
Compiler Construction

Lecture 25: Generation of Machine Code

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Online Evaluation of CS Curricula

http://www.campus.rwth-aachen.de/evasys/index.php?mca=online/index/

In German

Losung: autobahn

Advisory service, preparatory CS course

Conditions of study

Applied subject

...

Compiler Construction Winter semester 2010/11 2

http://www.campus.rwth-aachen.de/evasys/index.php?mca=online/index/

Outline

1 Generation of Machine Code

2 Register Allocation

Compiler Construction Winter semester 2010/11 3

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntactic analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
Compiler Construction Winter semester 2010/11 4

The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)

Compiler Construction Winter semester 2010/11 5

The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)

Goal: runtime and storage efficiency

fast backend
fast and compact code
low memory requirements for data

Compiler Construction Winter semester 2010/11 5

The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)

Goal: runtime and storage efficiency

fast backend
fast and compact code
low memory requirements for data

Memory hierarchy: decreasing speed & costs

registers (program counter, data [universal/floating point/
address], frame pointer, index register, condition code, ...)
cache (“fast” RAM)
main memory (“slow” RAM)
background storage (disks, sticks, ...)

Compiler Construction Winter semester 2010/11 5

The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)

Goal: runtime and storage efficiency

fast backend
fast and compact code
low memory requirements for data

Memory hierarchy: decreasing speed & costs

registers (program counter, data [universal/floating point/
address], frame pointer, index register, condition code, ...)
cache (“fast” RAM)
main memory (“slow” RAM)
background storage (disks, sticks, ...)

Principle: use fast memory whenever possible

evaluation of expressions in registers
(instead of data/runtime stack)
code/procedure stack/heap in main memory

Compiler Construction Winter semester 2010/11 5

The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)

Goal: runtime and storage efficiency

fast backend
fast and compact code
low memory requirements for data

Memory hierarchy: decreasing speed & costs

registers (program counter, data [universal/floating point/
address], frame pointer, index register, condition code, ...)
cache (“fast” RAM)
main memory (“slow” RAM)
background storage (disks, sticks, ...)

Principle: use fast memory whenever possible

evaluation of expressions in registers
(instead of data/runtime stack)
code/procedure stack/heap in main memory

Instruction set: depending on

number of operands
type of operands
addressing modes

Compiler Construction Winter semester 2010/11 5

Code Generation Phases

1 Register allocation: registers used for

values of (frequently used) variables and intermediate results
computing memory addresses
passing parameters to procedures/functions

2 Instruction selection:

translation of abstract instructions into (sequences of) real
instructions
employ special instructions for efficiency
(e.g., INC(x) rather than ADD(x,1))

3 Instruction placement: increase level of parallelism and/or
pipelining by smart ordering of instructions

Compiler Construction Winter semester 2010/11 6

Code Generation Phases

1 Register allocation: registers used for

values of (frequently used) variables and intermediate results
computing memory addresses
passing parameters to procedures/functions

2 Instruction selection:

translation of abstract instructions into (sequences of) real
instructions
employ special instructions for efficiency
(e.g., INC(x) rather than ADD(x,1))

3 Instruction placement: increase level of parallelism and/or
pipelining by smart ordering of instructions

Compiler Construction Winter semester 2010/11 6

Outline

1 Generation of Machine Code

2 Register Allocation

Compiler Construction Winter semester 2010/11 7

Register Allocation

Example 25.1

Assignment:
z := (u+v)-(w-(x+y))

Compiler Construction Winter semester 2010/11 8

Register Allocation

Example 25.1

Assignment:
z := (u+v)-(w-(x+y))

Target machine with
r registers R0, R1, ..., Rr−1

and main memory M

Compiler Construction Winter semester 2010/11 8

Register Allocation

Example 25.1

Assignment:
z := (u+v)-(w-(x+y))

Target machine with
r registers R0, R1, ..., Rr−1

and main memory M

Instruction types:

Ri := M[a]
M[a] := Ri

Ri := Ri op M[a]
Ri := Ri op Rj

(with address a)

Compiler Construction Winter semester 2010/11 8

Register Allocation

Example 25.1

Assignment:
z := (u+v)-(w-(x+y))

Target machine with
r registers R0, R1, ..., Rr−1

and main memory M

Instruction types:

