1:2 3:2:20:4:3:2:1:0:0:0:2
0 10 2 3:2:20:4:3:2:1:0:0:0:2

10 : STORE(1,1); 11 ¢ 3:2:20:4:3:2:2:0:0:0:2

11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2

12 : LIT(1);

13 : SUB;

14 : STORE(2,1);

15 : CALL(3,1,0);

16 : RET;

17 : LIT(1);

18 : STORE(0,1);

19 : CALL(3,0,0);

20 : LOAD(0,1);

: STORE(1,1);
: RET;

m Compiler Construction Winter semester 2010/11

N DN
N —

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
1: CALL(17,0,1); 1% Z 4:3:2:0:8;8;8;5
2: JMP(0); 18 1 4:3:2:0:0:0:0:2
3:LOAD(2,1); 1g € 3.9 90 jgg :8:8:8:2
. . € :2:20:4:3:2:1:0:0:0:2
%Lé;]l::‘T(l), 4 2 3:2:20:4:3:2:1:0:0:0:2
: ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); g zi ;228?;2 :8:8:8:2
. . Q. 4.2V s I E g g 5 A
S:l\[,igﬁ?._(Q’l)’ 9 1:2 3:2:20:4:3:2:1:0:0:0:2
: 0 10 2 3:2:20:4:3:2:1:0:0:0:2

10 : STORE(1,1); 11 ¢ 3:2:20:4:3:2:2:0:0:0:2

11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2

12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2

13 : SUB;

14 : STORE(2,1);

15 : CALL(3,1,0);

16 : RET;

17 : LIT(1);

18 : STORE(0,1);

19 : CALL(3,0,0);

20 : LOAD(0,1);

: STORE(1,1);
: RET;

N DN
N —

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2:
1:CALL(17,0,1);

PC

1

17

: JMP(0) ; 18
: LOAD(2,1); 1g
4

5

6

7

8

9

10

: LIT(1);

: GT;

: JFALSE(16) ;

: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1); 11
: LOAD(2,1); 12
: LIT(1); 13
: SUB; 14
: STORE(2,1);

: CALL(3,1,0);

: RET;

: LIT(1);

: STORE(0,1);

: CALL(3,0,0);

: LOAD(0,1) ;

: STORE(1,1);

: RET;

[\

—
QSOOI WN

—_
=

=

RN N0 =SNG M =0 M U
NN NN NN NN NS
RN 196 N N 16 1 N N R R N
IS IS NSNS
Slolololololololololclclcleleld
Slolololololololololclclcleleld
rolrolal ol raloltolrolaltoltalaltol ol 2

[SSI[GV[IVIGV [V [PV [V [GUIIVI ST [UV)
SIS NN N SRS S

Do Do o o] o o)|
DN

DD = b e e
QOO0 U= W

N DN
N —

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
T ¢ 0:0:0:2

1:CALL(17,0,1); 17 4:3:2:0:0:0:0:2
2: JMP(0); 18 1 4:3:2:0:0:0:0:2
3:LOAD(2,1); 1g € 3.9 90 j:§:2: :8:8:8:2
. . € :2:20:4:3:2:1:0:0:0:2
gé.:]l::.T(l)’ 4 2 3:2:20:4:3:2:1:0:0:0:2
: ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); g zi %Eggjgg :8:8:8:2
. . :2:20:4:3:2:1:0:0:0:2
S:l\[,igﬁ?-_(Q’l)’ 9 1:2 3:2:20:4:3:2:1:0:0:0:2
: 0 10 2 3:2:20:4:3:2:1:0:0:0:2

10 : STORE(1,1); 11 ¢ 3:2:20:4:3:2:2:0:0:0:2

11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2

12 : LIT(1); 13 2:1 FeAo A4 s FecAcA:020:0:32

13 : SUB; 14 1 3:2:20:4:3:2:2:0:0:0:2

14 : STORE(2,1) ; 15 ¢ 3:2:20:4:3:2:2:0:0:0:1

15 : CALL(3,1,0);

16 : RET;

17 : LIT(1);

18 : STORE(0,1);

19 : CALL(3,0,0);

