
Compiler Construction

Lecture 21: Error Handling in Top-Down Parsing &

Strongly Noncircular Attribute Grammars

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Outline

1 Repetition: LL(1) Parsing

2 Error Handling in LL Parsing

3 Repetition: (Noncircular) Attribute Grammars

4 Strongly Noncircular Attribute Grammars

Compiler Construction Winter semester 2010/11 2

Lookahead Sets

Definition (Lookahead set)

Given π = A → β ∈ P ,
la(π) := fi(β · fo(A)) ⊆ Σε

is called the lookahead set of π (where fi(Γ) :=
⋃

γ∈Γ fi(γ)).

Corollary

1 For all a ∈ Σ,
a ∈ la(A → β) iff a ∈ fi(β) or (β ⇒∗ ε and a ∈ fo(A))

2 ε ∈ la(A → β) iff β ⇒∗ ε and ε ∈ fo(A)

Compiler Construction Winter semester 2010/11 3

Characterization of LL(1)

Theorem (Characterization of LL(1))

G ∈ LL(1) iff for all pairs of rules A → β | γ ∈ P (where β 6= γ):

la(A → β) ∩ la(A → γ) = ∅.

Proof.

on the board

Remark: the above theorem generally does not hold if k > 1
(cf. exercises)

Compiler Construction Winter semester 2010/11 4

The Deterministic Top-Down Automaton

Definition (Deterministic top-down parsing automaton)

Let G = 〈N,Σ, P, S〉 ∈ LL(1). The deterministic top-down parsing
automaton of G, DTA(G), is defined by the following components.

Input alphabet Σ, pushdown alphabet X, output alphabet [p]

Configurations Σ∗ × X∗ × [p]∗, initial configuration (w,S, ε),
final configurations {ε} × {ε} × [p]∗ (as NTA(G))

Action function
act : Σε × Xε → {(α, i) | πi = A → α} ∪ {pop, accept, error}

with act(x,A) := (α, i) if πi = A → α and x ∈ la(πi)
act(a, a) := pop

act(ε, ε) := accept

act(x, y) := error otherwise

Transitions for x ∈ Σε, w ∈ Σ∗, Y ∈ X, β ∈ X∗, and z ∈ [p]∗:

(xw, Y β, z) `

{

(xw,αβ, zi) if act(x, Y) = (α, i)
(w, β, z) if act(x, Y) = pop

Compiler Construction Winter semester 2010/11 5

Outline

1 Repetition: LL(1) Parsing

2 Error Handling in LL Parsing

3 Repetition: (Noncircular) Attribute Grammars

4 Strongly Noncircular Attribute Grammars

Compiler Construction Winter semester 2010/11 6

Error Handling

Error configurations of DTA(G):

(aw,Aα, z) where a /∈
⋃

A→β∈P la(A → β) (=⇒ act(a,A) = error)

(aw, bα, z) where a 6= b (=⇒ act(a, b) = error)

(ε,Aα, z) where ε /∈
⋃

A→β∈P la(A → β) (=⇒ act(ε,A) = error)

(ε, bα, z) (=⇒ act(ε, b) = error)

(aw, ε, z) (=⇒ act(a, ε) = error)

Observation: correct prefix property of LL parsing, i.e., syntactic
errors are detected at the earliest possible position (every input prefix
which does not produce an error can be extended to a word w ∈ L(G))

Does not mean: error is recognized at the position where it is caused!

Example: assignment a := b * c - (d + e));

Possible corrections:

remove closing bracket: a := b * c - (d + e);

insert opening bracket: a := b * (c - (d + e));

Compiler Construction Winter semester 2010/11 7

The General Problem

Let w = xy ∈ Σ∗ be the input word such that x is the longest
prefix of a word in L(G) (i.e., the error is detected at the first
symbol of y) and w /∈ L(G).

Parser makes assumption about error type and corrects w
accordingly:

Assumes prefix x′ of x to be correct
Correct prefix property
=⇒ there exists z ∈ Σ∗ such that x′z ∈ L(G)
Parser chooses prefix z′ of z and suffix y′ of y
Parsing resumed with input w′ := x′z′y′ (at first symbol of z′)
(error recovery)

Desirable properties of correction:

At least one symbol of y′ can be processed before next error occurs
(if y′ 6= ε)
Preserve as many symbols of w as possible (i.e., x′ and y′ “long”
and z′ “short”)

x′ 6= x hard to implement, therefore usually x′ := x

Compiler Construction Winter semester 2010/11 8

Aspects of Error Handling

Further criteria for “good” error handling:

Continuation of parsing in any case, independent of severity of
error

High probability of correct error diagnosis

Suppression of subsequent errors

Complexity of analyzing correct inputs not impaired

Observation: no “best method” available

correction not unique

experience of programmer

peculiarities of (programming) language

=⇒ employ heuristics

Compiler Construction Winter semester 2010/11 9

Panic Mode

Simplest form of error handling: panic mode
Upon occurrence of an error,

skip input symbols ...

