
Compiler Construction
Lecture 22:

Evaluation of Strongly Noncircular Attribute Grammars

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Outline

1 Repetition: Strongly Noncircular Attribute Grammars

2 (Strongly) Noncircular Attribute Grammars

3 Evaluation of Strongly Noncircular Attribute Grammars

Compiler Construction Winter semester 2010/11 2

Simplifying the Circularity Test

Idea: to simplify the circularity test, do not distinguish between
attribute dependences which are caused by different syntax trees

Definition (Attribute dependence (modified))

Let A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉.

Reminder: if t is a syntax tree with root label A ∈ N and root
node k, α ∈ syn(A), and β ∈ inh(A) such that β.k →+

t α.k, then α

is dependent on β below A in t (notation: β
A
↪→ α).

For every A ∈ N ,

IS ′(A) := {(β, α) | β
A
↪→ α in some syntax tree with root label A}

⊆ Inh × Syn

Compiler Construction Winter semester 2010/11 3

The Strong Circularity Test

Algorithm (Strong circularity test for attribute grammars)

Input: A = 〈G,E ,V 〉 ∈ AG with G = 〈N,Σ, P, S〉
Procedure: 1 for every A ∈ N , iteratively construct IS ′(A) as

follows:
1 if π = A → w ∈ P , then is [π] ⊆ IS ′(A)
2 if π = A → w0A1w1 . . . Arwr ∈ P , then

is [π; IS ′(A1), . . . , IS
′(Ar)] ⊆ IS ′(A)

2 test whether there exists
π = A → w0A1w1 . . . Arwr ∈ P such that the
following relation is cyclic:

→π ∪
⋃r

i=1{(β.pi, α.pi) | (β, α) ∈ IS ′(Ai)}

(where pi :=
∑i

j=1 |wj−1|+ i)
Output: “yes” or “no”

Example

on the board

Compiler Construction Winter semester 2010/11 4

Strongly Noncircular Attribute Grammars

Definition (Strong noncircularity)

An attribute grammar is called strongly noncircular if Algorithm 21.3
yields the answer “no”.

Lemma

The time complexity of the strong circularity test is polynomial in the
size of the attribute grammar (= maximal length of right-hand sides of
productions).

Proof.

omitted

Compiler Construction Winter semester 2010/11 5

Outline

1 Repetition: Strongly Noncircular Attribute Grammars

2 (Strongly) Noncircular Attribute Grammars

3 Evaluation of Strongly Noncircular Attribute Grammars

Compiler Construction Winter semester 2010/11 6

(Strongly) Noncircular Attribute Grammars

Lemma 22.1
1 Every strongly noncircular attribute grammar is noncircular.

2 There are noncircular attribute grammars which are not strongly
noncircular.

Proof.

1 Clear since is ⊆ IS ′(A) for every A ∈ N and is ∈ IS (A)

2 The attribute grammar in Example 21.4 is noncircular but not
strongly noncircular (on the board).

Compiler Construction Winter semester 2010/11 7

Outline

1 Repetition: Strongly Noncircular Attribute Grammars

2 (Strongly) Noncircular Attribute Grammars

3 Evaluation of Strongly Noncircular Attribute Grammars

Compiler Construction Winter semester 2010/11 8

Attribute Evaluation Methods

Given: (strongly) noncircular attribute grammar
A = 〈G,E ,V 〉 ∈ AG
syntax tree t of G
valuation v : SynΣ → V where
SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Methods: 1 Topological sorting of Dt:
1 start with attribute variables which depend at most

on synthesized attributes of terminals (SynΣ)
2 proceed by successive substitution

2 Recursive functions (for strongly noncircular AGs):
1 for every A ∈ N and α ∈ syn(A), define evaluation

function gA,α with the following parameters:
the node of t where α has to be evaluated and
all inherited attributes of A on which α (potentially)

depends

2 for every α ∈ syn(S), evaluate gS,α(k0) where k0
denotes the root of t

3 Special cases: S-attributed grammars (yacc), L-attributed
grammars

Compiler Construction Winter semester 2010/11 9

Attribute Evaluation by Recursive Functions

Restriction: only for strongly noncircular attribute grammars

Principle: 1 for every A ∈ N and α ∈ syn(A), define evaluation
function gA,α with the following parameters:

the node of t where α has to be evaluated (which is
labelled by A) and
all inherited attributes of A on which α (potentially)
depends (that is, {β ∈ inh(A) | (β, α) ∈ IS ′(A)})

2 given a syntax tree t with root k0, evaluate gS,α(k0) for
every α ∈ syn(S)

Result: evaluates synthesized attribute variables at root of t and all
attribute variables on which they actually depend (according to
Et)