20 : LOAD(0,1);

21 : STORE(1,1);

22 : RET;

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2:
1:CALL(17,0,1);

PC

1

17

: JMP(0) ; 18
: LOAD(2,1); 1g
4

5

6

7

8

9

10

: LIT(1);

: GT;

: JFALSE(16) ;

: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1); 11
: LOAD(2,1); 12
: LIT(1); 13
: SUB; 14
: STORE(2,1); 3
: CALL(3,1,0);

: RET;

: LIT(1);

: STORE(0,1);

: CALL(3,0,0);

: LOAD(0,1) ;

: STORE(1,1);

: RET;

m Compiler Construction Winter semester 2010/11

—

==

—
QOO WD

—_
=

=

NN NN NN NSNS NN NS

MmO NN O H[\D[\Dmml—lﬁ)ﬁ)U
=] = o] no o] o o] ol Bl o o] o ho] ol B b b g T2

Q) R0 G| 0] L] L0 0] a0 L] 0| L[0| L] 0| Lol Lo | Lo

(o) [en[en][ev/[en] [[an] (e [en] [l en][e [en] [an] [en] [l [enllan
(] (e (en][ev[aw (e (an) (e [an) (e} [aw) [[an] (@) [an) (e} [an]{an
(] (o) (en][an[ew) (e (an) (e [an) (e} [aw) [[an] (@) (e (el [an]{an

o] o | o o] o o] o o] o | o] o | o B o[o

[\
Q] Q0] L] Q0] L] 0] L] 0] L] 0| L] 0| L] 2
o] o o] o o] o o] o B o[Mo bo| B o

(=) (o [ewl[ew{ e () [an) (e [an (e

Dol o] B o] o o] o B)|

[SN

6:2:16:

[e e
QOO0 ULk W

N DN
N —

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2:
1:CALL(17,0,1);

PC

1

17

: JMP(0) ; 18
: LOAD(2,1); 1g
4

5

6

7

8

9

10

: LIT(1);

: GT;

: JFALSE(16) ;

: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1); 11
: LOAD(2,1); 12
: LIT(1); 13
: SUB; 14
: STORE(2,1); 3
: CALL(3,1,0); 4
: RET;

: LIT(1);

: STORE(0,1);

: CALL(3,0,0);

: LOAD(0,1) ;

: STORE(1,1);

: RET;

—

==

—
SOOI U =W

—_
=

=

Do/ D] R o] nof bl o o no o nof ol o bl g 2

OO NN N RO O —=O0 0]

r\r\r\r;g;g;r\r\r\r\r\g;g;r\r\r\r\g;
O] L] L) 0| 0| Q0| 0 o o Laof o] L] L] L] Lo L | Lo
(=] [e [[en][en e [en (e (e (e [en][enl] enl{en] [a] (e [an][enen
(=] [[[l (e (e (e (e (e (an)[enl{an){en) () [an) (e [en [en
(=] [[[l [en) (e (e (e (e (an[enl{enl{en) (e [an) (e [en e

|] o o] o | o 8] | | | | o o o b | Do

[\
9| C] 0] 0| 0| 3] 0] 3] 0] 0] L] o] L] o o
|] o o] o B | | o | o B Do 8D

|] B o] B | o B o 10|

[[en) [[an[en [en{en) (o) (e (e {an]

[N SIS

(=[]
[\o]] N}
==
S

[e e
QOO0 ULk W

N DN
N —

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2:
: CALL(17,0,1);

PC

1

17

: JMP(0) ; 18
: LOAD(2,1); 1g
4

5

6

7

8

9

10

: LIT(1);

: GT;

: JFALSE(16) ;

: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1); 11
: LOAD(2,1); 12
: LIT(1); 13
: SUB; 14
: STORE(2,1); 3
: CALL(3,1,0); 4
: RET; 5
: LIT(1);

: STORE(0,1);

: CALL(3,0,0);

: LOAD(0,1) ;

: STORE(1,1);

: RET;

