Compiler Construction

Lecture 23: Code Generation IV
(Implementation of Static Data Structures)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/
P

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

@ Repetition: The Example Programming Language EPL

Rm Compiler Construction Winter semester 2010/11 2

Syntax of EPL

Definition (Syntax of EPL)

The syntax of EPL is defined as follows:
Z: z (* z is an integer *)
Ide : I (* I is an identifier *)
AFEzp: Au=z|I|A+As|...
BEzp: B :u= A; <Ay |not B|Bj and By | B; or By
Cmd : C:u=1:=A]|C1;Cy|if B then C] else (s |
while Bdo C | I(Q)
Dcl : D ::= Do Dy Dp
Do ::=¢|const Iy :=21,...,I, := zp;
Dy :=c¢|var I, ... ,I,;
Dp ::=¢|proc [1;Ky; ... ;1 Ky
Bk - K:=DC
Pgm : P = in/out I, ...,1,; K.

m Compiler Construction Winter semester 2010/11

© Implementation of Data Structures

Rm Compiler Construction nter semester 2010/11

Implementation of Data Structures

Source code: data structures = arrays, records, lists, trees, ...
= structured state space, variables with components

Abstract machine: linear memory structure, cells for storing atomic
data
Translation: mapping of structured state space to linear memory
(= address computation)
o static data structures: memory reqirements known at
compile time
@ dynamic data structures: memory reqirements
runtime dependent
—> heap, pointers, garbage collection, ...
First step:
@ static data structures (arrays and records)
@ inductive type definitions

@ no procedures (for simplification; “orthogonal” extension)

m' Compiler Construction Winter semester 2010/11 5

© Static Data Structures

Rm Compiler Construction nter semester 2010/11

Modified Syntax of EPL

Definition 23.1 (Modified syntax of EPL)

The modified syntax of EPL is defined as follows (where n>1):

if F then C] else (5 | while F do C
Dc Dy Dy
elconst Ity :=cy;...51, 1= cp;
Dr w=c¢|type I} :=T1;...;1, :=T,;
Dy i=c¢|var @y : Tv; ..., : Ty
Pgm: Pu:=DC

m Compiler Construction Winter semester 2010/11

Z: z (* z is an integer *)
B : b ::= true | false (* bis a Boolean *)
R: 7 (* r is a real number *)
Con cu=z|b|r (* ¢ is a constant *)
Ide : 1 (* I is an identifier *)
Type T ::=Dbool | int |real | I | array[z;..22] of T |
record [:T11; ... ;1,:T, end

Var: Vu=I|VIE]|V.I

Exp : E:=c|V|Ei+Ey|Ey<Ey|FEand Ey | ...
Cmd: Cu=V:=E|C;;C,|

D

Static Semantics 1

©

All identifiers in a declaration D have to be different.

In T =record I:Ti; ... ;I,:T;, end, all selectors I; must be
different.

InT = arrayl[z;..29] of T, 23 < 2o.

Type definitions must not be recursive:

if Dp =type Iy :=1T11;...;1, :=T,; and type identifier I occurs
in Tj, then I € {Il, e ,Ij_l}.

The type identifiers used in in a variable declaration Dy must be
declared.

Every identifier used in a command C must be declared in D (as a
constant or variable).

Variables in expressions and assignments have a base type
(bool/int/real; possibly via type identifiers).

m' Compiler Construction Winter semester 2010/11 8

Static Semantics 11

o Array indices must have type int.
@ Execution conditions (while) and branching expressions (if) must
have type bool.
o The types of the left-hand side and of the right-hand side types of
an assignment must be compatible.
@ Type compatibility: Z C R in mathematics, but not on computers
(different representation)
= type casts
weak typing: implicit casting by compiler (2.5 + 1,1 + "42")
— risc of undetected “real” errors;
for programming-in-the-small (script languages)
strong typing: explicit casting by programmer
—> enhanced software reliability;
for programming-in-the-large
o Instantiation of operators/functions/procedures/... for different
parameter types: polymorphism or overloading
+:int X int — int +:real X real — real

Rm Compiler Construction Winter semester 2010/11 9

@ Modifying the Abstract Machine

Rm Compiler Construction ter semester 2010/11 10

The Modified Abstract Machine AM

o Additional main storage for keeping data values

@ Procedure stack not required anymore (as procedures no longer
supported)

Definition 23.2 (Modified abstract machine for EPL)

The modified abstract machine for EPL (AM) is defined by the state
space

S := PC x DS x MS

with
@ the program counter PC := N,

o the data stack DS := R*, and
@ the main storage MS := {o | 0 : N — R}.

m Compiler Construction Winter semester 2010/11 11

New AM Instructions

Definition 23.3 (New AM instructions)

@ Procedure instructions are no longer needed.

