
Compiler Construction

Lecture 20: Code Generation III
(Translation to Intermediate Code)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Outline

1 Repetition: Intermediate Code

2 The Symbol Table

3 Translation of Programs

4 Translation of Blocks

5 Translation of Declarations

6 Translation of Commands

7 Translation of Expressions

8 A Translation Example

9 Correctness of the Translation

10 Outlook

Compiler Construction Winter semester 2010/11 2

Syntax of EPL

Definition (Syntax of EPL)

The syntax of EPL is defined as follows:

Z : z (* z is an integer *)

Ide : I (* I is an identifier *)

AExp : A ::= z | I | A1 + A2 | . . .

BExp : B ::= A1 < A2 | not B | B1 and B2 | B1 or B2

Cmd : C ::= I := A | C1;C2 | if B then C1 else C2 |
while B do C | I()

Dcl : D ::= DC DV DP

DC ::= ε | const I1 := z1, . . . ,In := zn;
DV ::= ε | var I1, . . . ,In;
DP ::= ε | proc I1;K1; . . . ;In;Kn;

Blk : K ::= D C

Pgm : P ::= in/out I1, . . . ,In;K.

Compiler Construction Winter semester 2010/11 3

The Abstract Machine AM

Definition (Abstract machine for EPL)

The abstract machine for EPL (AM) is defined by the state space

S := PC × DS × PS

with

the program counter PC := N,

the data stack DS := Z
∗ (top of stack to the right), and

the procedure stack (or: runtime stack) PS := Z
∗

(top of stack to the left).

Thus a state s = (l, d, p) ∈ S is given by

a program label l ∈ PC ,

a data stack d = d.r : . . . : d.1 ∈ DS , and

a procedure stack p = p.1 : . . . : p.t ∈ PS .

Compiler Construction Winter semester 2010/11 4

AM Instructions

Definition (AM instructions)

The set of AM instructions is divided into

arithmetic instructions: ADD, MULT, ...

Boolean instructions: NOT, AND, OR, LT, ...

jumping instructions: JMP(ca), JFALSE(ca) (ca ∈ PC)

procedure instructions: CALL(ca,dif ,loc) (ca ∈ PC , dif , loc ∈ N), RET

transfer instructions: LOAD(dif ,off), STORE(dif ,off) (dif , off ∈ N),
LIT(z) (z ∈ Z)

Compiler Construction Winter semester 2010/11 5

Structure of Procedure Stack I

The semantics of procedure and transfer instructions requires a
particular structure of the procedure stack p ∈ PS : is must be
composed of frames (or: activation records) of the form

sl : dl : ra : v1 : . . . : vk

where

static link sl : points to frame of surrounding declaration environment
=⇒ used to access non-local variables

dynamic link dl : points to previous frame (i.e., of calling procedure)
=⇒ used to remove topmost frame after termination of
procedure call

return address ra: program label after termination of procedure call
=⇒ used to continue program execution after
termination of procedure call

local variables vi: values of locally declared variables

Compiler Construction Winter semester 2010/11 6

Structure of Procedure Stack II

Observation:

The usage of a variable in a procedure body refers to its innermost declaration.

If the level difference between the usage and the declaration is dif , then a
chain of dif static links has to be followed to access the corresponding frame.

Example (cf. Example 19.5)

in/out x;

const c = 10;

var y;

proc P;

var y, z;

proc Q;

var x, z;

[... P() ...]
[... x ... y ... Q() ...]

proc R;

[... P() ...]
[... P() ...].

Procedure stack after second call of P:

0

P() Q() P() MAIN I/O

15 4 5 4 5 4 4 3 0 0
rasl dl xyzyzxzy

P uses x =⇒ dif = 2 P uses y =⇒ dif = 0

Compiler Construction Winter semester 2010/11 7

AM Programs and Their Semantics

Definition (Semantics of AM programs)

An AM program is a sequence of k ≥ 1 labeled AM instructions:

P = 1 : O1; . . . ; k : Ok

The set of all AM programs is denoted by AM .