—

==

—
QOO UTR W

—_
=

=

Do/ D] R o] nof bl o o no o nof ol o bl g 2

OO NN NFEFO RO O =00]
[enl{en[en (e [ev{en|en][en] (e [an] [an] [an][an]]en){en) (o [[enl{enilen

[l (e [an [} [an)[an) [an] (e (e [aw) [an]{an) [an){en] (e [aw) [an){en) (e
[l (e [an [l [an)[an) [an] [(e [aw) [an]{an) [an){an] (e [aw) [an){en) (e

(V]
Q] L] L] L] 0| 0] 0] Q0] 3] idf] Lo | | Lo e
NN NN NN NN N NN NN NN ESES
Q| L) L) L] 0| 0| Q0| Q0 o o o] 0] L] L] L) L L Lo L

| o] o 8] o] o o] o o o ro | o] o o oo o b

| o o o B o o o[
| B o] | 8| o B o B ol o |
QOloIC|IOICICIC|IoICIOICIO

SIS NS NSNS

[o2[exl[ep}
DO D[N
===
[epl[=pl[ep}

=

[e e
QOO0 ULk W

N DN
N —

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2:
1:CALL(17,0,1);

PC

1

17

: JMP(0) ; 18
: LOAD(2,1); 1g
4

5

6

7

8

9

10

: LIT(1);

: GT;

: JFALSE(16) ;

: LOAD(1,1);

: LOAD(2,1);

: MULT;

: STORE(1,1); 11
: LOAD(2,1);

: LIT(1);

: SUB;

: STORE(2,1);
: CALL(3,1,0);
: RET;

: LIT(1);

: STORE(0,1);
: CALL(3,0,0);
: LOAD(0,1) ;

: STORE(1,1);
: RET;

—

==

[\

—
QOO0 Ul W

—_
=

=

Do/ D] R o] nof bl o o no o nof ol o bl g 2

OHEFOO NN NFEFO =SNG M =0 M U
Q0|] L0 3] 0] Ca0] 0| €3] 0] Cad] 0] 0]] o] L] o Lo

NN NN NN NN N NN NN NN NS

Q0| | L0 L] 0] Ca0| 0| QD] 0| a3 0] a0 L) o] L] o Lo rof Lo Lo
| B) | 8] o] |) | o o] 1 | | | o o o b | Do
O|O|O|O|O|O|O|O|O|O| OO | OO oo
[[en){en] [an () [an)[an) [an){en] (e [an) (e (an] [an[aw (e (aw) (e (an] [an faw |
[[en){en] [an) (o) [an)[an) [an){en] (e [an) (e (an] [an[aw (o) (an) (o) (an] (e faw |

| B B 8] | o] B | B B o 10|

(o [enlen) (o) [[an)[en) [anl{es) (e (o) (e (an]