@ Transfer instructions (LOAD (dif , off), STORE(dif , off)) are replaced by
the following instructions with the respective semantics [O] : S --» S:

[LoAD](a,d : n,o0) := (a+1,d: o(n),o)
ifneN

[STORE](a,d : n:1,0) := (a+ 1,d,0[n > r])
ifneN

® Moreover the following instruction for checking array bounds is
introduced:

(a+1,d: z,0) if z€{z1,...,22}
[CAB(z1,22)](a,d : z,0) := {(O,d: RTE ,0) otherwise

runtime error

m Compiler Construction Winter semester 2010/11 12

© Translation of Static Data Structures into AM Programs

Rm Compiler Construction ter semester 2010/11 13

Modifying the Symbol Table

({const} x (BUZ UR))

({var} x Ide x N)

({type} x {bool,int,real} x {1})
({type} x {array} x Z? x Ide x N)
({type} x {record} x (Ide? x N)* x N)}

Remarks:

@ Variable descriptor (var,I,n): type I, memory address n

o Last component of type entry: memory requirement
(base types: 1 “cell”)

e Array descriptor (type, array, 21, 22, [, n):
bounds 21, 23, component type [

@ Record descriptor (type,record, Iy, Ji,01,...,1;,J;,01,n): selector
Iy, component type Ji, memory offset o

o “Indexed” table lookup: st(I.Iy) := (Jk,0r)
if st(/) = (type,record,..., I, Ji, 0, ..., n)

m' Compiler Construction Winter semester 2010/11 14

Maintaining the Symbol Table I

The symbol table is again maintained by the function update(D, st)
which specifies the update of symbol table st according to declaration
D.

For the sake of simplicity we assume that D = Do Dy Dy € Dcl is
flattened, i.e., that every subtype is named by an identifier:
o If Dp =type I1:=Ty;...;1,:=T,;, then for every k € [n]
o T}, € {bool,int,real} or
o T} € {Il,...,.[kfl} or
o T}, = arraylz;..22] of I; where j € [k — 1] or
o Ty, =record Ji:1j ;...;J;:1; end where ji,...,7; € [k —1]
e For Dr as above, Dy must be of the form
Dy =var Jy:1j;...;J;: 1, ; where ji,...,j; € [n]

m' Compiler Construction Winter semester 2010/11

Maintaining the Symbol Table 11

Definition 23.1 (Modified update function)

update : Dcl x Tab --+ Tab is defined by
update(D¢c Dr Dy, st) := update(Dy, update(Dr, update(Dc, st)))
update(e, st) := st
update(const Ir:=ci;...;1n:=Cpnj;,st)
:= st[I1 — (comst,ci1),...,In — (const,cy)]
update(type [:=bool; D/, st) := update(type D7,st[l — (type,bool,1)])
update(type I:=int;D7,st) := update(type D, st[l — (type,int,1)])
update(type [:=real;D’,st) := update(type D7,st[l — (type,real,l)])
update(type I:=J;Drp,st) := update(type D7, st[I — st(J)])
update(type [:=arraylzi..22] of J;D7,st)
:= update(type D7,
st[I — (type, array, z1, 22, J, k - n)])
if st(J) = (type,...,n) and k = 20 — 21 + 1
update(type I:=record Ir:Ji;...;I;:J; end; D7, st)
:= update(type D7, st[l —
(type,record, I1, J1,0, Iz, J2,n1, . . .,
Ila Jl7 Zi;} i, Zi’:l n'b)])
if st(J;) = (type,...,n;) for i € [{]
update(var Ii:Ji;...;In:Jn;,st) := st[l1 — (var, J1,0), I — (var, Jo,n1),. ..,
In — (var, Jn7 27}—11 nl)]

i=

if st(J;) = (type, ..., n;) for i € [I]

m Compiler Construction Winter semester 2010/11 16

Maintaining the Symbol Table III

Example 23.2 (Modified update function)

Let D := type Bool=bool; Int=int;
Array=array[1..20] of Bool;
Record=record S:Array; T:Int end;

var x:Int; y:Array; z:Record;