Ri := M[a]
M[a] := Ri

Ri := Ri op M[a]
Ri := Ri op Rj

(with address a)

Instruction
sequence for r = 2:

R0 := M[u]
R0 := R0+M[v]
R1 := M[x]
R1 := R1+M[y]

M[t] := R1
R1 := M[w]
R1 := R1-M[t]
R0 := R0-R1

M[z] := R0

Compiler Construction Winter semester 2010/11 8

Register Allocation

Example 25.1

Assignment:
z := (u+v)-(w-(x+y))

Target machine with
r registers R0, R1, ..., Rr−1

and main memory M

Instruction types:

Ri := M[a]
M[a] := Ri

Ri := Ri op M[a]
Ri := Ri op Rj

(with address a)

Instruction
sequence for r = 2:

R0 := M[u]
R0 := R0+M[v]
R1 := M[x]
R1 := R1+M[y]

M[t] := R1
R1 := M[w]
R1 := R1-M[t]
R0 := R0-R1

M[z] := R0

Shorter sequence:

R0 := M[w]
R1 := M[x]
R1 := R1+M[y]
R0 := R0-R1
R1 := M[u]
R1 := R1+M[v]
R1 := R1-R0

M[z] := R1

Compiler Construction Winter semester 2010/11 8

Register Allocation

Example 25.1

Assignment:
z := (u+v)-(w-(x+y))

Target machine with
r registers R0, R1, ..., Rr−1

and main memory M

Instruction types:

Ri := M[a]
M[a] := Ri

Ri := Ri op M[a]
Ri := Ri op Rj

(with address a)

Instruction
sequence for r = 2:

R0 := M[u]
R0 := R0+M[v]
R1 := M[x]
R1 := R1+M[y]

M[t] := R1
R1 := M[w]
R1 := R1-M[t]
R0 := R0-R1

M[z] := R0

Shorter sequence:

R0 := M[w]
R1 := M[x]
R1 := R1+M[y]
R0 := R0-R1
R1 := M[u]
R1 := R1+M[v]
R1 := R1-R0

M[z] := R1

Reason: first variant requires intermediate storage t for x+y

Compiler Construction Winter semester 2010/11 8

Register Allocation

Example 25.1

Assignment:
z := (u+v)-(w-(x+y))

Target machine with
r registers R0, R1, ..., Rr−1

and main memory M

Instruction types:

Ri := M[a]
M[a] := Ri

Ri := Ri op M[a]
Ri := Ri op Rj

(with address a)

Instruction
sequence for r = 2:

R0 := M[u]
R0 := R0+M[v]
R1 := M[x]
R1 := R1+M[y]

M[t] := R1
R1 := M[w]
R1 := R1-M[t]
R0 := R0-R1

M[z] := R0

Shorter sequence:

R0 := M[w]
R1 := M[x]
R1 := R1+M[y]
R0 := R0-R1
R1 := M[u]
R1 := R1+M[v]
R1 := R1-R0

M[z] := R1

Reason: first variant requires intermediate storage t for x+y
How to compute systematically?

Compiler Construction Winter semester 2010/11 8

Register Allocation

Example 25.1

Assignment:
z := (u+v)-(w-(x+y))

Target machine with
r registers R0, R1, ..., Rr−1

and main memory M

Instruction types:

Ri := M[a]
M[a] := Ri

Ri := Ri op M[a]
Ri := Ri op Rj

(with address a)

Instruction
sequence for r = 2:

R0 := M[u]
R0 := R0+M[v]
R1 := M[x]
R1 := R1+M[y]

M[t] := R1
R1 := M[w]
R1 := R1-M[t]
R0 := R0-R1

M[z] := R0

Shorter sequence:

R0 := M[w]
R1 := M[x]
R1 := R1+M[y]
R0 := R0-R1
R1 := M[u]
R1 := R1+M[v]
R1 := R1-R0

M[z] := R1

Reason: first variant requires intermediate storage t for x+y
How to compute systematically?
Idea: start with register-intensive subexpressions

Compiler Construction Winter semester 2010/11 8

Register Optimization

Let e = e1 op e2.

Assumption: ei requires ri registers for evaluation

Compiler Construction Winter semester 2010/11 9

Register Optimization

Let e = e1 op e2.