The semantics of AM programs is determined by

J.K : AM × S 99K S

with

JP K(l, d, p) :=

{
JP K(JOlK(l, d, p)) if l ∈ [k]
(l, d, p) otherwise

Compiler Construction Winter semester 2010/11 8

Outline

1 Repetition: Intermediate Code

2 The Symbol Table

3 Translation of Programs

4 Translation of Blocks

5 Translation of Declarations

6 Translation of Commands

7 Translation of Expressions

8 A Translation Example

9 Correctness of the Translation

10 Outlook

Compiler Construction Winter semester 2010/11 9

Translation of EPL into AM Programs

Goal: define translation mapping
trans : Pgm 99K AM

The translation employs a symbol table:
Tab := {st | st : Ide 99K ({const} × Z)

∪ ({var} × Lev × Off)
∪ ({proc} × PC × Lev × Size)}

whose entries are created by declarations:

constant declarations: (const, z)
value z ∈ Z

variable declarations: (var, lev , off)
declaration level lev ∈ Lev := N (0 ∼= I/O, 1 ∼= MAIN, ...)
offset off ∈ Off := N

offset and difference between usage and declaration level determine
procedure stack entry

procedure declarations: (proc, ca, lev , loc)
code address ca ∈ PC

declaration level lev ∈ Lev

number of local variables loc ∈ Size := N

Compiler Construction Winter semester 2010/11 10

Maintaining the Symbol Table

The symbol table is maintained by the function update(D, st, l) which
specifies the update of symbol table st according to declaration D (with
respect to current level l):

Definition 20.1 (update function)

update : Dcl × Tab × Lev 99K Tab

is defined by

update(DC DV DP , st, l)
:= update(DP , update(DV , update(DC , st, l), l), l)

if all identifiers in DC DV DP different
update(ε, st, l)

:= st
update(const I1 := z1, . . . ,In := zn;, st, l)

:= st[I1 7→ (const, z1), . . . , In 7→ (const, zn)]
update(var I1, . . .,In;, st, l)

:= st[I1 7→ (var, l, 1), . . . , In 7→ (var, l, n)]
update(proc I1;K1; . . .;In;Kn;, st, l)

:= st[I1 7→ (proc, a1, l, size(K1)), . . . , In 7→ (proc, an, l, size(Kn))]
with “fresh” addresses a1, . . . , an

where size(DC var I1, . . .,In; DP C) := n
Compiler Construction Winter semester 2010/11 11

The Initial Symbol Table

An EPL program P = in/out I1, . . . ,In;K. ∈ Pgm has a semantics
of type Z

n
99K Z

n.

Given (z1, . . . , zn) ∈ Z
n, we choose the initial state

s := (1, ε, 0 : 0 : 0 : z1 : . . . : zn
︸ ︷︷ ︸

I/O frame

) ∈ S = PC × DS × PS

Thus the corresponding initial symbol table has n entries:

stI/O (Ij) := (var, 0, j) for every j ∈ [n]

Compiler Construction Winter semester 2010/11 12

Outline

1 Repetition: Intermediate Code

2 The Symbol Table

3 Translation of Programs

4 Translation of Blocks

5 Translation of Declarations

6 Translation of Commands

7 Translation of Expressions

8 A Translation Example

9 Correctness of the Translation

10 Outlook

Compiler Construction Winter semester 2010/11 13

Translation of Programs

Translation of in/out I1, . . . ,In;D C.:

1 Create MAIN frame for executing C

2 Stop program execution after return

Definition 20.2 (Translation of programs)

The mapping
trans : Pgm 99K AM

is defined by

trans(in/out I1, . . . ,In;K.) := 1 : CALL(a,0,size(K));
2 : JMP(0);
kt(K, stI/O , a, 1)

Compiler Construction Winter semester 2010/11 14

Outline

1 Repetition: Intermediate Code

2 The Symbol Table

3 Translation of Programs

4 Translation of Blocks

5 Translation of Declarations

6 Translation of Commands

7 Translation of Expressions

8 A Translation Example

9 Correctness of the Translation

10 Outlook

Compiler Construction Winter semester 2010/11 15

Translation of Blocks

Translation of D C:

1 Update symbol table according to D

2 Create code for procedures declared in D

(using the updated symbol table – recursion!)