Compiler Construction Winter semester 2010/11 10

Definition of Evaluation Functions I

For every A ∈ N and α ∈ syn(A), let

IS ′(A) ⊆ inh(A) × syn(A) as computed by strong circularity test
(Algorithm 21.3)

inh(A,α) := {β ∈ inh(A) | (β, α) ∈ IS ′(A)}

A → δ1 | . . . | δm all A-productions in P

Then gA,α is given by
gA,α(k0, inh(A,α)) := case production applied at k0 of

...
A → δj : eval(α.0)...

end
with

eval(γ.i) :=



























γ if γ ∈ Inh, i = 0
f(eval(γ1.i1), . . . , eval(γn.in)) if γ.i ∈ InA→δj , γ.i =

f(γ1.i1, . . . , γn.in) ∈ EA→δj

gYi,γ(ki, eval(β1.i), . . . , eval(βl.i)) if γ ∈ Syn, i > 0, Yi ∈ N,
inh(Yi, γ) = {β1, . . . , βl}

v(γ.i) if γ ∈ Syn, i > 0, Yi ∈ Σ
where δj = Y1 . . . Yr, and where ki denotes the ith successor of k0

Compiler Construction Winter semester 2010/11 11

Definition of Evaluation Functions II

Example 22.2 (cf. Example 15.2)

G′

B :

S → L v.0 = v.1
p.1 = 0

S → L.L v.0 = v.1 + v.3
p.1 = 0
p.3 = −l.3

L → B v.0 = v.1
l.0 = 1
p.1 = p.0

L → LB v.0 = v.1 + v.2
l.0 = l.1 + 1
p.1 = p.0 + 1
p.2 = p.0

B → 0 v.0 = 0
B → 1 v.0 = 2p.0

A ∈ N S L B
IS ′(A) ∅ {(p, v)} {(p, v)}

gS,v(k0) = case production(k0) of
S → L : gL,v(k1, 0)
S → L.L : gL,v(k1, 0) +

gL,v(k3,−gL,l(k3))
end

gL,v(k0, p) = case production(k0) of
L → B : gB,v(k1, p)
L → LB : gL,v(k1, p + 1)

+ gB,v(k2, p)
end

gL,l(k0) = case production(k0) of
L → B : 1
L → LB : gL,l(k1) + 1

end
gB,v(k0, p) = case production(k0) of

B → 0 : 0
B → 1 : 2p

end

Compiler Construction Winter semester 2010/11 12

Example Evaluation

Example 22.2 (continued)

gS,v(k0) = case production(k0) of
S → L : gL,v(k1, 0)
S → L.L : gL,v(k1, 0) +

gL,v(k3,−gL,l(k3))
end

gL,v(k0, p) = case production(k0) of
L → B : gB,v(k1, p)
L → LB : gL,v(k1, p+ 1)

+ gB,v(k2, p)
end

gL,l(k0) = case production(k0) of
L → B : 1
L → LB : gL,l(k1) + 1

end
gB,v(k0, p) = case production(k0) of

B → 0 : 0
B → 1 : 2p

end

Syntax tree t:

k0 : S

k1 : L k2 : . k3 : L

k4 : B k6 : B

k5 : 0 k7 : 1

gS,v(k0)
= gL,v(k1, 0) + gL,v(k3,−gL,l(k3))
= gB,v(k4, 0) + gL,v(k3,−gL,l(k3))
= 0 + gL,v(k3,−gL,l(k3))
= 0 + gB,v(k6,−gL,l(k3))
= 0 + 2−gL,l(k3)

= 0 + 2−1

= 0.5
Compiler Construction Winter semester 2010/11 13

Why Strong Noncircularity?

If the attribute grammar is not strongly noncircular, then the
construction of the evaluation functions fails.

Example 22.3 (cf. Example 21.4)

S → A α.0 = α2.1
β1.1 = α1.1
β2.1 = α2.1

A → a α1.0 = β2.0
α2.0 = 2

A → b α1.0 = 1
α2.0 = β1.0

From Example 21.4:
IS ′(A) = {(β2, α1), (β1, α2)}

Definition of gS,α:

gS,α(k0)
= eval(α.0)
= eval(α2.1)
= gA,α2(k1, eval(β1.1))
= gA,α2(k1, eval(α1.1))
= gA,α2(k1, gA,α1(k1, eval(β2.1)))
= gA,α2(k1, gA,α1(k1, eval(α2.1))

=⇒ does not terminate!

Compiler Construction Winter semester 2010/11 14

	Repetition: Strongly Noncircular Attribute Grammars
	(Strongly) Noncircular Attribute Grammars
	Evaluation of Strongly Noncircular Attribute Grammars