Then
update(D,st) = st[Bool — (type,bool, 1),
Int — (type, int, 1)
Array — (type, array,l 20, Bool, 20),
Recordr—>(type record, S Array,O T, Int, 20,21),
— (var, Int,0),
y+—>(var Array,l%
— (var,Record, 21)]

m Compiler Construction Winter semester 2010/11 17

Translation of Variables I

The translation employs the following auxiliary function to determine
the type identifier of a given variable:

Definition 23.3 (vtype function)

The mapping
vtype : Var x Tab --+ Ide

is given by
vtype(I,st) = J
if st(I) = (var, J,n)
vtype(V[E],st) = J

if vtype(V,st) =1

and st(I) = (type, array, 21, 22, J,n)
vtype(V.1,st) = J

if vtype(V,st) = I’ and st(I'.I) = (J,0)

m Compiler Construction Winter semester 2010/11 18

Translation of Variables I1

The function vt generates code for computing the memory address of a
variable (and storing it on the data stack):

Definition 23.4 (Translation of variables)

The mapping
vt : Var x Tab --» AM
is given by
vt(Z,st) := LIT(n);
if st(I) = (var, J,n)

vt(V [E],st) := vt(V, st) % address of V
et(E, st) % array index
CAB(z1,29); % bounds checking

LIT(z1); SUB; % index difference
LIT(n); MULT; % relative address

ADD; % address of V [E]
if Vtype(V t) = I and st(I) = (type, array, 21, 22, J, m)
and st(J) = (type,...,n)

vt(V.I,st) := vt(V,st) % address of V
LIT(0); % offset
ADD; % address of V. I
if vtype(V,st) = I’ and st(I'.I) = (J, 0)

m Compiler Construction Winter semester 2010/11 19

Translation of Expressions

Definition 23.5 (Translation of expressions)

The mapping
et : Bxp x Tab --» AM
is given by
et(c,st) = LIT(c);
LIT(e); if V € Ide and st(V) = (const,¢)
et(V,st) := {vt(V,st) otherwise
LOAD;
et(F1+E9,st) = et(E,st)
et(Fa,st)
ADD;

m Compiler Construction Winter semester 2010/11 20

Translation of Commands and Programs

Definition 23.6 (Translation of commands)

For the mapping
ct: Cmd x Tab --» AM

only the handling of assignments needs to be adapted:

ct(V:=E, st) := vt(V,st) % address of left-hand side
et(E,st) % value of right-hand side
STORE;

Definition 23.7 (Translation of programs)

The mapping
trans : Pgm --+ AM

is defined by
trans(D C) := ct(C, update(D, stp))

m Compiler Construction Winter semester 2010/11 21

O A Translation Example

Rm Compiler Construction nter semester 2010/11

Translation Example I
Example 23.8

P = type Int=int; Array=array[1..10] of Int;}D
var a:Array; i:Int;
i:=1;
while i<=10 do C
alil:=i; i:=i+1;

ct(C, update(D, stg))
update(D, stg)
stg[Int — (type,int,1),
Array — (type, array, 1, 10, Int, 10),
= (
= (

trans(P)
st

var, Array, 0),
var, Int, 10)]

ct(C,st) = ct(i:=1, st)
t(while i<=10 do al[il:=i; i:=i+1,st)
ct(i:=1,st) = vt(i,st) % adr(i)
et(1,st) % val(1)
STORE;
= LIT(10); LIT(1); STORE;

Compiler Construction Winter semester 2010/11 23

Translation Example 11

Example 23.8 (continued)

ct(while i<=10 do al[il:=i; i:=i+1,st)
= a: et(i<=10,st)

JFALSE(a’) ;
ct(alil:=i; i:=i+1,st)
JMP (a) ;

a :

et(i<=10,st) = LIT(10); LOAD; LIT(10); LE;
ct(alil:=i; i:=i+1,st) = ct(alil:=i,st) ct(i:=i+1,st)
ct(alil :=i,st) = vt(alil,st) % adr(alil)

et(d, st) % val(i)
STORE;
vt(alil, st) = vt(a,st) % adr(a)
et(i, st) % val(i)
CAB(1,10); % bounds checking

LIT(1); SUB; % index diff.
LIT(1); MULT; % rel. address
ADD; % adr(alil)
vt(a,st) = LIT(0);
et(i,st) = LIT(10); LOAD;
Ct(i:=i+1,St) = LIT(10); LIT(10); LOAD; LIT(1); ADD; STORE;

m Compiler Construction Winter semester 2010/11

	Repetition: The Example Programming Language EPL
	Implementation of Data Structures
	Static Data Structures
	Modifying the Abstract Machine
	Translation of Static Data Structures into AM Programs
	A Translation Example

