

Compiler Construction

Lecture 21: Error Handling in Top-Down Parsing & Strongly Noncircular Attribute Grammars

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/cc10/>

Winter semester 2010/11

- ① Repetition: $LL(1)$ Parsing
- ② Error Handling in LL Parsing
- ③ Repetition: (Noncircular) Attribute Grammars
- ④ Strongly Noncircular Attribute Grammars

Definition (Lookahead set)

Given $\pi = A \rightarrow \beta \in P$,

$$\text{la}(\pi) := \text{fi}(\beta \cdot \text{fo}(A)) \subseteq \Sigma_\varepsilon$$

is called the **lookahead set** of π (where $\text{fi}(\Gamma) := \bigcup_{\gamma \in \Gamma} \text{fi}(\gamma)$).

Corollary

- ① For all $a \in \Sigma$,
 $a \in \text{la}(A \rightarrow \beta)$ iff $a \in \text{fi}(\beta)$ or $(\beta \Rightarrow^* \varepsilon \text{ and } a \in \text{fo}(A))$
- ② $\varepsilon \in \text{la}(A \rightarrow \beta)$ iff $\beta \Rightarrow^* \varepsilon$ and $\varepsilon \in \text{fo}(A)$

Characterization of $LL(1)$

Theorem (Characterization of $LL(1)$)

$G \in LL(1)$ iff for all pairs of rules $A \rightarrow \beta \mid \gamma \in P$ (where $\beta \neq \gamma$):

$$\text{la}(A \rightarrow \beta) \cap \text{la}(A \rightarrow \gamma) = \emptyset.$$

Proof.

on the board

Remark: the above theorem generally does not hold if $k > 1$
(cf. exercises)

The Deterministic Top-Down Automaton

Definition (Deterministic top-down parsing automaton)

Let $G = \langle N, \Sigma, P, S \rangle \in LL(1)$. The **deterministic top-down parsing automaton** of G , $DTA(G)$, is defined by the following components.

- Input alphabet Σ , pushdown alphabet X , output alphabet $[p]$
- Configurations $\Sigma^* \times X^* \times [p]^*$, initial configuration (w, S, ε) , final configurations $\{\varepsilon\} \times \{\varepsilon\} \times [p]^*$ (as $NTA(G)$)
- Action function

$\text{act} : \Sigma_\varepsilon \times X_\varepsilon \rightarrow \{(\alpha, i) \mid \pi_i = A \rightarrow \alpha\} \cup \{\text{pop}, \text{accept}, \text{error}\}$

with $\text{act}(x, A) := (\alpha, i)$ if $\pi_i = A \rightarrow \alpha$ and $x \in \text{la}(\pi_i)$

$\text{act}(a, a) := \text{pop}$

$\text{act}(\varepsilon, \varepsilon) := \text{accept}$

$\text{act}(x, y) := \text{error}$ otherwise

- Transitions for $x \in \Sigma_\varepsilon$, $w \in \Sigma^*$, $Y \in X$, $\beta \in X^*$, and $z \in [p]^*$:

$$(xw, Y\beta, z) \vdash \begin{cases} (xw, \alpha\beta, zi) & \text{if } \text{act}(x, Y) = (\alpha, i) \\ (w, \beta, z) & \text{if } \text{act}(x, Y) = \text{pop} \end{cases}$$

- 1 Repetition: $LL(1)$ Parsing
- 2 Error Handling in LL Parsing
- 3 Repetition: (Noncircular) Attribute Grammars
- 4 Strongly Noncircular Attribute Grammars

Error Handling

Error configurations of DTA(G):

- $(aw, A\alpha, z)$ where $a \notin \bigcup_{A \rightarrow \beta \in P} \text{la}(A \rightarrow \beta)$ ($\Rightarrow \text{act}(a, A) = \text{error}$)
- $(aw, b\alpha, z)$ where $a \neq b$ ($\Rightarrow \text{act}(a, b) = \text{error}$)
- $(\varepsilon, A\alpha, z)$ where $\varepsilon \notin \bigcup_{A \rightarrow \beta \in P} \text{la}(A \rightarrow \beta)$ ($\Rightarrow \text{act}(\varepsilon, A) = \text{error}$)
- $(\varepsilon, b\alpha, z)$ ($\Rightarrow \text{act}(\varepsilon, b) = \text{error}$)
- (aw, ε, z) ($\Rightarrow \text{act}(a, \varepsilon) = \text{error}$)

Observation: correct prefix property of LL parsing, i.e., syntactic errors are detected at the earliest possible position (every input prefix which does not produce an error can be extended to a word $w \in L(G)$)

Does not mean: error is recognized at the position where it is caused!