| o] | o o 8| o o[
SISV SN NSNS

—
[o)[er[e)[e>]
[N/l Nl W] \v)
=
(e
==

[e e
QOO0 ULk W

N DN
N —

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
T 0:0:0:2
1:CALL(17,0,1); 17 . 4:3:2:0:0:0:0:2
2: JMP(0); 18 1 4:3:2:0:0:0:0:2
3 : LOAD(2,1); 1g € 5 20 Z:%:Q: :8:8:8:2
. . € :2:20:4:3:2:1:0:0:0:2
gé.:]l::.T(l)’ 4 2 3 20:4:3:2:1:0:0:0:2
: ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); g zi %: :28:1:§:2: :8:8:8:2
. . :2:20:4:3:2:1:0:0:0:2
S:l\[,igﬁ?-_(Q’l)’ 9 1:2 3:2:20:4:3:2:1:0:0:0:2
: 0 10 2 3:2:20:4:3:2:1:0:0:0:2
10 : STORE(1,1); 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB: 14 1 3:2:20:4:3:2:2:0:0:0:2
14:ST01”»E(2 1) 15 ¢ 3:2:20:4:3:2:2:0:0:0:
: 0= D 3 € 6:2:16:3:2:20:4:3:2:2:0:0:0:
15 : CALL(3,1,0); 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:
16 : RET; 5 1:1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
17 : LIT(1); 6 0 6:2:16:3:2:20:4:3:2:2:0:0:0:1
18 : STORE(0,1) ; 16 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
T 0:0:0:2
1:CALL(17,0,1); 17 . 4:3:2:0:0:0:0:2
2: JMP(0); 18 1 4:3:2:0:0:0:0:2
3 : LOAD(2,1); 1g € 5 20 Z:%:Q: :8:8:8:2
. . € :2:20:4:3:2:1:0:0:0:2
gé.:]l::.T(l)’ 4 2 3 20:4:3:2:1:0:0:0:2
: ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); g zi %: :28:1:§:2: :8:8:8:2
. . :2:20:4:3:2:1:0:0:0:2
S:l\[,igﬁ?-_(Q’l)’ 9 1:2 3:2:20:4:3:2:1:0:0:0:2
: 0 10 2 3:2:20:4:3:2:1:0:0:0:2
10 : STORE(1,1); 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB: 14 1 3:2:20:4:3:2:2:0:0:0:2
14:ST01”»E(2 1) 15 ¢ 3:2:20:4:3:2:2:0:0:0:
: 0= D 3 € 6:2:16:3:2:20:4:3:2:2:0:0:0:
15 : CALL(3,1,0); 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:
16 : RET; 5 1:1 6:2:16:3:2:20:4:3:2:2:0:0:0:1
17 : LIT(1); 6 0 6:2:16:3:2:20:4:3:2:2:0:0:0:1
18 : STORE(0,1) ; 16 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:1
19 CALL(3.0,0); 16 ¢ 3:2:20:4:3:2:2:0:0:0:1
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
T 0:0:0:2
1:CALL(17,0,1); 17 . 4:3:2:0:0:0:0:2
2: JMP(0); 18 1 4:3:2:0:0:0:0:2
3:LOAD(2,1); 1g € 5 20 Z:%:Q: :8:8:8:2
. . € 12 :4:3:2:1:0:0:0:2
gé.:]l::.T(l)’ 4 2 3 20:4:3:2:1:0:0:0:2
: ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); g zi %: :28:1:§:2: :8:8:8:2
. . :2:20:4:3:2:1:0:0:0:2
SILOAD_(Q’l)’ 9 1:2 3:2:20:4:3:2:1:0:0:0:2
9 : MULT; S5O0 - A3 010009
: 10 2 3:2:20:4:3:2:1:0:0:0:2
10 : STORE(1,1); 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB: 14 1 3:2:20:4:3:2:2:0:0:0:2
14:ST01”»E(2 1) 15 ¢ 3:2:20:4:3:2:2:0:0:0:
: 0= D 3 € 6:2:16:3:2:20:4:3:2:2:0:0:0:
15: CALL(3,1,0); 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:
16 : RET; g (1):1 g%%gg%%gig%%ggg%
17 : LIT(1); :2:16:3:2:20:4:3:2:2:0:0:0:
7. (1) . 16 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:
18 : STORE(0,1) ; = B racrro s B TR
16 ¢ 3:2:20:4:3:2:2:0:0:0:
19: CALL(3,0,0); 20 ¢ 4:3:2:2:0:0:0:
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
T 0:0:0:2
1:CALL(17,0,1); 17 . 4:3:2:0:0:0:0:2
2: JMP(0); 18 1 4:3:2:0:0:0:0:2
3:LOAD(2,1); 1g € 5 20 Z:%:Q: :8:8:8:2
. . € 12 :4:3:2:1:0:0:0:2
gé.:]l::.T(l)’ 4 2 3 20:4:3:2:1:0:0:0:2
: ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); g zi %: :28:1:§:2: :8:8:8:2
. . :2:20:4:3:2:1:0:0:0:2
SILOAD_(Q’l)’ 9 1:2 3:2:20:4:3:2:1:0:0:0:2
9 : MULT; S5O0 - A3 010009
: 10 2 3:2:20:4:3:2:1:0:0:0:2
10 : STORE(1,1); 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB: 14 1 3:2:20:4:3:2:2:0:0:0:2
14:ST01”»E(2 1) 15 ¢ 3:2:20:4:3:2:2:0:0:0:
: 0= D 3 € 6:2:16:3:2:20:4:3:2:2:0:0:0:
15: CALL(3,1,0); 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:
16 : RET; g (1):1 g%%gg%%gig%%ggg%
17 : LIT(1); :2:16:3:2:20:4:3:2:2:0:0:0:
7. (1) . 16 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:
18 : STORE(0,1) ; = B racrro s B TR
16 ¢ 3:2:20:4:3:2:2:0:0:0:
19: CALL(3,0,0); 20 ¢ 4:3:2:2:0:0:0:
20 : LOAD(0,1); 21 2 4:3:2:2:0:0:0:
21 : STORE(1,1);
22 : RET;