until a token in a selected set of “separating” or “closing” tokens
appears (synchronizing tokens)

Example: suitable synchronizing tokens in imperative languages for

assignments: “;”

declarations: “;” or “,”

control structures: fi or od

blocks: end

Challenge: choose set of synchronizing tokens such that

parser recovers quickly from errors that are likely to occur and

not too much input is overread

(see Aho/Lam/Sethi/Ullman: Compilers: Principles, Techniques, and

Tools, 2nd ed., pp. 228)
Compiler Construction Winter semester 2010/11 10

Error Handling Example I

Example 21.1 (cf. Example 9.3)

G′

AE : E → TE′ (1)
E′ → +TE′ | ε (2, 3)
T → FT ′ (4)
T ′ → *FT ′ | ε (5, 6)
F → (E) | a | b (7, 8, 9)

A ∈ N fo(A)
E {ε,)}
E′ {ε,)}
T {+, ε,)}
T ′ {+, ε,)}
F {*, +, ε,)}

With synchronizing tokens from fo sets:

act : Σε × Xε → {(α, i) | πi = A → α} ∪ {pop, accept, error, sync} (empty = error)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Compiler Construction Winter semester 2010/11 11

Error Handling Example II

Example 21.1 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop sync sync sync sync sync
b (TE′, 1) (FT ′, 4) (b, 9) sync pop sync sync sync sync
((TE′, 1) (FT ′, 4) ((E), 7) sync sync pop sync sync sync
) sync (ε, 3) sync (ε, 6) sync sync sync sync pop sync sync
* (*FT ′, 5) sync sync sync sync sync pop sync
+ (+TE′, 2) sync (ε, 6) sync sync sync sync sync sync pop

ε sync (ε, 3) sync (ε, 6) sync sync sync sync sync sync sync accept

Meaning of table entries:

act(x, Y) = sync
=⇒ pop Y and resume parsing
act(x, A) = error

=⇒ skip x and resume parsing

(+a*+b, E , ε)
` (a*+b, E , ε)
` (a*+b, TE′ , 1)
` (a*+b, FT ′E′, 14)
` (a*+b, aT ′E′ , 148)

` (*+b, T ′E′ , 148)
` (*+b, *FT ′E′, 1485)
` (+b, FT ′E′ , 1485)
` (+b, T ′E′ , 1485)
` (+b, E′ , 14856)
` (+b, +TE′ , 148562)
` (b, TE′ , 148562)
` (b, FT ′E′ , 1485624)
` (b, bT ′E′ , 14856249)
` (ε, T ′E′ , 14856249)
` (ε, E′ , 148562496)
` (ε, ε , 1485624963)

Compiler Construction Winter semester 2010/11 12

Outline

1 Repetition: LL(1) Parsing

2 Error Handling in LL Parsing

3 Repetition: (Noncircular) Attribute Grammars

4 Strongly Noncircular Attribute Grammars

Compiler Construction Winter semester 2010/11 13

Formal Definition of Attribute Grammars

Definition (Attribute grammar)

Let G = 〈N, Σ, P, S〉 ∈ CFGΣ with X := N] Σ.

Let Att = Syn] Inh be a set of (synthesized or inherited) attributes, and
let V =

⋃

α∈Att
V α be a union of value sets.

Let att : X → 2Att be an attribute assignment, and let
syn(Y) := att(Y) ∩ Syn and inh(Y) := att(Y) ∩ Inh for every Y ∈ X .

Every production π = Y0 → Y1 . . . Yr ∈ P determines the set
Varπ := {α.i | α ∈ att(Yi), i ∈ {0, . . . , r}}

of attribute variables of π with the subsets of inner and outer variables:
Inπ := {α.i | (i = 0, α ∈ syn(Yi)) or (i ∈ [r], α ∈ inh(Yi))}

Outπ := Varπ \ Inπ

A semantic rule of π is an equation of the form
α.i = f(α1.i1, . . . , αn.in)

where n ∈ N, α.i ∈ Inπ, αj .ij ∈ Outπ, and f : V α1 × . . . × V αn → V α.

For each π ∈ P , let Eπ be a set with exactly one semantic rule for every
inner variable of π, and let E := (Eπ | π ∈ P).

Then A := 〈G,E ,V 〉 is called an attribute grammar: A ∈ AG.
Compiler Construction Winter semester 2010/11 14

Attribution of Syntax Trees I

Definition (Attribution of syntax trees)

Let A = 〈G,E ,V 〉 ∈ AG , and let t be a syntax tree of G with the set
of nodes K.

K determines the set of attribute variables of t:
Var t := {α.k | k ∈ K labelled with Y ∈ X,α ∈ att(Y)}.

