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Variant Records

Example 24.1 (Variant records in Pascal)
TYPE Coordinate = RECORD
nr: INTEGER;
CASE type: (cartesian, polar) OF
cartesian: (x, y: REAL);
polar: (r : REAL; phi: INTEGER )
END

END;
VAR pt: Coordinate;
pt.type := cartesian; pt.x := 0.5; pt.y := 1.2;
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Variant Records

Example 24.1 (Variant records in Pascal)

TYPE Coordinate = RECORD
nr: INTEGER;
CASE type: (cartesian, polar) OF
cartesian: (x, y: REAL);
polar: (r : REAL; phi: INTEGER )
END
END;
VAR pt: Coordinate;
pt.type := cartesian; pt.x := 0.5; pt.y := 1.2;

Implementation:
o Allocate memory for “biggest” variant

o Share memory between variant fields
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Dynamic Arrays

Example 24.2 (Dynamic arrays in Pascal)

FUNCTION Sum(VAR a: ARRAY OF REAL): REAL;
VAR
i: INTEGER; s: REAL;
BEGIN
s := 0.0; FOR i := 0 to HIGH(a) do s := s + al[i] END; Sum := s
END

4
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Dynamic Arrays

Example 24.2 (Dynamic arrays in Pascal)

FUNCTION Sum(VAR a: ARRAY OF REAL): REAL;
VAR
i: INTEGER; s: REAL;
BEGIN
s := 0.0; FOR i := 0 to HIGH(a) do s := s + al[i] END; Sum := s
END
Implementation:

@ Memory requirements unknown at compile time but determined by
actual function/procedure parameters
= mno heap required
@ Use array descriptor with following fields as parameter value:
e starting memory address of array
e size of array
o lower index of array (possibly fixed by 0)
o upper index of array (actually redundant)
@ Use data stack or index register to access array elements
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© Heap Management
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Dynamic Memory Allocation 1

Dynamically manipulated data structures (lists, trees, graphs, ...)
So far: creation of (static) objects by declaration
Now: creation of (dynamic) objects by explicit memory allocation

Access by (implicit or explicit) pointers

e © e ¢ ¢

Deletion by explicit deallocation or garbage collection
(= automatic deallocation of unreachable objects)
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Dynamic Memory Allocation 1

Dynamically manipulated data structures (lists, trees, graphs, ...)
So far: creation of (static) objects by declaration
Now: creation of (dynamic) objects by explicit memory allocation

Access by (implicit or explicit) pointers

e © e ¢ ¢

Deletion by explicit deallocation or garbage collection
(= automatic deallocation of unreachable objects)

©

Implementation: runtime stack not sufficient
(lifetime of objects generally exceeds lifetime of procedure calls)

—> new data structure: heap

@ Simplest form of organization:

| Runtime stack — | | < Heap |
+ T
0 SP HP max
(stack pointer) (heap pointer)
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Dynamic Memory Allocation II

o New instruction: NEW (“malloc”, ...)
o allocates n memory cells where n = topmost value of runtime stack
e returns address of first cell
o formal semantics
(SP = stack pointer, HP = heap pointer, <.> = dereferencing):
if HP - <SP> > SP
then HP := HP - <SP>; <SP> :

= HP
else error("memory overflow")
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Dynamic Memory Allocation II

o New instruction: NEW (“malloc”, ...)
o allocates n memory cells where n = topmost value of runtime stack
o returns address of first cell
o formal semantics
(SP = stack pointer, HP = heap pointer, <.> = dereferencing):
if HP - <SP> > SP
then HP := HP - <SP>; <SP> := HP
else error("memory overflow")
@ But: collision check required for every operation which increases
SP (e.g., expression evaluations)
o Efficient solution: add extreme stack pointer EP
e points to topmost SP which will be used in the computation of
current procedure
e statically computable at compile time
o set by procedure entry code
o modified semantics of NEW:

if HP - <SP> > EP
then HP := HP - <SP>; <SP> :=
else error("memory overflow")