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
T 0:0:0:2
1:CALL(17,0,1); 17 . 4:3:2:0:0:0:0:2
2: JMP(0); 18 1 4:3:2:0:0:0:0:2
3:LOAD(2,1); 1g € 5 20 Z:%:Q: :8:8:8:2
. . € 12 :4:3:2:1:0:0:0:2
gé.:]l::.T(l)’ 4 2 3 20:4:3:2:1:0:0:0:2
: ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); g zi %: :28:1:§:2: :8:8:8:2
. . :2:20:4:3:2:1:0:0:0:2
SILOAD_(Q’l)’ 9 1:2 3:2:20:4:3:2:1:0:0:0:2
9 : MULT; S5O0 - A3 010009
: 10 2 3:2:20:4:3:2:1:0:0:0:2
10 : STORE(1,1); 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB: 14 1 3:2:20:4:3:2:2:0:0:0:2
14:ST01”»E(2 1) 15 ¢ 3:2:20:4:3:2:2:0:0:0:
: 0= D 3 € 6:2:16:3:2:20:4:3:2:2:0:0:0:
15: CALL(3,1,0); 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:
16 : RET; g (1):1 g%%gg%%gig%%ggg%
17 : LIT(1); :2:16:3:2:20:4:3:2:2:0:0:0:
7. (1) . 16 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:
18 : STORE(0,1) ; = B racrro s B TR
16 ¢ 3:2:20:4:3:2:2:0:0:0:
19: CALL(3,0,0); 20 ¢ 4:3:2:2:0:0:0:
20 : LOAD(0,1); 21 2 4:3:2:2:0:0:0:
21 : STORE(1,1); 22 ¢ 4:3:2:2:0:0:0:2
22 : RET;

m Compiler Construction Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
T ¢ 0:0:0:2

1:CALL(17,0,1); 17 4:3:2:0:0:0:0:2
2: JMP(0); 18 1 4:3:2:0:0:0:0:2
3:LOAD(2,1); 1g € 5 20 Z:%:Q: :8:8:8:2
. . e 12 :4:3:2:1:0:0:0:2

gé.:]l::.T(l)’ 4 2 3: 20:4:3:2:1:0:0:0:2
: ’ 5 2:1 3:2:20:4:3:2:1:0:0:0:2

6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); g zi %: :28:1:§:2: :8:8:8:2
. . :2:20:4:3:2:1:0:0:0:2

SILOAD_(Q’l)’ 9 1:2 3:2:20:4:3:2:1:0:0:0:2
9 : MULT; S e e Y s
10 2 3:2:20:4:3:2:1:0:0:0:2

10 : STORE(1,1); 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB: 14 1 3:2:20:4:3:2:2:0:0:0:2
14:ST01”»E(2 1) 15 ¢ 3:2:20:4:3:2:2:0:0:0:
: 0= D 3 € 6:2:16:3:2:20:4:3:2:2:0:0:0:

15: CALL(3,1,0); 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:
16 : RET; g (1):1 g%%gg%%gig%%ggg%
17 : LIT(1); :2:16:3:2:20:4:3:2:2:0:0:0:
7. (1) . 16 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:
18 : STORE(0,1) ; = B racrro s B TR
16 ¢ 3:2:20:4:3:2:2:0:0:0:

