
Compiler Construction

Lecture 23: Code Generation IV
(Implementation of Static Data Structures)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Outline

1 Repetition: The Example Programming Language EPL

2 Implementation of Data Structures

3 Static Data Structures

4 Modifying the Abstract Machine

5 Translation of Static Data Structures into AM Programs

6 A Translation Example

Compiler Construction Winter semester 2010/11 2

Syntax of EPL

Definition (Syntax of EPL)

The syntax of EPL is defined as follows:

Z : z (* z is an integer *)

Ide : I (* I is an identifier *)

AExp : A ::= z | I | A1 + A2 | . . .

BExp : B ::= A1 < A2 | not B | B1 and B2 | B1 or B2

Cmd : C ::= I := A | C1;C2 | if B then C1 else C2 |
while B do C | I()

Dcl : D ::= DC DV DP

DC ::= ε | const I1 := z1, . . . ,In := zn;
DV ::= ε | var I1, . . . ,In;
DP ::= ε | proc I1;K1; . . . ;In;Kn;

Blk : K ::= D C

Pgm : P ::= in/out I1, . . . ,In;K.

Compiler Construction Winter semester 2010/11 3

Outline

1 Repetition: The Example Programming Language EPL

2 Implementation of Data Structures

3 Static Data Structures

4 Modifying the Abstract Machine

5 Translation of Static Data Structures into AM Programs

6 A Translation Example

Compiler Construction Winter semester 2010/11 4

Implementation of Data Structures

Source code: data structures = arrays, records, lists, trees, ...
=⇒ structured state space, variables with components

Abstract machine: linear memory structure, cells for storing atomic
data

Translation: mapping of structured state space to linear memory
(=⇒ address computation)

static data structures: memory reqirements known at
compile time
dynamic data structures: memory reqirements
runtime dependent
=⇒ heap, pointers, garbage collection, ...

First step:

static data structures (arrays and records)

inductive type definitions

no procedures (for simplification; “orthogonal” extension)

Compiler Construction Winter semester 2010/11 5

Outline

1 Repetition: The Example Programming Language EPL

2 Implementation of Data Structures

3 Static Data Structures

4 Modifying the Abstract Machine

5 Translation of Static Data Structures into AM Programs

6 A Translation Example

Compiler Construction Winter semester 2010/11 6

Modified Syntax of EPL

Definition 23.1 (Modified syntax of EPL)

The modified syntax of EPL is defined as follows (where n ≥ 1):
Z : z (* z is an integer *)
B : b ::= true | false (* b is a Boolean *)
R : r (* r is a real number *)
Con : c ::= z | b | r (* c is a constant *)
Ide : I (* I is an identifier *)
Type : T ::= bool | int | real | I | array[z1..z2] of T |

record I1:T1; . . . ;In:Tn end
Var : V ::= I | V [E] | V .I
Exp : E ::= c | V | E1 + E2 | E1 < E2 | E1 and E2 | . . .
Cmd : C ::= V :=E | C1;C2 |

if E then C1 else C2 | while E do C
Dcl : D ::= DC DT DV

DC ::= ε | const I1 := c1; . . . ;In := cn;
DT ::= ε | type I1 := T1; . . . ;In := Tn;
DV ::= ε | var I1 : T1; . . . ;In : Tn;

Pgm : P ::= D C

Compiler Construction Winter semester 2010/11 7

Static Semantics I

All identifiers in a declaration D have to be different.

In T = record I1:T1; . . . ;In:Tn end, all selectors Ij must be
different.

In T = array[z1..z2] of T , z1 ≤ z2.

Type definitions must not be recursive:
if DT = type I1 := T1; . . . ;In := Tn; and type identifier I occurs
in Tj, then I ∈ {I1, . . . , Ij−1}.

The type identifiers used in in a variable declaration DV must be
declared.

Every identifier used in a command C must be declared in D (as a
constant or variable).

Variables in expressions and assignments have a base type
(bool/int/real; possibly via type identifiers).

Compiler Construction Winter semester 2010/11 8

Static Semantics II

Array indices must have type int.

Execution conditions (while) and branching expressions (if) must
have type bool.

The types of the left-hand side and of the right-hand side types of
an assignment must be compatible.

Type compatibility: Z ⊆ R in mathematics, but not on computers
(different representation)
=⇒ type casts

weak typing: implicit casting by compiler (2.5 + 1, 1 + "42")
=⇒ risc of undetected “real” errors;

for programming-in-the-small (script languages)
strong typing: explicit casting by programmer

=⇒ enhanced software reliability;
for programming-in-the-large

Instantiation of operators/functions/procedures/... for different
parameter types: polymorphism or overloading

+ : int× int → int + : real× real → real

Compiler Construction Winter semester 2010/11 9

Outline

1 Repetition: The Example Programming Language EPL

2 Implementation of Data Structures

3 Static Data Structures

4 Modifying the Abstract Machine

5 Translation of Static Data Structures into AM Programs

6 A Translation Example

Compiler Construction Winter semester 2010/11 10

The Modified Abstract Machine AM

Additional main storage for keeping data values

Procedure stack not required anymore (as procedures no longer
supported)

Definition 23.2 (Modified abstract machine for EPL)

The modified abstract machine for EPL (AM) is defined by the state
space

S := PC ×DS ×MS

with

the program counter PC := N,
the data stack DS := R

∗, and
the main storage MS := {σ | σ : N → R}.