Assumption: ei requires ri registers for evaluation

Evaluation of e:
if r1 < r2 ≤ r, then e can be evaluated using r2 registers:

1 evaluate e2 (using r2 registers)
2 keep result in 1 register
3 evaluate e1 (using r1 + 1 ≤ r2 registers in total)
4 combine results

if r2 < r1 ≤ r, then e can be evaluated using r1 registers
if r1 = r2 < r, then e can be evaluated using r1 + 1 registers
if more than r registers required: use main memory as intermediate
storage

Compiler Construction Winter semester 2010/11 9

Register Optimization

Let e = e1 op e2.

Assumption: ei requires ri registers for evaluation

Evaluation of e:
if r1 < r2 ≤ r, then e can be evaluated using r2 registers:

1 evaluate e2 (using r2 registers)
2 keep result in 1 register
3 evaluate e1 (using r1 + 1 ≤ r2 registers in total)
4 combine results

if r2 < r1 ≤ r, then e can be evaluated using r1 registers
if r1 = r2 < r, then e can be evaluated using r1 + 1 registers
if more than r registers required: use main memory as intermediate
storage

The corresponding optimization algorithm works in two phases:
1 Marking phase (computes ri values)
2 Generation phase (produces actual code)

(for details see Wilhelm/Maurer: Übersetzerbau, 2. Auflage,
Springer, 1997, Sct. 11.4)

Compiler Construction Winter semester 2010/11 9

The Marking Phase

Algorithm 25.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute

r(x) :=

{

1 if x is a “left leaf”
0 if x is a “right leaf”
1 if x is at the root

r(e1 op e2) :=

{

max{r(e1), r(e2)} if r(e1) 6= r(e2)
r(e1) + 1 if r(e1) = r(e2)

Output: number of required registers r(e)

Compiler Construction Winter semester 2010/11 10

The Marking Phase

Algorithm 25.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute

r(x) :=

{

1 if x is a “left leaf”
0 if x is a “right leaf”
1 if x is at the root

r(e1 op e2) :=

{

max{r(e1), r(e2)} if r(e1) 6= r(e2)
r(e1) + 1 if r(e1) = r(e2)

Output: number of required registers r(e)

Example 25.3 (cf. Example 25.1)

e = (u+v)-(w-(x+y)):

u v w

x y

+

+

-

-

Compiler Construction Winter semester 2010/11 10

The Marking Phase

Algorithm 25.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute

r(x) :=

{

1 if x is a “left leaf”
0 if x is a “right leaf”
1 if x is at the root

r(e1 op e2) :=

{

max{r(e1), r(e2)} if r(e1) 6= r(e2)
r(e1) + 1 if r(e1) = r(e2)

Output: number of required registers r(e)

Example 25.3 (cf. Example 25.1)

e = (u+v)-(w-(x+y)):

u v w

x y

+

+

-

-

1 1

1

Compiler Construction Winter semester 2010/11 10

The Marking Phase

Algorithm 25.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute

r(x) :=

{

1 if x is a “left leaf”
0 if x is a “right leaf”
1 if x is at the root

r(e1 op e2) :=

{

max{r(e1), r(e2)} if r(e1) 6= r(e2)
r(e1) + 1 if r(e1) = r(e2)

Output: number of required registers r(e)

Example 25.3 (cf. Example 25.1)

e = (u+v)-(w-(x+y)):

u v w

x y

+

+

-

-

1 1

1

0

0

Compiler Construction Winter semester 2010/11 10

The Marking Phase

Algorithm 25.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute

r(x) :=

{

1 if x is a “left leaf”
0 if x is a “right leaf”
1 if x is at the root

r(e1 op e2) :=

{

max{r(e1), r(e2)} if r(e1) 6= r(e2)
r(e1) + 1 if r(e1) = r(e2)

Output: number of required registers r(e)

Example 25.3 (cf. Example 25.1)

e = (u+v)-(w-(x+y)):

u v w

x y

+

+

-

-

1 1

1

0

0

1

1

Compiler Construction Winter semester 2010/11 10

The Marking Phase

Algorithm 25.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute

r(x) :=

{

1 if x is a “left leaf”
0 if x is a “right leaf”
1 if x is at the root

r(e1 op e2) :=

{

max{r(e1), r(e2)} if r(e1) 6= r(e2)
r(e1) + 1 if r(e1) = r(e2)

Output: number of required registers r(e)