19: CALL(3,0,0); 20 ¢ 4:3:2:2:0:0:0:
20 : LOAD(0,1); 21 2 4:3:2:2:0:0:0:
21 : STORE(1,1); 22 ¢ 4:3:2:2:0:0:0:2
22 : RET; 2 € 0:0:0:2

m Compiler Construction Winter semester 2010/11

U A AN A (e | AN
o] el en] @] @n} @n] en) s} en] @] (@] @] (@]] @] (en] @] @] @] en) en] (en] @) (@] (@] ()
o] el en] @] @n} @n]en) s} en] @] (@] @] (@]] @] (en] @] @] @] en) en] (en] @) (@] (@] ()
][] (en) @n] (s} (en](en) s} (] @) (]] [ev)] (en] (en] [@n] @n] @] en) en](en] (@) (@) [en] () m
6 86 B6 86 86 86 86 86 8o 86 86 86 8o 3
[=Tl) i 0N 0NN OO NN N N[N [N [N N m
[a\l[a] (e]ia] [\ lalat](a]at]aN] o]t o) laX](at | o] at] (e laX] et HaN] et] N | at]aN] 5
Al il il il sl il sl il il sl il il sal sl il il sl il sl iSal sl il sl il W
oD (en]lev](en] (][] (ev][ev] e} (e])
AN AN AN AN A
o] o] [S e[| jea e
<]
m [aplarllanliaplias] o] ap] aplapllapliapliap] aplap] aplianliaslas] o) o
= E S :
= O[OO[O[O -3
@) = | | |— ©
+2 3] 01 E
) s ©ololkokolko &
n =] [©)
— &
u m — ™ — — =
F m D5515522151125221551105552555w
L | u O
a [t C1789345678901234534566601220
— — — NN
o — I
= <
] K=
—
) @)
o o
(TIPS
e o o
I o cn~ ca~ o
ke OO rm S S N 06 06 PN ~O NO cn~
e o o ~ O~ ~— D N e
[= S — o~ ~ A o~
p 2:@7.:,.’ ~ & oA A ea AN - e A vl
S S A" AN~ - N ~ AN~ ~ AN~ M O~
.M.L B ~ O~ N~ eaf1] —] — 1]~ — [1]
Bl - A AY JdAaAbHgpAY ~mderaedAam e
o © HAo<BH <<t JO<<FHFMOJdHEHOd<IOH
4] =l 0 <SO0OHEMLOODEOHDE<SMHHE<OHIMK
X M g O 110N Id=2nNd 1NN AAJN0 AN/,
E W O — N FIN OO0 O — N IO O 00 DD — A
E o — A A

© Correctness of the Translation

Rm Compiler nstruction nter semester 2010/11

Correctness of the Translation

Theorem 20.9 (Correctness of translation)

For every P € Pgm, n € N, and (z1,...,2),(21,...,2),) € Z":

MIP](z1,---y2n) = (21,-.-,2})
< [trans(P)](1,6,0:0:0:21:...:2,) = (0,6,0:0:0: 2] :...:2])

m' Compiler Construction Winter semester 2010/11 29

Correctness of the Translation

Theorem 20.9 (Correctness of translation)

For every P € Pgm, n € N, and (z1,...,2),(21,...,2),) € Z":

M[P)(z1,. - 2n) = (#4,...,2})
<= [trans(P)](1,6,0:0:0:21:...:2,) =(0,6,0:0:0: 2] :...:2])

see M. Mohnen: A Compiler Correctness Proof for the Static Link
Technique by means of Evolving Algebras, Fundamenta Informaticae
29(3), 1997, pp. 257-303 O

m Compiler Construction Winter semester 2010/11 29

@ Outlook

Rm Compiler Construction inter semester 2010/11 30

Lectures after Chistmas Break

@ Error handling in (top-down) parsing
© Strong noncircularity of attribute grammars

© More about code generation

o Static & dynamic data structures
¢ Compiler backend (register allocation, ...)

@ Code analysis & optimization

Rm Compiler Construction Winter semester 2010/11

	Repetition: Intermediate Code
	The Symbol Table
	Translation of Programs
	Translation of Blocks
	Translation of Declarations
	Translation of Commands
	Translation of Expressions
	A Translation Example
	Correctness of the Translation
	Outlook