HP
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© Memory Deallocation
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Memory Deallocation

Releasing memory areas that have become unused
@ explicitly by programmer

@ automatically by runtime system (garbage collection)

Rm Compiler Construction Winter semester 2010/11 9



Memory Deallocation

Releasing memory areas that have become unused
@ explicitly by programmer

@ automatically by runtime system (garbage collection)

Management of deallocated memory areas by free list
(usually doubly-linked list)

@ goal: reduction of fragmentation (= heap memory splitted in large
number of non-contiguous free areas)

@ coalescing of contiguous areas

o allocation strategies: first-fit vs. best-fit

m' Compiler Construction Winter semester 2010/11 9



Explicit Deallocation

@ Manually releasing memory areas that have become unused

o Pascal: dispose
o C: free
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Explicit Deallocation

@ Manually releasing memory areas that have become unused

o Pascal: dispose
o C: free

@ Problems with manual deallocation:
e memory leaks:

o
o

failing to eventually delete data that cannot be referenced
critical for long-running/reactive programs (operating systems,
server code, ...)

e dangling pointer dereference:

CJ
o

referencing of deleted data

may lead to runtime error (if deallocated pointer reset to nil) or
produce side effects (if deallocated pointer keeps value and storage
reallocated)
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Explicit Deallocation

@ Manually releasing memory areas that have become unused
o Pascal: dispose
o C: free

@ Problems with manual deallocation:
e memory leaks:

@ failing to eventually delete data that cannot be referenced

@ critical for long-running/reactive programs (operating systems,
server code, ...)

e dangling pointer dereference:

o referencing of deleted data

@ may lead to runtime error (if deallocated pointer reset to nil) or
produce side effects (if deallocated pointer keeps value and storage
reallocated)

—> Adopt programming conventions (object ownership) or use
automatic deallocation
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@ Garbage Collection
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Garbage Collection

o Garbage = data that cannot be referenced (anymore)

o Garbage collection = automatic deallocation of unreachable data
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Garbage Collection

o Garbage = data that cannot be referenced (anymore)

o Garbage collection = automatic deallocation of unreachable data
@ Supported by many programming languages:

@ object-oriented: Java, Smalltalk

o functional: Lisp (first GC), ML, Haskell
e logic: Prolog

e scripting: Perl
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Garbage Collection

Garbage = data that cannot be referenced (anymore)

©

Garbage collection = automatic deallocation of unreachable data

Supported by many programming languages:
@ object-oriented: Java, Smalltalk
o functional: Lisp (first GC), ML, Haskell
e logic: Prolog
e scripting: Perl
o Design goals for garbage collectors:
@ execution time: no significant increase of application run time
@ space usage: avoid memory fragmentation
@ pause time: minimize maximal pause time of application program
caused by garbage collection (especially in real-time applications)
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Preliminaries

o Object = allocated entity
@ Object has type known at runtime, defining

e size of object
o references to other objects

—> excludes type-unsafe languages that allow manipulation
of pointers (C, C++)
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Preliminaries

o Object = allocated entity
@ Object has type known at runtime, defining
e size of object
o references to other objects
—> excludes type-unsafe languages that allow manipulation
of pointers (C, C++)
o Reference always to address at beginning of object
(= all references to an object have same value)
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Preliminaries

Object = allocated entity

Object has type known at runtime, defining
e size of object
o references to other objects
—> excludes type-unsafe languages that allow manipulation
of pointers (C, C++)
Reference always to address at beginning of object
(= all references to an object have same value)

Mutator = application program modifying objects in heap
@ creation of objects by acquiring storage
o introduce/drop references to existing objects

©

Objects become garbage when not reachable by mutator
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Reachability of Objects

@ Root set = heap data that is directly accessible by mutator
o for Java: static field members and variables on stack
o yields directly reachable objects
o Every object with a reference that is stored in a reachable object
is indirectly reachable
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Reachability of Objects