Example 25.3 (cf. Example 25.1)

e = (u+v)-(w-(x+y)):

u v w

x y

+

+

-

-

1 1

1

0

0

1

1

2

Compiler Construction Winter semester 2010/11 10

The Marking Phase

Algorithm 25.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute

r(x) :=

{

1 if x is a “left leaf”
0 if x is a “right leaf”
1 if x is at the root

r(e1 op e2) :=

{

max{r(e1), r(e2)} if r(e1) 6= r(e2)
r(e1) + 1 if r(e1) = r(e2)

Output: number of required registers r(e)

Example 25.3 (cf. Example 25.1)

e = (u+v)-(w-(x+y)):

u v w

x y

+

+

-

-

1 1

1

0

0

1

1

2

2

Compiler Construction Winter semester 2010/11 10

The Generation Phase I

Goal: generate optimal (= shortest) code for evaluating
expression e with register requirement r(e)

Compiler Construction Winter semester 2010/11 11

The Generation Phase I

Goal: generate optimal (= shortest) code for evaluating
expression e with register requirement r(e)

Data structures used in Algorithm 25.4:

RS : stack of available registers
(initially: all registers; never empty)

CS : stack of available main memory cells

Compiler Construction Winter semester 2010/11 11

The Generation Phase I

Goal: generate optimal (= shortest) code for evaluating
expression e with register requirement r(e)

Data structures used in Algorithm 25.4:

RS : stack of available registers
(initially: all registers; never empty)

CS : stack of available main memory cells

Auxiliary procedures used in Algorithm 25.4:

output : outputs the argument as code
top: returns the topmost entry of a stack S (leaving S

unchanged)
pop: removes and returns the topmost entry of a stack
push: puts an element onto a stack

exchange: exchanges the two topmost elements of a stack

Compiler Construction Winter semester 2010/11 11

The Generation Phase II

Algorithm 25.4 (Generation phase)

Input: expression e, annotated with register requirement r(e)

Variables: RS: stack of registers;
CS: stack of memory cells;
R: register; C : memory cell;

Procedure: recursive execution of procedure code(e), defined by code(e) :=
(1) if e = x, r(x) = 1: % left leaf

output(top(RS):= M[x])

(2) if e = e1 op y, r(y) = 0: % right leaf
code(e1);
output(top(RS):=top(RS) op M[y])

(3) if e = e1 op e2, r(e1) < r(e2), r(e1) < r:
exchange(RS);
code(e2);
R := pop(RS);
code(e1);
output(top(RS):=top(RS) op R);
push(RS , R);
exchange(RS)

(4) if e = e1 op e2, r(e1) ≥ r(e2),
r(e2) < r:

code(e1);
R := pop(RS);
code(e2);
output(R:=R op top(RS));
push(RS , R)

(5) if e = e1 op e2, r(e1) ≥ r, r(e2) ≥ r:
code(e2);
C := pop(CS);
output(M[C]:=top(RS));
code(e1);
output(top(RS):=top(RS) op M[C]);
push(CS , C)

Output: optimal (= shortest) code for evaluating e

Compiler Construction Winter semester 2010/11 12

The Generation Phase III

Invariants of Algorithm 25.4:
after executing code(e), both RS and CS have their original values
after executing the machine code produced by code(e), the value of
e is stored in the top register of RS

Compiler Construction Winter semester 2010/11 13

The Generation Phase III

Invariants of Algorithm 25.4:
after executing code(e), both RS and CS have their original values
after executing the machine code produced by code(e), the value of
e is stored in the top register of RS

Shortcoming of Algorithm 25.4: multiple evaluation of common
subexpressions
(=⇒ dynamic programming, graph coloring, ...)

Compiler Construction Winter semester 2010/11 13

The Generation Phase III

Invariants of Algorithm 25.4:
after executing code(e), both RS and CS have their original values
after executing the machine code produced by code(e), the value of
e is stored in the top register of RS

Shortcoming of Algorithm 25.4: multiple evaluation of common
subexpressions
(=⇒ dynamic programming, graph coloring, ...)

Example 25.5 (cf. Example 25.3)

u v w

x y

e1: +

+

e2: -

e: -

1 1

1

0

0

1

1

2

2

(on the board)

Compiler Construction Winter semester 2010/11 13

	Generation of Machine Code
	Register Allocation

