Compiler Construction

Lecture 24: Code Generation V
(Implementation of Dynamic Data Structures)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/
P

Winter semester 2010/11


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

@ Pscudo-Dynamic Data Structures

Rm Compiler Construction nter semester 2010/11



Variant Records

Example 24.1 (Variant records in Pascal)
TYPE Coordinate = RECORD
nr: INTEGER;
CASE type: (cartesian, polar) OF
cartesian: (x, y: REAL);
polar: (r : REAL; phi: INTEGER )
END

END;
VAR pt: Coordinate;
pt.type := cartesian; pt.x := 0.5; pt.y := 1.2;

m Compiler Construction Winter semester 2010/11



Variant Records

Example 24.1 (Variant records in Pascal)

TYPE Coordinate = RECORD
nr: INTEGER;
CASE type: (cartesian, polar) OF
cartesian: (x, y: REAL);
polar: (r : REAL; phi: INTEGER )
END
END;
VAR pt: Coordinate;
pt.type := cartesian; pt.x := 0.5; pt.y := 1.2;

Implementation:
o Allocate memory for “biggest” variant

o Share memory between variant fields

m Compiler Construction Winter semester 2010/11



Dynamic Arrays

Example 24.2 (Dynamic arrays in Pascal)

FUNCTION Sum(VAR a: ARRAY OF REAL): REAL;
VAR
i: INTEGER; s: REAL;
BEGIN
s := 0.0; FOR i := 0 to HIGH(a) do s := s + al[i] END; Sum := s
END

4

m' Compiler Construction Winter semester 2010/11 4



Dynamic Arrays

Example 24.2 (Dynamic arrays in Pascal)

FUNCTION Sum(VAR a: ARRAY OF REAL): REAL;
VAR
i: INTEGER; s: REAL;
BEGIN
s := 0.0; FOR i := 0 to HIGH(a) do s := s + al[i] END; Sum := s
END
Implementation:

@ Memory requirements unknown at compile time but determined by
actual function/procedure parameters
= mno heap required
@ Use array descriptor with following fields as parameter value:
e starting memory address of array
e size of array
o lower index of array (possibly fixed by 0)
o upper index of array (actually redundant)
@ Use data stack or index register to access array elements

m' Compiler Construction Winter semester 2010/11 4



© Heap Management

Rm Compiler Construction nter semester 2010/11



Dynamic Memory Allocation 1

Dynamically manipulated data structures (lists, trees, graphs, ...)
So far: creation of (static) objects by declaration
Now: creation of (dynamic) objects by explicit memory allocation

Access by (implicit or explicit) pointers

e © e ¢ ¢

Deletion by explicit deallocation or garbage collection
(= automatic deallocation of unreachable objects)

Rm Compiler Construction Winter semester 2010/11 6



Dynamic Memory Allocation 1

Dynamically manipulated data structures (lists, trees, graphs, ...)
So far: creation of (static) objects by declaration
Now: creation of (dynamic) objects by explicit memory allocation

Access by (implicit or explicit) pointers

e © e ¢ ¢

Deletion by explicit deallocation or garbage collection
(= automatic deallocation of unreachable objects)

©

Implementation: runtime stack not sufficient
(lifetime of objects generally exceeds lifetime of procedure calls)

—> new data structure: heap

@ Simplest form of organization:

| Runtime stack — | | < Heap |
+ T
0 SP HP max
(stack pointer) (heap pointer)

Rm Compiler Construction Winter semester 2010/11



Dynamic Memory Allocation II

o New instruction: NEW (“malloc”, ...)
o allocates n memory cells where n = topmost value of runtime stack
e returns address of first cell
o formal semantics
(SP = stack pointer, HP = heap pointer, <.> = dereferencing):
if HP - <SP> > SP
then HP := HP - <SP>; <SP> :

= HP
else error("memory overflow")

Rm Compiler Construction Winter semester 2010/11 7



Dynamic Memory Allocation II

o New instruction: NEW (“malloc”, ...)
o allocates n memory cells where n = topmost value of runtime stack
o returns address of first cell
o formal semantics
(SP = stack pointer, HP = heap pointer, <.> = dereferencing):
if HP - <SP> > SP
then HP := HP - <SP>; <SP> := HP
else error("memory overflow")
@ But: collision check required for every operation which increases
SP (e.g., expression evaluations)
o Efficient solution: add extreme stack pointer EP
e points to topmost SP which will be used in the computation of
current procedure
e statically computable at compile time
o set by procedure entry code
o modified semantics of NEW:

if HP - <SP> > EP
then HP := HP - <SP>; <SP> :=
else error("memory overflow")