@ Root set = heap data that is directly accessible by mutator
o for Java: static field members and variables on stack
o yields directly reachable objects
o Every object with a reference that is stored in a reachable object
is indirectly reachable
@ Mutator operations that affect reachability:
@ object allocation: memory manager returns reference to new object
@ creates new reachable object
e parameter passing and return values: passing of object references
from calling site to called procedure or vice versa
@ propagates reachability of objects

o reference assignment: assignments p := q where with references p
and q
@ creates second reference to object referred to by q, propagating
reachability

@ destroys orginal reference in p, potentially causing unreachability
e procedure return: removes local variables
@ potentially causes unreachability of objects
@ Objects becoming unreachable can cause more objects to become

unreachable
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Identifying Unreachable Objects

Principal approaches:

@ Catch program steps that turn reachable into unreachable objects
= reference counting

@ Periodically locate all reachable objects; others then unreachable
= mark-and-sweep
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© Reference-Counting Garbage Collection
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Reference-Counting Garbage Collectors I

Working principle:
@ Add reference count field to each heap object
(= number of references to that object)
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Reference-Counting Garbage Collectors I

Working principle:
o Add reference count field to each heap object
(= number of references to that object)
@ Mutator operations maintain reference count:
@ object allocation: set reference count of new object to 1
e parameter passing: increment reference count of each object passed
to procedure
o reference assignment p := q: decrement/increment reference count
of object referred to by p/q, respectively
@ procedure return: decrement the reference count of each object that
a local variable refers to (multiple decrement if sharing)
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Reference-Counting Garbage Collectors I

Working principle:
o Add reference count field to each heap object
(= number of references to that object)
@ Mutator operations maintain reference count:
@ object allocation: set reference count of new object to 1
e parameter passing: increment reference count of each object passed
to procedure
o reference assignment p := q: decrement/increment reference count
of object referred to by p/q, respectively
@ procedure return: decrement the reference count of each object that
a local variable refers to (multiple decrement if sharing)
@ Moreover: transitive loss of reachability
e when reference count of object becomes zero
= decrement reference count of each object pointed to (and add
object storage to free list)
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Reference-Counting Garbage Collectors I

Working principle:
o Add reference count field to each heap object
(= number of references to that object)
@ Mutator operations maintain reference count:
@ object allocation: set reference count of new object to 1
e parameter passing: increment reference count of each object passed
to procedure
o reference assignment p := q: decrement/increment reference count
of object referred to by p/q, respectively
@ procedure return: decrement the reference count of each object that
a local variable refers to (multiple decrement if sharing)
@ Moreover: transitive loss of reachability
e when reference count of object becomes zero
= decrement reference count of each object pointed to (and add
object storage to free list)

(on the board)
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Reference Counting Garbage Collectors 11

Advantage: Incrementality
@ collector operations spread over mutator’s computation
¢ short pause times (good for real-time/interactive applications)
o immediate collection of garbage (low space usage)
@ exception: transitive loss of reachability (removing a reference may
render many objects unreachable)

@ but: recursive modification can be deferred
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Reference Counting Garbage Collectors 11

Advantage: Incrementality
@ collector operations spread over mutator’s computation

¢ short pause times (good for real-time/interactive applications)
o immediate collection of garbage (low space usage)

@ exception: transitive loss of reachability (removing a reference may
render many objects unreachable)

@ but: recursive modification can be deferred

Disadvantages:
o Incompleteness:
o cannot collect unreachable, cyclic data structures (cf. Example 24.3)
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Reference Counting Garbage Collectors 11

Advantage: Incrementality
@ collector operations spread over mutator’s computation
¢ short pause times (good for real-time/interactive applications)
o immediate collection of garbage (low space usage)
@ exception: transitive loss of reachability (removing a reference may
render many objects unreachable)

@ but: recursive modification can be deferred

Disadvantages:
o Incompleteness:
o cannot collect unreachable, cyclic data structures (cf. Example 24.3)
@ High overhead:
o additional operations for assignments and procedure calls/exits

@ proportional to number of mutator steps
(and not to number of heap objects)
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Reference Counting Garbage Collectors 11