3 Create code for C (using the updated symbol table)

Definition 20.3 (Translation of blocks)

The mapping

kt : Blk × Tab × PC × Lev 99K AM

(“block translation”) is defined by

kt(D C, st, a, l) := dt(D,update(D, st, l), l)
ct(C,update(D, st, l), a, l)
a′ : RET;

Compiler Construction Winter semester 2010/11 16

Outline

1 Repetition: Intermediate Code

2 The Symbol Table

3 Translation of Programs

4 Translation of Blocks

5 Translation of Declarations

6 Translation of Commands

7 Translation of Expressions

8 A Translation Example

9 Correctness of the Translation

10 Outlook

Compiler Construction Winter semester 2010/11 17

Translation of Declarations

Translation of D:

Generate code for the procedures declared in D

Definition 20.4 (Translation of declarations)

The mapping
dt : Dcl × Tab × Lev 99K AM

(“declaration translation”) is defined by

dt(DC DV DP , st, l)

:= dt(DP , st, l)

dt(ε, st, l)

:= ε

dt(proc I1;K1; . . . ;In;Kn;, st, l)

:= kt(K1, st, a1, l + 1)
...

kt(Kn, st, an, l + 1)
where st(Ij) = (proc, aj , . . . , . . .) for every j ∈ [n]

Compiler Construction Winter semester 2010/11 18

Outline

1 Repetition: Intermediate Code

2 The Symbol Table

3 Translation of Programs

4 Translation of Blocks

5 Translation of Declarations

6 Translation of Commands

7 Translation of Expressions

8 A Translation Example

9 Correctness of the Translation

10 Outlook

Compiler Construction Winter semester 2010/11 19

Translation of Commands

Definition 20.5 (Translation of commands)

The mapping
ct : Cmd × Tab × PC × Lev 99K AM

(“command translation”) is defined by
ct(I := A, st, a, l) := at(A, st, a, l)

a′ : STORE(l− lev,off);
if st(I) = (var, lev , off)

ct(I(), st, a, l) := a : CALL(ca,l − lev,loc);
if st(I) = (proc, ca, lev , loc)

ct(C1;C2, st, a, l) := ct(C1, st, a, l)
ct(C2, st, a

′, l)
ct(if B then C1 else C2, st, a, l) := bt(B, st, a, l)

a′ : JFALSE(a′′);
ct(C1, st, a

′ + 1, l)
a′′ − 1 : JMP(a′′′);
ct(C2, st, a

′′, l)
a′′′ :

ct(while B do C, st, a, l) := bt(B, st, a, l)
a′ : JFALSE(a′′ + 1);
ct(C, st, a′ + 1, l)
a′′ : JMP(a);

Compiler Construction Winter semester 2010/11 20

Outline

1 Repetition: Intermediate Code

2 The Symbol Table

3 Translation of Programs

4 Translation of Blocks

5 Translation of Declarations

6 Translation of Commands

7 Translation of Expressions

8 A Translation Example

9 Correctness of the Translation

10 Outlook

Compiler Construction Winter semester 2010/11 21

Translation of Boolean Expressions

Definition 20.6 (Translation of Boolean expressions)

The mapping
bt : BExp × Tab × PC × Lev 99K AM

(“Boolean expression translation”) is defined by

bt(A1 < A2, st, a, l) := at(A1, st, a, l)
at(A2, st, a

′, l)
a′′ : LT;

bt(not B, st, a, l) := bt(B, st, a, l)
a′ : NOT;

bt(B1 and B2, st, a, l) := bt(B1, st, a, l)
bt(B2, st, a

′, l)
a′′ : AND;

bt(B1 or B2, st, a, l) := bt(B1, st, a, l)
bt(B2, st, a

′, l)
a′′ : OR;