Let k0 ∈ K be an (inner) node where production
π = Y0 → Y1 . . . Yr ∈ P is applied, and let k1, . . . , kr ∈ K be the
corresponding successor nodes. The attribute equation system Ek0

of k0 is obtained from Eπ by substituting every attribute index
i ∈ {0, . . . , r} by ki.

The attribute equation system of t is given by
Et :=

⋃

{Ek | k inner node of t}.

Compiler Construction Winter semester 2010/11 15

Circularity of Attribute Grammars

Goal: unique solvability of equation system
=⇒ avoid cyclic dependencies

Definition (Circularity)

An attribute grammar A = 〈G,E ,V 〉 ∈ AG is called circular if there
exists a syntax tree t such that the attribute equation system Et is
recursive (i.e., some attribute variable of t depends on itself).
Otherwise it is called noncircular.

Remark: because of the division of Varπ into Inπ and Outπ, cyclic
dependencies cannot occur at production level (see Corollary 16.8).

Compiler Construction Winter semester 2010/11 16

Attribute Dependency Graphs and Circularity I

Observation: a cycle in the dependency graph Dt of a given syntax
tree t is caused by the occurrence of a “cover” production
π = A0 → w0A1w1 . . . Arwr ∈ P in a node k0 of t such that

the dependencies in Ek0 yield the “upper end” of the cycle and

for at least one i ∈ [r], some attributes in syn(Ai) depend on
attributes in inh(Ai).

Example

on the board

To identify such “critical” situations we need to determine for each
i ∈ [r] the possible ways in which attributes in syn(Ai) can depend on
attributes in inh(Ai).

Compiler Construction Winter semester 2010/11 17

Attribute Dependency Graphs and Circularity II

Definition (Attribute dependence)

Let A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉.

If t is a syntax tree with root label A ∈ N and root node k,
α ∈ syn(A), and β ∈ inh(A) such that β.k →+

t α.k, then α is

dependent on β below A in t (notation: β
A
↪→ α).

For every syntax tree t with root label A ∈ N ,

is(A, t) := {(β, α) ∈ inh(A) × syn(A) | β
A
↪→ α in t}.

For every A ∈ N ,
IS (A) := {is(A, t) | t syntax tree with root label A}

⊆ 2Inh×Syn .

Remark: it is important that IS (A) is a system of attribute
dependence sets, not a union (later: strong noncircularity).

Example

on the board
Compiler Construction Winter semester 2010/11 18

Outline

1 Repetition: LL(1) Parsing

2 Error Handling in LL Parsing

3 Repetition: (Noncircular) Attribute Grammars

4 Strongly Noncircular Attribute Grammars

Compiler Construction Winter semester 2010/11 19

Simplifying the Circularity Test

Idea: to simplify the circularity test, do not distinguish between
attribute dependences which are caused by different syntax trees

Definition 21.2 (Attribute dependence (modified))

Let A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉.

Reminder: if t is a syntax tree with root label A ∈ N and root
node k, α ∈ syn(A), and β ∈ inh(A) such that β.k →+

t α.k, then α

is dependent on β below A in t (notation: β
A
↪→ α).

For every A ∈ N ,

IS ′(A) := {(β, α) | β
A
↪→ α in some syntax tree with root label A}

⊆ Inh × Syn

Compiler Construction Winter semester 2010/11 20

The Strong Circularity Test

Algorithm 21.3 (Strong circularity test for attribute grammars)

Input: A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉
Procedure: 1 for every A ∈ N , iteratively construct IS ′(A) as

follows:
1 if π = A → w ∈ P , then is [π] ⊆ IS ′(A)
2 if π = A → w0A1w1 . . . Arwr ∈ P , then

is [π; IS ′(A1), . . . , IS
′(Ar)] ⊆ IS ′(A)

2 test whether there exists
π = A → w0A1w1 . . . Arwr ∈ P such that the
following relation is cyclic:

→π ∪
⋃r

i=1{(β.pi, α.pi) | (β, α) ∈ IS ′(Ai)}

(where pi :=
∑i

j=1 |wj−1| + i)
Output: “yes” or “no”

Example 21.4

on the board
Compiler Construction Winter semester 2010/11 21

Strongly Noncircular Attribute Grammars

Definition 21.5 (Strong noncircularity)

An attribute grammar is called strongly noncircular if Algorithm 21.3
yields the answer “no”.

Lemma 21.6

The time complexity of the strong circularity test is polynomial in the
size of the attribute grammar (= maximal length of right-hand sides of
productions).

Proof.

omitted

Compiler Construction Winter semester 2010/11 22

	Repetition: LL(1) Parsing
	Error Handling in LL Parsing
	Repetition: (Noncircular) Attribute Grammars
	Strongly Noncircular Attribute Grammars