Advantage: Incrementality
@ collector operations spread over mutator’s computation
¢ short pause times (good for real-time/interactive applications)
o immediate collection of garbage (low space usage)
@ exception: transitive loss of reachability (removing a reference may
render many objects unreachable)

@ but: recursive modification can be deferred

Disadvantages:
o Incompleteness:
o cannot collect unreachable, cyclic data structures (cf. Example 24.3)
@ High overhead:
o additional operations for assignments and procedure calls/exits

@ proportional to number of mutator steps
(and not to number of heap objects)

Conclusion: use for real-time/interactive applications
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© Mark-and-Sweep Garbage Collection

Rm Compiler Construction ter semester 2010/11 19



Mark-and-Sweep Garbage Collectors 1

Working principle:
@ Mutator runs and makes allocation requests

o Collector runs periodically
(typically when space exhausted/below threshold)
e computes set of reachable objects
e reclaims storage for objects in complement set
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Mark-and-Sweep Garbage Collectors 11

Algorithm 24.4 (Mark-and-sweep garbage collection)

Input: heap Heap, root set Root, free list Free
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Mark-and-Sweep Garbage Collectors 11

Algorithm 24.4 (Mark-and-sweep garbage collection)

Input: heap Heap, root set Root, free list Free

Procedure: @ (* Marking phase *)
for each o in Heap, (* initialize reachability bit *)
let vy := true iff o referenced by Root
Q let W :={o|r, =true} (* working set *)
Q whileoe W # 0 do
@ let W: =W\ {o}
© for each o' referenced by o with r, = false,
let ror = true; W := W U {0’}
Q (* Sweeping phase *)
for each o in Heap with r, = false, add o to Free
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Mark-and-Sweep Garbage Collectors 11

Algorithm 24.4 (Mark-and-sweep garbage collection)

Input: heap Heap, root set Root, free list Free

Procedure: @ (* Marking phase *)
for each o in Heap, (* initialize reachability bit *)
let vy := true iff o referenced by Root
Q let W :={o|r, =true} (* working set *)
Q whileoe W # 0 do
@ let W: =W\ {o}
© for each o' referenced by o with r, = false,
let ror = true; W := W U {0’}
Q (* Sweeping phase *)
for each o in Heap with r, = false, add o to Free

Output: modified free list
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Mark-and-Sweep Garbage Collectors 11

Algorithm 24.4 (Mark-and-sweep garbage collection)
Input: heap Heap, root set Root, free list Free
Procedure: @ (* Marking phase *)
for each o in Heap, (* initialize reachability bit *)
let vy := true iff o referenced by Root
Q let W :={o|r, =true} (* working set *)
Q whileoe W # 0 do
@ let W: =W\ {o}
© for each o' referenced by o with r, = false,
let ror = true; W := W U {0’}
Q (* Sweeping phase *)
for each o in Heap with r, = false, add o to Free

Output: modified free list

Example 24.5
(on the board)
RWNTH
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Mark-and-Sweep Garbage Collectors 111

Advantages:
o Completeness: identifies all unreachable objects

o Time complexity proportional to number of objects in heap
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Mark-and-Sweep Garbage Collectors 111

Advantages:
o Completeness: identifies all unreachable objects

o Time complexity proportional to number of objects in heap

Disadvantage: “stop-the-world” style
—> may introduce long pauses into mutator execution
(sweeping phase inspects complete heap)
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Mark-and-Sweep Garbage Collectors 111

Advantages:
o Completeness: identifies all unreachable objects

o Time complexity proportional to number of objects in heap

Disadvantage: “stop-the-world” style
—> may introduce long pauses into mutator execution
(sweeping phase inspects complete heap)

Conclusion: refine to short-pause garbage collection

@ Incremental collection: divide work in time by interleaving
mutation and collection
o Partial collection: divide work in space by collecting subset of
garbage at a time
(see Chapter 7 of A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman:

Compilers — Principles, Techniques, and Tools; 2nd ed.,
Addison-Wesley, 2007)
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