Compiler Construction Winter semester 2010/11 22

Translation of Arithmetic Expressions

Definition 20.7 (Translation of arithmetic expressions)

The mapping

at : AExp × Tab × PC × Lev 99K AM

(“arithmetic expression translation”) is defined by

at(z, st, a, l) := a : LIT(z);

at(I, st, a, l) :=

{
a : LIT(z); if st(I) = (const, z)
a : LOAD(l − lev,off); if st(I) = (var, lev , off)

at(A1 + A2, st, a, l) := at(A1, st, a, l)
at(A2, st, a

′, l)
a′′ : ADD;

Compiler Construction Winter semester 2010/11 23

Outline

1 Repetition: Intermediate Code

2 The Symbol Table

3 Translation of Programs

4 Translation of Blocks

5 Translation of Declarations

6 Translation of Commands

7 Translation of Expressions

8 A Translation Example

9 Correctness of the Translation

10 Outlook

Compiler Construction Winter semester 2010/11 24

Example: Factorial Function I

Example 20.8 (Factorial function (cf. Ex. 19.1))

Source code:

in/out x;
var y;
proc F;
if x > 1 then
y := y * x;
x := x - 1;
F()

y := 1;
F();
x := y.

trans(in/out I1, . . . ,In;K.) :=
1 : CALL(a,0,size(K));
2 : JMP(0);
kt(K, stI/O , a, 1)

kt(D C, st, a, l) :=

dt(D, update(D, st, l), l)
ct(C, update(D, st, l), a, l)
a′ : RET;

update(var I1, . . . ,In;, st, l) :=
st[I1 7→ (var, l, 1), . . . , In 7→ (var, l, n)]

update(proc I1;K1; . . . ;In;Kn;, st, l) :=
st[I1 7→ (proc, a1, l, size(K1)), . . . , In 7→ (proc, an, l, size(K

kt(K1, st, a1, l + 1)
...

kt(Kn, st, an, l + 1)
where st(I) = (proc, a , . . . , . . .) for every j ∈ [n]

ct(if B then C1 else C2, st, a, l) :=

Intermediate code:

trans(in/out x;K.)1 : CALL(a0,0,1);
2 : JMP(0);

kt(K, stI/O , a0, 1)
1 : CALL(a0,0,1);
2 : JMP(0);

dt(D, update(D, stI/

ct(C, update(D, stI/

a2 : RET;
1 : CALL(a0,0,1);
2 : JMP(0);

dt(D, st′, 1)
ct(C, st′, a0, 1)

a2 : RET;
1 : CALL(a0,0,1);
2 : JMP(0);

kt(KF, st
′, a1, 2)

ct(C, st′, a0, 1)
a2 : RET;
1 : CALL(a0,0,1);
2 : JMP(0);

ct(CF, st
′, a1, 2)

a3 : RET;
ct(C, st′, a0, 1)Compiler Construction Winter semester 2010/11 25

Example: Factorial Function II

Example 20.8 (Factorial function; continued)

Code with symbolic

addresses:

1 : CALL(a0,0,1);
2 : JMP(0);

a1 : LOAD(2,1);
LIT(1);
GT;

a4 : JFALSE(a3);
LOAD(1,1);
LOAD(2,1);
MULT;
STORE(1,1);
LOAD(2,1);
LIT(1);
SUB;
STORE(2,1);
CALL(a1,1,0);

a3 : RET;
a0 : LIT(1);

STORE(0,1);
CALL(a1,0,0);
LOAD(0,1);
STORE(1,1);

a2 : RET;

Linearized

(a0 = 17, a1 = 3, a2 = 22, a3 = 16, a4 = 6):