Example: assignment `a := b * c - (d + e);`

Possible corrections:

- remove closing bracket: `a := b * c - (d + e);`
- insert opening bracket: `a := b * (c - (d + e));`

- Let $w = xy \in \Sigma^*$ be the input word such that x is the longest prefix of a word in $L(G)$ (i.e., the error is **detected** at the first symbol of y) and $w \notin L(G)$.
- Parser makes assumption about error type and **corrects** w accordingly:
 - Assumes prefix x' of x to be correct
 - Correct prefix property
 \implies there exists $z \in \Sigma^*$ such that $x'z \in L(G)$
 - Parser chooses prefix z' of z and suffix y' of y
 - Parsing resumed with input $w' := x'z'y'$ (at first symbol of z')
(error recovery)
- Desirable properties of correction:
 - At least one symbol of y' can be processed before next error occurs (if $y' \neq \varepsilon$)
 - Preserve as many symbols of w as possible (i.e., x' and y' “long” and z' “short”)
- $x' \neq x$ hard to implement, therefore usually $x' := x$

Further criteria for “good” error handling:

- Continuation of parsing in any case, independent of severity of error
- High probability of correct error diagnosis
- Suppression of subsequent errors
- Complexity of analyzing correct inputs not impaired

Observation: no “best method” available

- correction not unique
- experience of programmer
- peculiarities of (programming) language

⇒ employ heuristics

Simplest form of error handling: **panic mode**

Upon occurrence of an error,

- skip input symbols ...
- until a token in a selected set of “separating” or “closing” tokens appears (**synchronizing tokens**)

Example: suitable synchronizing tokens in **imperative languages** for

- assignments: “;”
- declarations: “;” or “,”
- control structures: **fi** or **od**
- blocks: **end**

Challenge: choose set of synchronizing tokens such that

- parser **recovers quickly** from errors that are likely to occur and
- not too much input is **overread**

(see Aho/Lam/Sethi/Ullman: *Compilers: Principles, Techniques, and Tools*, 2nd ed., pp. 228)

Error Handling Example I

Example 21.1 (cf. Example 9.3)

$$\begin{array}{ll}
 G'_{AE} : & \begin{array}{ll} E \rightarrow TE' & (1) \\ E' \rightarrow +TE' \mid \varepsilon & (2, 3) \\ T \rightarrow FT' & (4) \\ T' \rightarrow *FT' \mid \varepsilon & (5, 6) \\ F \rightarrow (E) \mid a \mid b & (7, 8, 9) \end{array}
 \end{array}$$

$A \in N$	$\text{fo}(A)$
E	$\{\varepsilon,)\}$
E'	$\{\varepsilon,)\}$
T	$\{+, \varepsilon,)\}$
T'	$\{+, \varepsilon,)\}$
F	$\{*, +, \varepsilon,)\}$

With **synchronizing tokens** from $\text{fo}(A)$ sets:

$\text{act} : \Sigma_\varepsilon \times X_\varepsilon \rightarrow \{(\alpha, i) \mid \pi_i = A \rightarrow \alpha\} \cup \{\text{pop}, \text{accept}, \text{error}, \text{sync}\}$ (empty = error)

act	E	E'	T	T'	F	a	b	$($	$)$	$*$	$+$	ε
a	$(TE', 1)$		$(FT', 4)$		$(a, 8)$	pop	sync	sync	sync	sync	sync	
b	$(TE', 1)$		$(FT', 4)$		$(b, 9)$	sync	pop	sync	sync	sync	sync	
$($	$(TE', 1)$		$(FT', 4)$		$((E), 7)$	sync	sync	pop	sync	sync	sync	
$)$	sync	$(\varepsilon, 3)$	sync	$(\varepsilon, 6)$	sync	sync	sync	sync	pop	sync	sync	
$*$				$(*FT', 5)$	sync	sync	sync	sync	sync	pop	sync	
$+$		$(+TE', 2)$	sync	$(\varepsilon, 6)$	sync	sync	sync	sync	sync	sync	pop	
ε	sync	$(\varepsilon, 3)$	sync	$(\varepsilon, 6)$	sync	sync	sync	sync	sync	sync	sync	accept