HP

m' Compiler Construction Winter semester 2010/11 7



© Memory Deallocation

Rm Compiler Construction nter semester 2010/11



Memory Deallocation

Releasing memory areas that have become unused
@ explicitly by programmer

@ automatically by runtime system (garbage collection)

Rm Compiler Construction Winter semester 2010/11 9



Memory Deallocation

Releasing memory areas that have become unused
@ explicitly by programmer

@ automatically by runtime system (garbage collection)

Management of deallocated memory areas by free list
(usually doubly-linked list)

@ goal: reduction of fragmentation (= heap memory splitted in large
number of non-contiguous free areas)

@ coalescing of contiguous areas

o allocation strategies: first-fit vs. best-fit

m' Compiler Construction Winter semester 2010/11 9



Explicit Deallocation

@ Manually releasing memory areas that have become unused

o Pascal: dispose
o C: free

Rm Compiler Construction Winter semester 2010/11 10



Explicit Deallocation

@ Manually releasing memory areas that have become unused

o Pascal: dispose
o C: free

@ Problems with manual deallocation:
e memory leaks:

o
o

failing to eventually delete data that cannot be referenced
critical for long-running/reactive programs (operating systems,
server code, ...)

e dangling pointer dereference:

CJ
o

referencing of deleted data

may lead to runtime error (if deallocated pointer reset to nil) or
produce side effects (if deallocated pointer keeps value and storage
reallocated)

Compiler Construction Winter semester 2010/11 10



Explicit Deallocation

@ Manually releasing memory areas that have become unused
o Pascal: dispose
o C: free

@ Problems with manual deallocation:
e memory leaks:

@ failing to eventually delete data that cannot be referenced

@ critical for long-running/reactive programs (operating systems,
server code, ...)

e dangling pointer dereference:

o referencing of deleted data

@ may lead to runtime error (if deallocated pointer reset to nil) or
produce side effects (if deallocated pointer keeps value and storage
reallocated)

—> Adopt programming conventions (object ownership) or use
automatic deallocation

m' Compiler Construction Winter semester 2010/11 10



@ Garbage Collection

Rm Compiler Construction nter semester 2010/11 11



Garbage Collection

o Garbage = data that cannot be referenced (anymore)

o Garbage collection = automatic deallocation of unreachable data

Rm Compiler Construction Winter semester 2010/11 12



Garbage Collection

o Garbage = data that cannot be referenced (anymore)

o Garbage collection = automatic deallocation of unreachable data
@ Supported by many programming languages:

@ object-oriented: Java, Smalltalk

o functional: Lisp (first GC), ML, Haskell
e logic: Prolog

e scripting: Perl

Rm Compiler Construction Winter semester 2010/11 12



Garbage Collection

Garbage = data that cannot be referenced (anymore)

©

Garbage collection = automatic deallocation of unreachable data

Supported by many programming languages:
@ object-oriented: Java, Smalltalk
o functional: Lisp (first GC), ML, Haskell
e logic: Prolog
e scripting: Perl
o Design goals for garbage collectors:
@ execution time: no significant increase of application run time
@ space usage: avoid memory fragmentation
@ pause time: minimize maximal pause time of application program
caused by garbage collection (especially in real-time applications)

m' Compiler Construction Winter semester 2010/11 12



Preliminaries

o Object = allocated entity
@ Object has type known at runtime, defining

e size of object
o references to other objects

—> excludes type-unsafe languages that allow manipulation
of pointers (C, C++)

Rm Compiler Construction Winter semester 2010/11 13



Preliminaries

o Object = allocated entity
@ Object has type known at runtime, defining
e size of object
o references to other objects
—> excludes type-unsafe languages that allow manipulation
of pointers (C, C++)
o Reference always to address at beginning of object
(= all references to an object have same value)

m' Compiler Construction Winter semester 2010/11



Preliminaries

Object = allocated entity

Object has type known at runtime, defining
e size of object
o references to other objects
—> excludes type-unsafe languages that allow manipulation
of pointers (C, C++)
Reference always to address at beginning of object
(= all references to an object have same value)

Mutator = application program modifying objects in heap
@ creation of objects by acquiring storage
o introduce/drop references to existing objects

©

Objects become garbage when not reachable by mutator

m' Compiler Construction Winter semester 2010/11



Reachability of Objects

@ Root set = heap data that is directly accessible by mutator
o for Java: static field members and variables on stack
o yields directly reachable objects
o Every object with a reference that is stored in a reachable object
is indirectly reachable

