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@ Ceneration of Machine Code
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Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))
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Syntactic analysis (Parser))
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Semantic analysis)

Y
(Generation of intermediate code)
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(Code optimization)
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(Generation of machine code)

Target code
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The Compiler Backend

Final step: translation of (optimized) abstract machine code into “real” machine
code (possibly followed by assembling phase)
Goal: runtime and storage efficiency
@ fast backend
@ fast and compact code
@ low memory requirements for data
Memory hierarchy: decreasing speed & costs
@ registers (program counter, data [universal/floating point/
address], frame pointer, index register, condition code, ...)
® cache (“fast” RAM)
@ main memory (“slow” RAM)
® background storage (disks, sticks, ...)
Principle: use fast memory whenever possible
@ evaluation of expressions in registers
(instead of data/runtime stack)
® code/procedure stack/heap in main memory
Instruction set: depending on
@ number of operands
@ type of operands
@ addressing modes
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Code Generation Phases

@ Register allocation: registers used for
o values of (frequently used) variables and intermediate results
e computing memory addresses
o passing parameters to procedures/functions

© Instruction selection:

o translation of abstract instructions into (sequences of) real
instructions

e employ special instructions for efficiency
(e.g., INC(x) rather than ADD(x,1))

@ Instruction placement: increase level of parallelism and/or
pipelining by smart ordering of instructions
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© Register Allocation
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Register Allocation

Example 25.1

Assignment: Instruction Shorter sequence:
z = (utv)-(w-(x+y)) sequence for r = 2:
. . Rp := M[u] Rp := M[w]
Targ?t machine with Ry := Ro+M[v] R(1) .= M[x]
r registers Rg, Ry, ..., Rp—1 Ry := M[x] Ry := Ri+M[y]
and main memory M Ry := Ri+M[y] Ro := Ry-R;
) M[t] :=Rg Ry :=M[ul
Instruction types: Ry :=M[w] R; := Ry+M[v]
R; :=M[al R; :=R;-M[t] R1 :=R1-Rg
M[lal :=R; Ro := Rp—Rq M[z] :=Ry
R; :=R; op Mlal M[z] :=Rg

Ri = Ri op R.j
(with address a)
o Reason: first variant requires intermediate storage t for x+y
@ How to compute systematically?
o Idea: start with register-intensive subexpressions
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Register Optimization

o Let e =€ op es.
o Assumption: e; requires r; registers for evaluation
o Evaluation of e:

e if 1 <7y <r, then e can be evaluated using ro registers:
@ evaluate ex (using ro registers)
© keep result in 1 register
@ evaluate eq (using r1 + 1 < 72 registers in total)
@ combine results
e if 7o <71 <, then e can be evaluated using r registers
o if 11 =79 < r, then e can be evaluated using r; + 1 registers
o if more than r registers required: use main memory as intermediate
storage

® The corresponding optimization algorithm works in two phases:
© Marking phase (computes r; values)
© Generation phase (produces actual code)
(for details see Wilhelm/Maurer: Ubersetzerbau, 2. Auflage,
Springer, 1997, Sct. 11.4)
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The Marking Phase

Algorithm 25.2 (Marking phase)

Input: expression (with binary operators op and variables x)

Procedure: recursively compute
1 if x is a “left leaf”
r(x) ;=<0 ifxisa “right leaf”
1 if x is at the root
_ Jmax{r(e),r(e2)} ifr(er) # r(ez)
T(61 op 62) = {7,(61) +1 7:f7”(f:‘1) _ 7’((22)

Output: number of required registers r(e)

Example 25.3 (cf. Example 25.1)

e = (utv) - (w-(x+y)): /2\
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The Generation Phase 1

o Goal: generate optimal (= shortest) code for evaluating
expression e with register requirement r(e)
@ Data structures used in Algorithm 25.4:
RS: stack of available registers
(initially: all registers; never empty)
CS: stack of available main memory cells
o Auxiliary procedures used in Algorithm 25.4:
output: outputs the argument as code
top: returns the topmost entry of a stack S (leaving S
unchanged)
pop: removes and returns the topmost entry of a stack
push: puts an element onto a stack
exchange: exchanges the two topmost elements of a stack
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The Generation Phase 11

Algorithm 25.4 (Generation phase)

Input: ezpression e, annotated with register requirement r(e)
Variables: RS': stack of registers;
CS: stack of memory cells;
R: register; C': memory cell;

Procedure: recursive execution of procedure code(e), defined by code(e) :=

(1) ife=z, r(x) = 1: % left leaf (4) if e = e1 op e2, r(e1) > r(e2),
output(top(RS):= M[z]) T(?2))< 75
e _n. . code(er);
(2)001566(6—1)?1 opy, r(y) =0: % right leaf R := pop(RS);
output (top(RS) :=top(RS) op Mly]) code(ez);

output(R:=R op top(RS));
(3) if e =e1 op e2, r(e1) < r(e2), r(er) < r: push(RS, R)

exchange(RS); (5) ife = e1 op ea, r(e1) > 1, rez) > r:
code(e2); code(ez);

it C''= pop(CS);

code(e1); 3 ) '
out%%z(go%fig) :=top(RS) op R); ggctl]e)?égl{[cj :=top(RS));

bus )LL) ’ - .
exchange(RS) ;Zi%%’fc(’éolncgf%s) top(RS) op ML[CT);

Output: optimal (= shortest) code for evaluating e
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The Generation Phase I11

o Invariants of Algorithm 25.4:
o after executing code(e), both RS and CS have their original values
o after executing the machine code produced by code(e), the value of
e is stored in the top register of RS
@ Shortcoming of Algorithm 25.4: multiple evaluation of common
subexpressions
(= dynamic programming, graph coloring, ...)

Example 25.5 (cf. Example 25.3)

(on the board)
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