Compiler Construction

Lecture 20: Code Generation II1
(Translation to Intermediate Code)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

@ Repetition: Intermediate Code

Rm Compiler nstruction nter semester 2010/11

Syntax of EPL

Definition (Syntax of EPL)

The syntax of EPL is defined as follows:
Z: z (* z is an integer *)
Ide : I (* I is an identifier *)
AEzp: Au=z|I|A+As|...
BEzp: B :u= A; <Ay|not B|Bj and By | B; or By
Cmd : C:u=1:=A]|C1;Cy|if B then C] else (s |
while Bdo C | I(Q)
Dcl : D ::= Do Dy Dp
Do ::=¢|const Iy :=21,...,I, := z;
Dy :=c¢|var I, ... ,I,;
Dp ::=¢|proc [1;Ky; ... ;1 Ky
Bk - K:=DC
Pgm : P = in/out I, ...,I,; K.

m Compiler Construction Winter semester 2010/11

The Abstract Machine AM

Definition (Abstract machine for EPL)

The abstract machine for EPL (AM) is defined by the state space
S:=PC x DS x PS

with
@ the program counter PC' := N,
o the data stack DS := Z* (top of stack to the right), and

@ the procedure stack (or: runtime stack) PS := Z*
(top of stack to the left).

Thus a state s = (I,d,p) € S is given by
@ a program label [€ PC,
o adatastack d=d.r:...:d.1 € DS, and
@ a procedure stack p=p.1:...:pt € PS.

m Compiler Construction Winter semester 2010/11

AM Instructions

Definition (AM instructions)

The set of AM instructions is divided into

arithmetic instructions: ADD, MULT, ...

Boolean instructions: NOT, AND, OR, LT, ...

jumping instructions: JMP(ca), JFALSE(ca) (ca € PC)

procedure instructions: CALL(ca, dif ,loc) (ca € PC, dif,loc € N), RET

transfer instructions: LOAD(dif , off), STORE(dif , off) (dif, off € N),
LIT(2) (z € Z)

m Compiler Construction Winter semester 2010/11 5

Structure of Procedure Stack 1

The semantics of procedure and transfer instructions requires a
particular structure of the procedure stack p € PS: is must be
composed of frames (or: activation records) of the form

sl:dl:ra:vy:...: v

where

static link s/: points to frame of surrounding declaration environment
= used to access non-local variables

dynamic link dl: points to previous frame (i.e., of calling procedure)

= used to remove topmost frame after termination of
procedure call

return address ra: program label after termination of procedure call
—> used to continue program execution after
termination of procedure call

local variables v;: values of locally declared variables

m' Compiler Construction Winter semester 2010/11 6

Structure of Procedure Stack 11

Observation:

@ The usage of a variable in a procedure body refers to its innermost declaration.

@ If the level difference between the usage and the declaration is dif, then a
chain of dif static links has to be followed to access the corresponding frame.

Example (cf. Example 19.5)

in/out x;
const ¢ = 10;
var y;
proc P;
var y, z;
proc Q;
var x, z;

[.. PO ..]

[o xo vy ..o QO ...

proc R;
[PO]
[.. PO ...

Procedure stack after second call of P:

| N 3 i —
Lofa] | [[5]4] [[[s]4] [[[4[3[| [ofo]oO] |
y z° X 7z y z- y sl dlra x
PO : QO : PO . MAIN . I/O
] Pusesx — dif =2Pusesy — dif =0
y

Compiler Construction Winter semester 2010/11

AM Programs and Their Semantics

Definition (Semantics of AM programs)

An AM program is a sequence of k > 1 labeled AM instructions:
P=1:01;...;k: 0

The set of all AM programs is denoted by AM.

The semantics of AM programs is determined by
[.]: AM xS --» S

with

[P, d,p) := {E[P E[[Oz]](l,d,p)) if I € [k]

P otherwise

m Compiler Construction Winter semester 2010/11

© The Symbol Table

Rm Compiler Construction ter semester 2010/11

Translation of EPL into AM Programs

Goal: define translation mapping
trans : Pgm --» AM
The translation employs a symbol table:
Tab := {st | st : Ide --» ({const} x Z)
U ({var} x Lev x Off)
U ({proc} x PC x Lev x Size)}
whose entries are created by declarations:
@ constant declarations: (const, z)
e value z € Z
@ variable declarations: (var, lev, off)
o declaration level lev € Lev :=N (0 = 1/0, 1 = MAIN, ...)
o offset off € Off :=N
o offset and difference between usage and declaration level determine
procedure stack entry
@ procedure declarations: (proc, ca, lev, loc)

o code address ca € PC
o declaration level lev € Lev
o number of local variables loc € Size := N