Rm Compiler Construction Winter semester 2010/11 14



Reachability of Objects

@ Root set = heap data that is directly accessible by mutator
o for Java: static field members and variables on stack
o yields directly reachable objects
o Every object with a reference that is stored in a reachable object
is indirectly reachable
@ Mutator operations that affect reachability:
@ object allocation: memory manager returns reference to new object
@ creates new reachable object
e parameter passing and return values: passing of object references
from calling site to called procedure or vice versa
@ propagates reachability of objects

o reference assignment: assignments p := q where with references p
and q
@ creates second reference to object referred to by q, propagating
reachability

@ destroys orginal reference in p, potentially causing unreachability
e procedure return: removes local variables
@ potentially causes unreachability of objects
@ Objects becoming unreachable can cause more objects to become

unreachable
m' Compiler Construction Winter semester 2010/11 14




Identifying Unreachable Objects

Principal approaches:

@ Catch program steps that turn reachable into unreachable objects
= reference counting

@ Periodically locate all reachable objects; others then unreachable
= mark-and-sweep

Rm Compiler Construction Winter semester 2010/11 15



© Reference-Counting Garbage Collection

Rm Compiler Construction ter semester 2010/11 16



Reference-Counting Garbage Collectors I

Working principle:
@ Add reference count field to each heap object
(= number of references to that object)

Rm Compiler Construction Winter semester 2010/11 17



Reference-Counting Garbage Collectors I

Working principle:
o Add reference count field to each heap object
(= number of references to that object)
@ Mutator operations maintain reference count:
@ object allocation: set reference count of new object to 1
e parameter passing: increment reference count of each object passed
to procedure
o reference assignment p := q: decrement/increment reference count
of object referred to by p/q, respectively
@ procedure return: decrement the reference count of each object that
a local variable refers to (multiple decrement if sharing)

Rm Compiler Construction Winter semester 2010/11 17



Reference-Counting Garbage Collectors I

Working principle:
o Add reference count field to each heap object
(= number of references to that object)
@ Mutator operations maintain reference count:
@ object allocation: set reference count of new object to 1
e parameter passing: increment reference count of each object passed
to procedure
o reference assignment p := q: decrement/increment reference count
of object referred to by p/q, respectively
@ procedure return: decrement the reference count of each object that
a local variable refers to (multiple decrement if sharing)
@ Moreover: transitive loss of reachability
e when reference count of object becomes zero
= decrement reference count of each object pointed to (and add
object storage to free list)

Rm Compiler Construction Winter semester 2010/11 17



Reference-Counting Garbage Collectors I

Working principle:
o Add reference count field to each heap object
(= number of references to that object)
@ Mutator operations maintain reference count:
@ object allocation: set reference count of new object to 1
e parameter passing: increment reference count of each object passed
to procedure
o reference assignment p := q: decrement/increment reference count
of object referred to by p/q, respectively
@ procedure return: decrement the reference count of each object that
a local variable refers to (multiple decrement if sharing)
@ Moreover: transitive loss of reachability
e when reference count of object becomes zero
= decrement reference count of each object pointed to (and add
object storage to free list)

(on the board)

Rm Compiler Construction Winter semester 2010/11 17




Reference Counting Garbage Collectors 11

Advantage: Incrementality
@ collector operations spread over mutator’s computation
¢ short pause times (good for real-time/interactive applications)
o immediate collection of garbage (low space usage)
@ exception: transitive loss of reachability (removing a reference may
render many objects unreachable)

@ but: recursive modification can be deferred

Rm Compiler Construction Winter semester 2010/11 18



Reference Counting Garbage Collectors 11

Advantage: Incrementality
@ collector operations spread over mutator’s computation

¢ short pause times (good for real-time/interactive applications)
o immediate collection of garbage (low space usage)

@ exception: transitive loss of reachability (removing a reference may
render many objects unreachable)

@ but: recursive modification can be deferred

Disadvantages:
o Incompleteness:
o cannot collect unreachable, cyclic data structures (cf. Example 24.3)

m' Compiler Construction Winter semester 2010/11 18



Reference Counting Garbage Collectors 11

Advantage: Incrementality
@ collector operations spread over mutator’s computation
¢ short pause times (good for real-time/interactive applications)
o immediate collection of garbage (low space usage)
@ exception: transitive loss of reachability (removing a reference may
render many objects unreachable)

@ but: recursive modification can be deferred

Disadvantages:
o Incompleteness:
o cannot collect unreachable, cyclic data structures (cf. Example 24.3)
@ High overhead:
o additional operations for assignments and procedure calls/exits