Error Handling Example II

Example 21.1 (continued)

act	E	E'	T	T'	F	a	b	()	*	+	ϵ
a	$(TE', 1)$		$(FT', 4)$		$(a, 8)$	pop	sync	sync	sync	sync	
b	$(TE', 1)$		$(FT', 4)$		$(b, 9)$	sync	pop	sync	sync	sync	
$($	$(TE', 1)$		$(FT', 4)$		$((E), 7)$	sync	sync	pop	sync	sync	
$)$	sync	$(\epsilon, 3)$	sync	$(\epsilon, 6)$	sync	sync	sync	pop	sync	sync	
*				$(*FT', 5)$	sync	sync	sync	sync	pop	sync	
+		$(+TE', 2)$	sync	$(\epsilon, 6)$	sync	sync	sync	sync	sync	pop	
ϵ	sync	$(\epsilon, 3)$	sync	$(\epsilon, 6)$	sync	sync	sync	sync	sync	accept	

Meaning of table entries:

- $\text{act}(x, Y) = \text{sync}$
 $\implies \text{pop } Y \text{ and resume parsing}$
- $\text{act}(x, A) = \text{error}$
 $\implies \text{skip } x \text{ and resume parsing}$

$(+a*+b, E, \epsilon)$
$(a*+b, E, \epsilon)$
$(a*+b, TE', 1)$
$(a*+b, FT'E', 14)$
$(a*+b, aT'E', 148)$

$\vdash (a*+b, T'E', 148)$
$\vdash (a*+b, *FT'E', 1485)$
$\vdash (+b, FT'E', 1485)$
$\vdash (+b, T'E', 1485)$
$\vdash (+b, E', 14856)$
$\vdash (+b, +TE', 148562)$
$\vdash (b, TE', 148562)$
$\vdash (b, FT'E', 1485624)$
$\vdash (b, bT'E', 14856249)$
$\vdash (\epsilon, T'E', 14856249)$
$\vdash (\epsilon, E', 148562496)$
$\vdash (\epsilon, \epsilon, 1485624963)$

- 1 Repetition: $LL(1)$ Parsing
- 2 Error Handling in LL Parsing
- 3 Repetition: (Noncircular) Attribute Grammars
- 4 Strongly Noncircular Attribute Grammars

Formal Definition of Attribute Grammars

Definition (Attribute grammar)

Let $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ with $X := N \uplus \Sigma$.

- Let $Att = Syn \uplus Inh$ be a set of (synthesized or inherited) attributes, and let $V = \bigcup_{\alpha \in Att} V^{\alpha}$ be a union of value sets.
- Let $att : X \rightarrow 2^{Att}$ be an attribute assignment, and let $syn(Y) := att(Y) \cap Syn$ and $inh(Y) := att(Y) \cap Inh$ for every $Y \in X$.
- Every production $\pi = Y_0 \rightarrow Y_1 \dots Y_r \in P$ determines the set

$$Var_{\pi} := \{\alpha.i \mid \alpha \in att(Y_i), i \in \{0, \dots, r\}\}$$

of attribute variables of π with the subsets of inner and outer variables:

$$In_{\pi} := \{\alpha.i \mid (i = 0, \alpha \in syn(Y_i)) \text{ or } (i \in [r], \alpha \in inh(Y_i))\}$$
$$Out_{\pi} := Var_{\pi} \setminus In_{\pi}$$

- A semantic rule of π is an equation of the form

$$\alpha.i = f(\alpha_1.i_1, \dots, \alpha_n.i_n)$$

where $n \in \mathbb{N}$, $\alpha.i \in In_{\pi}$, $\alpha_j.i_j \in Out_{\pi}$, and $f : V^{\alpha_1} \times \dots \times V^{\alpha_n} \rightarrow V^{\alpha}$.

- For each $\pi \in P$, let E_{π} be a set with exactly one semantic rule for every inner variable of π , and let $E := (E_{\pi} \mid \pi \in P)$.

Then $\mathfrak{A} := \langle G, E, V \rangle$ is called an attribute grammar: $\mathfrak{A} \in AG$.

Definition (Attribution of syntax trees)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$, and let t be a syntax tree of G with the set of nodes K .

- K determines the set of **attribute variables** of t :

$$Var_t := \{\alpha.k \mid k \in K \text{ labelled with } Y \in X, \alpha \in \text{att}(Y)\}.$$

- Let $k_0 \in K$ be an (inner) node where production $\pi = Y_0 \rightarrow Y_1 \dots Y_r \in P$ is applied, and let $k_1, \dots, k_r \in K$ be the corresponding successor nodes. The **attribute equation system** E_{k_0} of k_0 is obtained from E_π by substituting every attribute index $i \in \{0, \dots, r\}$ by k_i .
- The **attribute equation system** of t is given by

$$E_t := \bigcup \{E_k \mid k \text{ inner node of } t\}.$$

Goal: **unique solvability** of equation system
⇒ avoid cyclic dependencies

Definition (Circularity)

An attribute grammar $\mathfrak{A} = \langle G, E, V \rangle \in AG$ is called **circular** if there exists a syntax tree t such that the attribute equation system E_t is recursive (i.e., some attribute variable of t depends on itself). Otherwise it is called **noncircular**.