Rm Compiler Construction Winter semester 2010/11 10

Maintaining the Symbol Table

The symbol table is maintained by the function update(D, st,) which
specifies the update of symbol table st according to declaration D (with
respect to current level [):

Definition 20.1 (update function)
update : Decl x Tab X Lev --» Tab

is defined by
update(D¢o Dy Dp,st,l)
:= update(Dp,update(Dy, update(D¢, st, 1),1),1)
if all identifiers in Do Dy Dp different
update(e, st,)

= st
update(const Iy := z1,...,L, := z,;,st,1)
:= st[[; — (comst, z1),..., I, — (const, z,)]

update(var Iy, ..., L,;,st,1)
= sty — (var,l,1),..., I, — (var,l,n)]
update(proc I1; K15 ... ;1 Kpj;,st,l)
.= st[[; — (proc,as,l,size(K1)),. .., I — (proc,an,l,size(K,))]
with “fresh” addresses a1, ...,a,
where size(D¢ var Iy, ...,I,; DpC):=n
RWTH Compiler Construction Winter semester 2010/11

The Initial Symbol Table

An EPL program P = in/out I, ...,I,; K. € Pgm has a semantics
of type Z™ --+ 7.

Given (z1,...,2,) € Z"™, we choose the initial state
s:=(1,6,0:0:0:27:...:2,) €S =PCx DS xPS
I/0 frame

Thus the corresponding initial symbol table has n entries:

str/o(lj) == (var,0,) for every j € [n]

Rm Compiler Construction Winter semester 2010/11

© Translation of Programs

Rm Compiler nstruction nter semester 2010/11 13

Translation of Programs

Translation of in/out I1,...,1,;D C.:
@ Create MAIN frame for executing C'

@ Stop program execution after return

Definition 20.2 (Translation of programs)

The mapping
trans : Pgm --» AM

is defined by
trans(in/out Iy, ... ,[,;K.):=1:CALL(a,0,size(K)) ;

2 : JMP(0);
kt(Kv StI/Ov a, 1)

m Compiler Construction Winter semester 2010/11

@ Translation of Blocks

Rm Compiler nstruction nter semester 2010/11 15

Translation of Blocks

Translation of D C"
© Update symbol table according to D

@ Create code for procedures declared in D
(using the updated symbol table — recursion!)

@ Create code for C' (using the updated symbol table)

Definition 20.3 (Translation of blocks)

The mapping
kt : Blk x Tab x PC x Lev --+ AM
(“block translation”) is defined by
kt(D C,st,a,l) := dt(D,update(D,st,1),1)

ct(C, update(D, st, 1), a,l)
a' : RET;

m Compiler Construction Winter semester 2010/11

16

© Translation of Declarations

Rm Compiler nstruction nter semester 2010/11 17

Translation of Declarations

Translation of D:

@ Generate code for the procedures declared in D

Definition 20.4 (Translation of declarations)

The mapping
dt : Decl x Tab x Lev --» AM
(“declaration translation”) is defined by
dt(DC Dy DP,St,l)
= dt(Dp,st,l)
dt(e, st, 1)
= €
dt(proc I1; Ky ... ;I ; Ky s, st, 1)
= kt(Ky,st,a,l+1)

kt(Ky, st, an,l + 1)
where st(I;) = (proc,aj,...,...) for every j € [n]

m Compiler Construction Winter semester 2010/11 18

© Translation of Commands

Rm Compiler nstruction nter semester 2010/11 19

Translation of Commands

Definition 20.5 (Translation of commands)

The mapping
ct : Cmd x Tab x PC x Lev --» AM
(“command translation”) is defined by
ct(:= A,st,a,l) := at(4,st,a,l)
a' : STORE(I — lev, off) ;
if st(I) = (var, lev, off)
ct(IQ,st,a,l) :== a: CALL(ca,l — lev,loc) ;
if st(I) = (proc, ca, lev, loc)
ct(Cq;Ca,st, a,l) := ct(Ch,st, a,l)
ct(Cs, st, a’,1)
ct(if B then C4 else Cy,st,a,l) := bt(B,st,a,l)
a' : JFALSE(a") ;
ct(C’l,st,a’ +1,10)
=1z JMP @
(Cz,bt a’,l)
/// .