1 : CALL(17,0,1);
2 : JMP(0);
3 : LOAD(2,1);
4 : LIT(1);
5 : GT;
6 : JFALSE(16);
7 : LOAD(1,1);
8 : LOAD(2,1);
9 : MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);
13 : SUB;
14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;
17 : LIT(1);
18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

Compiler Construction Winter semester 2010/11 26

Example: Factorial Function III

Example 20.8 (Factorial function; continued)

Computation for x = 2:

1 : CALL(17,0,1);
2 : JMP(0);
3 : LOAD(2,1);
4 : LIT(1);
5 : GT;
6 : JFALSE(16);
7 : LOAD(1,1);
8 : LOAD(2,1);
9 : MULT;

10 : STORE(1,1);
11 : LOAD(2,1);
12 : LIT(1);
13 : SUB;
14 : STORE(2,1);
15 : CALL(3,1,0);
16 : RET;
17 : LIT(1);
18 : STORE(0,1);
19 : CALL(3,0,0);
20 : LOAD(0,1);
21 : STORE(1,1);
22 : RET;

PC DS PS

1 ε 0 : 0 : 0 : 2
17 ε 4 : 3 : 2 : 0 : 0 : 0 : 0 : 2
18 1 4 : 3 : 2 : 0 : 0 : 0 : 0 : 2
19 ε 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
3 ε 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
4 2 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
5 2 : 1 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
6 1 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
7 ε 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
8 1 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
9 1 : 2 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2

10 2 3 : 2 : 20 : 4 : 3 : 2 : 1 : 0 : 0 : 0 : 2
11 ε 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
12 2 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
13 2 : 1 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
14 1 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
15 ε 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
3 ε 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
4 1 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
5 1 : 1 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
6 0 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1

16 ε 6 : 2 : 16 : 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
16 ε 3 : 2 : 20 : 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
20 ε 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
21 2 4 : 3 : 2 : 2 : 0 : 0 : 0 : 1
22 ε 4 : 3 : 2 : 2 : 0 : 0 : 0 : 2
2 ε 0 : 0 : 0 : 2
0 ε 0 : 0 : 0 : 2
Compiler Construction Winter semester 2010/11 27

Outline

1 Repetition: Intermediate Code

2 The Symbol Table

3 Translation of Programs

4 Translation of Blocks

5 Translation of Declarations

6 Translation of Commands

7 Translation of Expressions

8 A Translation Example

9 Correctness of the Translation

10 Outlook

Compiler Construction Winter semester 2010/11 28

Correctness of the Translation

Theorem 20.9 (Correctness of translation)

For every P ∈ Pgm, n ∈ N, and (z1, . . . , zn), (z′1, . . . , z
′

n) ∈ Z
n:

MJP K(z1, . . . , zn) = (z′1, . . . , z
′

n)
⇐⇒ Jtrans(P)K(1, ε, 0 : 0 : 0 : z1 : . . . : zn) = (0, ε, 0 : 0 : 0 : z′1 : . . . : z′n)

Proof.

see M. Mohnen: A Compiler Correctness Proof for the Static Link

Technique by means of Evolving Algebras, Fundamenta Informaticae
29(3), 1997, pp. 257–303

Compiler Construction Winter semester 2010/11 29

Outline

1 Repetition: Intermediate Code

2 The Symbol Table

3 Translation of Programs

4 Translation of Blocks

5 Translation of Declarations

6 Translation of Commands

7 Translation of Expressions

8 A Translation Example

9 Correctness of the Translation

10 Outlook

Compiler Construction Winter semester 2010/11 30

Lectures after Chistmas Break

1 Error handling in (top-down) parsing

2 Strong noncircularity of attribute grammars
3 More about code generation

Static & dynamic data structures
Compiler backend (register allocation, ...)

4 Code analysis & optimization

Compiler Construction Winter semester 2010/11 31

	Repetition: Intermediate Code
	The Symbol Table
	Translation of Programs
	Translation of Blocks
	Translation of Declarations
	Translation of Commands
	Translation of Expressions
	A Translation Example
	Correctness of the Translation
	Outlook