Remark: because of the division of Var_π into In_π and Out_π , cyclic dependencies cannot occur at production level (see Corollary 16.8).

Observation: a cycle in the dependency graph D_t of a given syntax tree t is caused by the occurrence of a “cover” production

$\pi = A_0 \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ in a node k_0 of t such that

- the dependencies in E_{k_0} yield the “upper end” of the cycle and
- for at least one $i \in [r]$, some attributes in $\text{syn}(A_i)$ depend on attributes in $\text{inh}(A_i)$.

Example

on the board

To identify such “critical” situations we need to determine for each $i \in [r]$ the possible ways in which attributes in $\text{syn}(A_i)$ can depend on attributes in $\text{inh}(A_i)$.

Definition (Attribute dependence)

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

- If t is a syntax tree with root label $A \in N$ and root node k , $\alpha \in \text{syn}(A)$, and $\beta \in \text{inh}(A)$ such that $\beta.k \rightarrow_t^+ \alpha.k$, then α is **dependent on β below A in t** (notation: $\beta \xrightarrow{A} \alpha$).
- For every syntax tree t with root label $A \in N$,
$$\text{is}(A, t) := \{(\beta, \alpha) \in \text{inh}(A) \times \text{syn}(A) \mid \beta \xrightarrow{A} \alpha \text{ in } t\}.$$
- For every $A \in N$,
$$\begin{aligned} \text{IS}(A) &:= \{ \text{is}(A, t) \mid t \text{ syntax tree with root label } A \} \\ &\subseteq 2^{\text{Inh} \times \text{Syn}}. \end{aligned}$$

Remark: it is important that $\text{IS}(A)$ is a **system** of attribute dependence sets, not a **union** (later: **strong noncircularity**).

Example

on the board

- 1 Repetition: $LL(1)$ Parsing
- 2 Error Handling in LL Parsing
- 3 Repetition: (Noncircular) Attribute Grammars
- 4 Strongly Noncircular Attribute Grammars

Simplifying the Circularity Test

Idea: to simplify the circularity test, do not distinguish between attribute dependences which are caused by **different syntax trees**

Definition 21.2 (Attribute dependence (modified))

Let $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$.

- Reminder: if t is a syntax tree with root label $A \in N$ and root node k , $\alpha \in \text{syn}(A)$, and $\beta \in \text{inh}(A)$ such that $\beta.k \rightarrow_t^+ \alpha.k$, then α is dependent on β below A in t (notation: $\beta \xrightarrow{A} \alpha$).
- For every $A \in N$,

$$\begin{aligned} IS'(A) &:= \{(\beta, \alpha) \mid \beta \xrightarrow{A} \alpha \text{ in some syntax tree with root label } A\} \\ &\subseteq \text{Inh} \times \text{Syn} \end{aligned}$$

The Strong Circularity Test

Algorithm 21.3 (Strong circularity test for attribute grammars)

Input: $\mathfrak{A} = \langle G, E, V \rangle \in AG$ with $G = \langle N, \Sigma, P, S \rangle$

Procedure: ① for every $A \in N$, *iteratively construct $IS'(A)$ as follows:*

① if $\pi = A \rightarrow w \in P$, then $is[\pi] \subseteq IS'(A)$

② if $\pi = A \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$, then
 $is[\pi; IS'(A_1), \dots, IS'(A_r)] \subseteq IS'(A)$

② test whether there exists

$\pi = A \rightarrow w_0 A_1 w_1 \dots A_r w_r \in P$ such that the
following relation is *cyclic*:

$$\rightarrow_\pi \cup \bigcup_{i=1}^r \{(\beta.p_i, \alpha.p_i) \mid (\beta, \alpha) \in IS'(A_i)\}$$

$$(\text{where } p_i := \sum_{j=1}^i |w_{j-1}| + i)$$

Output: “yes” or “no”

Example 21.4

on the board

Definition 21.5 (Strong noncircularity)

An attribute grammar is called **strongly noncircular** if Algorithm 21.3 yields the answer “no”.

Lemma 21.6

*The time complexity of the strong circularity test is **polynomial** in the size of the attribute grammar (= maximal length of right-hand sides of productions).*

Proof.

omitted