Compiler Construction Winter semester 2010/11 11

New AM Instructions

Definition 23.3 (New AM instructions)

Procedure instructions are no longer needed.

Transfer instructions (LOAD(dif ,off), STORE(dif ,off)) are replaced by
the following instructions with the respective semantics JOK : S 99K S:

JLOADK(a, d : n, σ) := (a+ 1, d : σ(n), σ)
if n ∈ N

JSTOREK(a, d : n : r, σ) := (a+ 1, d, σ[n 7→ r])
if n ∈ N

Moreover the following instruction for checking array bounds is
introduced:

JCAB(z1,z2)K(a, d : z, σ) :=

{
(a+ 1, d : z, σ) if z ∈ {z1, . . . , z2}
(0, d : RTE

︸︷︷︸

runtime error

, σ) otherwise

Compiler Construction Winter semester 2010/11 12

Outline

1 Repetition: The Example Programming Language EPL

2 Implementation of Data Structures

3 Static Data Structures

4 Modifying the Abstract Machine

5 Translation of Static Data Structures into AM Programs

6 A Translation Example

Compiler Construction Winter semester 2010/11 13

Modifying the Symbol Table

Tab := {st | st : Ide 99K ({const} × (B ∪ Z ∪ R))
∪ ({var} × Ide × N)
∪ ({type} × {bool, int, real} × {1})
∪ ({type} × {array} × Z

2 × Ide × N)
∪ ({type} × {record} × (Ide2 × N)∗ × N)}

Remarks:

Variable descriptor (var, I, n): type I, memory address n

Last component of type entry: memory requirement
(base types: 1 “cell”)

Array descriptor (type, array, z1, z2, I, n):
bounds z1, z2, component type I

Record descriptor (type, record, I1, J1, o1, . . . , Il, Jl, ol, n): selector
Ik, component type Jk, memory offset ok
“Indexed” table lookup: st(I.Ik) := (Jk, ok)
if st(I) = (type, record, . . . , Ik, Jk, ok, . . . , n)

Compiler Construction Winter semester 2010/11 14

Maintaining the Symbol Table I

The symbol table is again maintained by the function update(D, st)
which specifies the update of symbol table st according to declaration
D.

For the sake of simplicity we assume that D = DC DT DV ∈ Dcl is
flattened, i.e., that every subtype is named by an identifier:

If DT = type I1:=T1;. . .;In:=Tn;, then for every k ∈ [n]

Tk ∈ {bool, int, real} or
Tk ∈ {I1, . . . , Ik−1} or
Tk = array[z1..z2] of Ij where j ∈ [k − 1] or
Tk = record J1:Ij1;. . .;Jl:Ijl end where j1, . . . , jl ∈ [k − 1]

For DT as above, DV must be of the form
DV = var J1:Ij1;. . .;Jk:Ijk; where j1, . . . , jk ∈ [n]

Compiler Construction Winter semester 2010/11 15

Maintaining the Symbol Table II

Definition 23.1 (Modified update function)

update : Dcl × Tab 99K Tab is defined by
update(DC DT DV , st) := update(DV ,update(DT , update(DC , st)))

update(ε, st) := st
update(const I1:=c1;. . .;In:=cn;, st)

:= st[I1 7→ (const, c1), . . . , In 7→ (const, cn)]
update(type I:=bool;D′

T , st) := update(type D′
T , st[I 7→ (type, bool, 1)])

update(type I:=int;D′
T , st) := update(type D′

T , st[I 7→ (type, int, 1)])
update(type I:=real;D′

T , st) := update(type D′
T , st[I 7→ (type, real, 1)])

update(type I:=J;D′
T , st) := update(type D′

T , st[I 7→ st(J)])
update(type I:=array[z1..z2] of J;D′

T , st)
:= update(type D′

T ,
st[I 7→ (type, array, z1, z2, J, k · n)])
if st(J) = (type, . . . , n) and k = z2 − z1 + 1

update(type I:=record I1:J1;. . .;Il:Jl end;D′
T , st)

:= update(type D′
T , st[I 7→

(type, record, I1, J1, 0, I2, J2, n1, . . . ,

Il, Jl,
∑

l−1
i=1 ni,

∑

l

i=1 ni)])
if st(Ji) = (type, . . . , ni) for i ∈ [l]

update(var I1:J1;. . .;In:Jn;, st) := st[I1 7→ (var, J1, 0), I2 7→ (var, J2, n1), . . . ,
In 7→ (var, Jn,

∑

n−1
i=1 ni)]

if st(Ji) = (type, . . . , ni) for i ∈ [l]

Compiler Construction Winter semester 2010/11 16

Maintaining the Symbol Table III

Example 23.2 (Modified update function)

Let D := type Bool=bool; Int=int;
Array=array[1..20] of Bool;
Record=record S:Array; T:Int end;

var x:Int; y:Array; z:Record;