ct(while B do C,st,a,l) := bt(B,bt,a,l)
a' 1 JFALSE(a” +1);
ct(C,st,a’ + 1,1)
. JMP (a) ;

m Compiler Construction Winter semester 2010/11

@ Translation of Expressions

Rm Compiler nstruction nter semester 2010/11 21

Translation of Boolean Expressions

Definition 20.6 (Translation of Boolean expressions)

The mapping
bt : BExzp x Tab x PC x Lev --» AM
(“Boolean expression translation”) is defined by
bt(A; < Ag,st,a,l) = at(Ay,st,a,l)
at(Asg,st,d’,1)
a” : LT;
bt(not B,st,a,l) := bt(B,st,a,l)
a’ : NOT;
bt(B; and Ba,st,a,l) := bt(Bi,st, a,l)
bt(Ba,st,a’, 1)
a” : AND;
bt(B; or Bg,st,a,l) := bt(By,st,a,l)
bt(Ba,st,a’, 1)
a” : OR;

m Compiler Construction Winter semester 2010/11

Translation of Arithmetic Expressions

Definition 20.7 (Translation of arithmetic expressions)

The mapping
at : AFxp x Tab x PC x Lev --» AM

(“arithmetic expression translation”) is defined by

at(z,st,a,l) := a: LIT(2);
a:LIT(2); if st(I) = (const, 2z
2l) == a: LOAD(l — lev,off); if stEI% = Evar, lev,)oﬁ)
at(A; + Ag,st,a,l) := at(Ay,st,a,l)
at(Asg,st,d’,1)
a” : ADD;

m Compiler Construction Winter semester 2010/11 23

© A Translation Example

Rm Compiler nstruction nter semester 2010/11 24

Example: Factorial Function I

Example 20.8 (Factorial function (cf. Ex. 19.1))

Source code:

in/out x; trans(in/out x;K.)1:
var y;
proc F;
if x > 1 then 1
y =Y * X 2
X i=x - 1;
FO
y &= ig
FO; ai
X =Yy. 2
trans(in/out I, ..., Ih; K.) =
1: CALL(a,0,size(K)) ; kt(D C,st, a,l) :=
2 : JMP(0); az
kt(K,St[/o,a,l)

dt(D, update(D, st,l),l) update(var I, ...

ct(C,update(D, st, 1), a,l) st[l; — (var,l, 1)

a’ : RET; update(proc [1;K1; ..
st[I1 — (proc, al,l,sme(Kl

In”st l):=

kt(K1,st,a1,l + 1)

Compiler Construction

ct(if B then

Intermediate code:

2 : JMP(0) ;

: CALL(ap,0,1);
: JMP(0) ;

: RET;
: CALL(ap,0,1);
: JMP(0) ;

: RET;
1: CALL(Cap,0,1);
2:

s In — (var,l,;n
I'rz;Kn;,Stl

: RET;
Winter semester 2010/11

CALL(ao,0,1);
kt(X, str/0, a0, 1)

dt(D, update(D, s
ct(C, update(D, st

dt(D,st’, 1)
ct(C,st’; ao, 1)

JMP(0) ;

)ﬁ (K, st’, a1, 2
St a(),
é_SIZG

9C; @ny
Lk

ct(CF,st ai,2)

t

25

—

T~

Example: Factorial Function I1

Example 20.8 (Factorial function; continued)

Code with symbolic Linearized
addresses: (ap = 17,a1 = 3,a2 = 22,a3 = 16, a4 = 6):
1: CALL(ap,0,1); 1:CALL(17,0,1);
2 : JMP(0) ; 2 : JMP(0) ;

a1 : LOAD(2,1); 3: LOAD(2,1);
LIT(1); 4 :LIT(1);
GT; 5: GT;

a4 : JFALSE(a3) ; 6 : JFALSE(16) ;
LOAD(1,1); 7 : LOAD(1,1);
LOAD(2,1); 8 : LOAD(2,1);
MULT; 9 : MULT;
STORE(1,1); 10 : STORE(1,1);
LOAD(2,1); 11 : LOAD(2,1);
LIT(1); 12 : LIT(1);
SUB; 13 : SUB;
STORE(2,1) ; 14 : STORE(2,1);
CALL(Ca1,1,0); 15 : CALL(3,1,0);

as : RET; 16 : RET;

ao : LIT(1); 17 : LIT(1);
STORE(0,1) ; 18 : STORE(0,1);
CALL(a;,0,0); 19 : CALL(3,0,0);
LOAD(0,1); 20 : LOAD(0,1);
STORE(1,1); 21 : STORE(1,1);

a2 : RET; 22 : RET;