@ proportional to number of mutator steps
(and not to number of heap objects)

m' Compiler Construction Winter semester 2010/11 18



Reference Counting Garbage Collectors 11

Advantage: Incrementality
@ collector operations spread over mutator’s computation
¢ short pause times (good for real-time/interactive applications)
o immediate collection of garbage (low space usage)
@ exception: transitive loss of reachability (removing a reference may
render many objects unreachable)

@ but: recursive modification can be deferred

Disadvantages:
o Incompleteness:
o cannot collect unreachable, cyclic data structures (cf. Example 24.3)
@ High overhead:
o additional operations for assignments and procedure calls/exits

@ proportional to number of mutator steps
(and not to number of heap objects)

Conclusion: use for real-time/interactive applications

m' Compiler Construction Winter semester 2010/11 18



© Mark-and-Sweep Garbage Collection

Rm Compiler Construction ter semester 2010/11 19



Mark-and-Sweep Garbage Collectors 1

Working principle:
@ Mutator runs and makes allocation requests

o Collector runs periodically
(typically when space exhausted/below threshold)
e computes set of reachable objects
e reclaims storage for objects in complement set

Rm Compiler Construction Winter semester 2010/11



Mark-and-Sweep Garbage Collectors 11

Algorithm 24.4 (Mark-and-sweep garbage collection)

Input: heap Heap, root set Root, free list Free

m Compiler Construction Winter semester 2010/11 21



Mark-and-Sweep Garbage Collectors 11

Algorithm 24.4 (Mark-and-sweep garbage collection)

Input: heap Heap, root set Root, free list Free

Procedure: @ (* Marking phase *)
for each o in Heap, (* initialize reachability bit *)
let vy := true iff o referenced by Root
Q let W :={o|r, =true} (* working set *)
Q whileoe W # 0 do
@ let W: =W\ {o}
© for each o' referenced by o with r, = false,
let ror = true; W := W U {0’}
Q (* Sweeping phase *)
for each o in Heap with r, = false, add o to Free

m Compiler Construction Winter semester 2010/11 21



Mark-and-Sweep Garbage Collectors 11

Algorithm 24.4 (Mark-and-sweep garbage collection)

Input: heap Heap, root set Root, free list Free

Procedure: @ (* Marking phase *)
for each o in Heap, (* initialize reachability bit *)
let vy := true iff o referenced by Root
Q let W :={o|r, =true} (* working set *)
Q whileoe W # 0 do
@ let W: =W\ {o}
© for each o' referenced by o with r, = false,
let ror = true; W := W U {0’}
Q (* Sweeping phase *)
for each o in Heap with r, = false, add o to Free

Output: modified free list

m Compiler Construction Winter semester 2010/11 21



Mark-and-Sweep Garbage Collectors 11

Algorithm 24.4 (Mark-and-sweep garbage collection)
Input: heap Heap, root set Root, free list Free
Procedure: @ (* Marking phase *)
for each o in Heap, (* initialize reachability bit *)
let vy := true iff o referenced by Root
Q let W :={o|r, =true} (* working set *)
Q whileoe W # 0 do
@ let W: =W\ {o}
© for each o' referenced by o with r, = false,
let ror = true; W := W U {0’}
Q (* Sweeping phase *)
for each o in Heap with r, = false, add o to Free

Output: modified free list

Example 24.5
(on the board)
RWNTH

Compiler Construction Winter semester 2010/11 21



Mark-and-Sweep Garbage Collectors 111

Advantages:
o Completeness: identifies all unreachable objects

o Time complexity proportional to number of objects in heap

Rm Compiler Construction Winter semester 2010/11



Mark-and-Sweep Garbage Collectors 111

Advantages:
o Completeness: identifies all unreachable objects

o Time complexity proportional to number of objects in heap

Disadvantage: “stop-the-world” style
—> may introduce long pauses into mutator execution
(sweeping phase inspects complete heap)

Rm Compiler Construction Winter semester 2010/11



Mark-and-Sweep Garbage Collectors 111

Advantages:
o Completeness: identifies all unreachable objects

o Time complexity proportional to number of objects in heap

Disadvantage: “stop-the-world” style
—> may introduce long pauses into mutator execution
(sweeping phase inspects complete heap)

Conclusion: refine to short-pause garbage collection

@ Incremental collection: divide work in time by interleaving
mutation and collection
o Partial collection: divide work in space by collecting subset of
garbage at a time
(see Chapter 7 of A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman:

Compilers — Principles, Techniques, and Tools; 2nd ed.,
Addison-Wesley, 2007)

m' Compiler Construction Winter semester 2010/11




	Pseudo-Dynamic Data Structures
	Heap Management
	Memory Deallocation
	Garbage Collection
	Reference-Counting Garbage Collection
	Mark-and-Sweep Garbage Collection