Then
update(D, st) = st[Bool 7→ (type, bool, 1),

Int 7→ (type, int, 1),
Array 7→ (type, array, 1, 20, Bool, 20),

Record 7→ (type, record, S, Array, 0, T, Int, 20, 21),
x 7→ (var, Int, 0),
y 7→ (var, Array, 1),
z 7→ (var, Record, 21)]

Compiler Construction Winter semester 2010/11 17

Translation of Variables I

The translation employs the following auxiliary function to determine
the type identifier of a given variable:

Definition 23.3 (vtype function)

The mapping
vtype : Var × Tab 99K Ide

is given by

vtype(I, st) := J
if st(I) = (var, J, n)

vtype(V [E], st) := J
if vtype(V, st) = I
and st(I) = (type, array, z1, z2, J, n)

vtype(V .I, st) := J
if vtype(V, st) = I ′ and st(I ′.I) = (J, o)

Compiler Construction Winter semester 2010/11 18

Translation of Variables II

The function vt generates code for computing the memory address of a
variable (and storing it on the data stack):

Definition 23.4 (Translation of variables)

The mapping
vt : Var × Tab 99K AM

is given by
vt(I, st) := LIT(n);

if st(I) = (var, J, n)
vt(V [E], st) := vt(V, st) % address of V

et(E, st) % array index
CAB(z1,z2); % bounds checking
LIT(z1); SUB; % index difference
LIT(n); MULT; % relative address
ADD; % address of V [E]
if vtype(V, st) = I and st(I) = (type, array, z1, z2, J,m)
and st(J) = (type, . . . , n)

vt(V .I, st) := vt(V, st) % address of V
LIT(o); % offset
ADD; % address of V .I
if vtype(V, st) = I ′ and st(I ′.I) = (J, o)

Compiler Construction Winter semester 2010/11 19

Translation of Expressions

Definition 23.5 (Translation of expressions)

The mapping
et : Exp × Tab 99K AM

is given by

et(c, st) := LIT(c);

et(V, st) :=







LIT(c); if V ∈ Ide and st(V) = (const, c)

vt(V, st)
LOAD;

otherwise

et(E1+E2, st) := et(E1, st)
et(E2, st)
ADD;

...

Compiler Construction Winter semester 2010/11 20

Translation of Commands and Programs

Definition 23.6 (Translation of commands)

For the mapping
ct : Cmd × Tab 99K AM

only the handling of assignments needs to be adapted:

ct(V :=E, st) := vt(V, st) % address of left-hand side
et(E, st) % value of right-hand side
STORE;

Definition 23.7 (Translation of programs)

The mapping
trans : Pgm 99K AM

is defined by
trans(D C) := ct(C,update(D, st∅))

Compiler Construction Winter semester 2010/11 21

Outline

1 Repetition: The Example Programming Language EPL

2 Implementation of Data Structures

3 Static Data Structures

4 Modifying the Abstract Machine

5 Translation of Static Data Structures into AM Programs

6 A Translation Example

Compiler Construction Winter semester 2010/11 22

Translation Example I

Example 23.8

P = type Int=int; Array=array[1..10] of Int;
var a:Array; i:Int;

}

D

i:=1;
while i<=10 do
a[i]:=i; i:=i+1;

}

C

trans(P) = ct(C,update(D, st∅))
st := update(D, st∅)

= st∅[Int 7→ (type, int, 1),
Array 7→ (type, array, 1, 10, Int, 10),

a 7→ (var, Array, 0),
i 7→ (var, Int, 10)]

ct(C, st) = ct(i:=1, st)
ct(while i<=10 do a[i]:=i; i:=i+1, st)

ct(i:=1, st) = vt(i, st) % adr(i)
et(1, st) % val(1)
STORE;

= LIT(10); LIT(1); STORE;

Compiler Construction Winter semester 2010/11 23

Translation Example II

Example 23.8 (continued)

ct(while i<=10 do a[i]:=i; i:=i+1, st)
= a : et(i<=10, st)

JFALSE(a′);
ct(a[i]:=i; i:=i+1, st)
JMP(a);

a′ :
et(i<=10, st) = LIT(10); LOAD; LIT(10); LE;

ct(a[i]:=i; i:=i+1, st) = ct(a[i]:=i, st) ct(i:=i+1, st)
ct(a[i]:=i, st) = vt(a[i], st) % adr(a[i])

et(i, st) % val(i)
STORE;

vt(a[i], st) = vt(a, st) % adr(a)
et(i, st) % val(i)
CAB(1,10); % bounds checking
LIT(1); SUB; % index diff.
LIT(1); MULT; % rel. address
ADD; % adr(a[i])

vt(a, st) = LIT(0);
et(i, st) = LIT(10); LOAD;

ct(i:=i+1, st) = LIT(10); LIT(10); LOAD; LIT(1); ADD; STORE;

Compiler Construction Winter semester 2010/11 24

	Repetition: The Example Programming Language EPL
	Implementation of Data Structures
	Static Data Structures
	Modifying the Abstract Machine
	Translation of Static Data Structures into AM Programs
	A Translation Example