Compiler Construction

Winter semester 2010/11

Example: Factorial Function 111

Example 20.8 (Factorial function; continued)

Computation for x = 2: PC DS PS
T 0:0:0:2

1: CALL(17,0,1); 17 . 4:3:2:0:0:0:0:2
2: JMP(0); 18 1 4:3:2:0:0:0:0:2
3 :LOAD(2,1); 1g e 3 00 Z:%:Q: :8:8:8:2
. . € 12 :4:3:2:1:0:0:0:2

éé.:]l::.T(l)’ 4 2 3: 20:4:3:2:1:0:0:0:2
“f' B 5 231 FeAo A4 s FecAN 00032
6 : JFALSE(16) ; 6 1 3:2:20:4:3:2:1:0:0:0:2
7 : LOAD(1,1); g zi %: :28:1:§:2: :8:8:8:2
3 - . :2:20:4:3:2:1:0:0:0:2
S:l\[,igﬁ?-_(Q’l)’ 9 1:2 3:2:20:4:3:2:1:0:0:0:2
: 0 10 2 3:2:20:4:3:2:1:0:0:0:2

10 : STORE(1,1); 11 ¢ 3:2:20:4:3:2:2:0:0:0:2
11 : LOAD(2,1); 12 2 3:2:20:4:3:2:2:0:0:0:2
12 : LIT(1); 13 2:1 3:2:20:4:3:2:2:0:0:0:2
13 : SUB: 14 1 3:2:20:4:3:2:2:0:0:0:2
14:ST01’1E(2 1) 15 ¢ 3:2:20:4:3:2:2:0:0:0:
: 0= D 3 € 6:2:16:3:2:20:4:3:2:2:0:0:0:

15 : CALL(3,1,0); 4 1 6:2:16:3:2:20:4:3:2:2:0:0:0:
16 : RET; g (1):1 g%%gg%%gig%%ggg%
17 : LIT(1); :2:16:3:2:20:4:3:2:2:0:0:0:
lg'STOlS(E)(O 1) ; 16 ¢ 6:2:16:3:2:20:4:3:2:2:0:0:0:
: 2N 16 ¢ 3:2:20:4:3:2:2:0:0:0:

19 : CALL(3,0,0); 20 € 4:3:2:2:0:0:0:
20 : LOAD(0,1); 21 2 4:3:2:2:0:0:0:
21 : STORE(1,1); 2% € 4:3:2:2:8:8:8:%
99 . . e :0:0:
P18 BIaR 0 ¢ 0:0:0:2

m Compiler Construction Winter semester

© Correctness of the Translation

Rm Compiler nstruction nter semester 2010/11

Correctness of the Translation

Theorem 20.9 (Correctness of translation)

For every P € Pgm, n € N, and (z1,...,2),(21,...,2),) € Z":

M[P)(z1,. - 2n) = (#4,...,2})
<= [trans(P)](1,6,0:0:0:21:...:2,) =(0,6,0:0:0: 2] :...:2])

see M. Mohnen: A Compiler Correctness Proof for the Static Link
Technique by means of Evolving Algebras, Fundamenta Informaticae
29(3), 1997, pp. 257-303 O

m Compiler Construction Winter semester 2010/11 29

@ Outlook

Rm Compiler Construction inter semester 2010/11 30

Lectures after Chistmas Break

@ Error handling in (top-down) parsing
© Strong noncircularity of attribute grammars

© More about code generation

o Static & dynamic data structures
¢ Compiler backend (register allocation, ...)

@ Code analysis & optimization

Rm Compiler Construction Winter semester 2010/11

	Repetition: Intermediate Code
	The Symbol Table
	Translation of Programs
	Translation of Blocks
	Translation of Declarations
	Translation of Commands
	Translation of Expressions
	A Translation Example
	Correctness of the Translation
	Outlook

