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Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntactic analysis (Parser)

Semantic analysis

Source code optimization

Generation of intermediate code

Intermediate code optimization

Generation of machine code

Target code
Compiler Construction Winter semester 2010/11 4



Code Optimization

Goal: Make generated code faster and/or more compact
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Code Optimization

Goal: Make generated code faster and/or more compact

Common procedure:

Gather information about program by performing some kind of
analysis

Exploit information to optimize code
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Code Optimization

Goal: Make generated code faster and/or more compact

Common procedure:

Gather information about program by performing some kind of
analysis

Exploit information to optimize code

Here: dataflow analysis
=⇒ attach properties to program statements

that hold every time when statement is executed
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Outline

1 Code Optimization

2 Preliminaries on Dataflow Analysis

3 Example: Available Expressions Analysis

4 Example: Live Variables Analysis

5 The Dataflow Analysis Framework
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Dataflow Analysis: the Approach

Traditional form of program analysis
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Dataflow Analysis: the Approach

Traditional form of program analysis

Idea: describe how analysis information flows through program
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Dataflow Analysis: the Approach

Traditional form of program analysis

Idea: describe how analysis information flows through program

Distinctions:

direction of flow: forward vs. backward analyses
quantification over paths: may (union) vs. must (intersection)

analyses
dependence on statement order: flow-sensitive vs. flow-insensitive

analyses
procedures: interprocedural vs. intraprocedural analyses
distinction of procedure calls: context-sensitive vs.

context-insensitive analyses
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Labeled Programs

Goal: localization of analysis information
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Labeled Programs

Goal: localization of analysis information

Dataflow information will be associated with
assignments
tests in conditionals (if) and loops (while)

These constructs will be called blocks (denotation: Blk).
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Labeled Programs

Goal: localization of analysis information

Dataflow information will be associated with
assignments
tests in conditionals (if) and loops (while)

These constructs will be called blocks (denotation: Blk).

Assume set of labels Lab with meta variable l ∈ Lab

(usually Lab = N)
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Labeled Programs

Goal: localization of analysis information

Dataflow information will be associated with
assignments
tests in conditionals (if) and loops (while)

These constructs will be called blocks (denotation: Blk).

Assume set of labels Lab with meta variable l ∈ Lab

(usually Lab = N)

Definition 26.1 (Labeled WHILE programs)

The syntax of labeled WHILE programs is defined by the following
context-free grammar:

A ::= z | I | A1 + A2 ∈ AExp
B ::= A1 < A2 | not B | B1 and B2 ∈ BExp

C ::= [I := A]l | C1;C2 |
if [B]l then C1 else C2 | while [B]l do C ∈ Cmd

Here all labels in a statement C ∈ Cmd are assumed to be distinct.
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A WHILE Program

Example 26.2

x := 6;
y := 7;
z := 0;
while x > 0 do
x := x - 1;
v := y;
while v > 0 do
v := v - 1;
z := z + 1;
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A WHILE Program with Labels

Example 26.2

[x := 6]1;
[y := 7]2;
[z := 0]3;
while [x > 0]4 do

[x := x - 1]5;
[v := y]6;
while [v > 0]7 do

[v := v - 1]8;
[z := z + 1]9
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Representing Control Flow I

Every (labeled) statement has a single entry (given by the initial
label) and generally multiple exits (given by the final labels)

Labels are connected via control-flow edges
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Representing Control Flow I

Every (labeled) statement has a single entry (given by the initial
label) and generally multiple exits (given by the final labels)

Labels are connected via control-flow edges

Formally:

initial label init : Cmd → Lab

final labels final : Cmd → 2Lab

(control) flow relation flow(C) ⊆ Lab × Lab
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Representing Control Flow II

Example 26.3

C = [z := 1]1;
while [x > 0]2 do

[z := z*y]3;
[x := x-1]4
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Representing Control Flow II

Example 26.3

C = [z := 1]1;
while [x > 0]2 do

[z := z*y]3;
[x := x-1]4

init(C) = 1
final(C) = {2}
flow(C) = {(1, 2), (2, 3), (3, 4), (4, 2)}
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Representing Control Flow II

Example 26.3

C = [z := 1]1;
while [x > 0]2 do

[z := z*y]3;
[x := x-1]4

init(C) = 1
final(C) = {2}
flow(C) = {(1, 2), (2, 3), (3, 4), (4, 2)}

Visualization by flow graph:

[z := 1]1

[x > 0]2

[z := z*y]3

[x := x-1]4

true

false
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Outline

1 Code Optimization

2 Preliminaries on Dataflow Analysis

3 Example: Available Expressions Analysis

4 Example: Live Variables Analysis

5 The Dataflow Analysis Framework
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Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.
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Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

can be used to avoid recomputations of expressions

only interesting for non-trivial (i.e., composite) arithmetic
expressions
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Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

can be used to avoid recomputations of expressions

only interesting for non-trivial (i.e., composite) arithmetic
expressions

Example 26.4 (Available Expressions Analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5
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Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

can be used to avoid recomputations of expressions

only interesting for non-trivial (i.e., composite) arithmetic
expressions

Example 26.4 (Available Expressions Analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3
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Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

can be used to avoid recomputations of expressions

only interesting for non-trivial (i.e., composite) arithmetic
expressions

Example 26.4 (Available Expressions Analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5
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Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

can be used to avoid recomputations of expressions

only interesting for non-trivial (i.e., composite) arithmetic
expressions

Example 26.4 (Available Expressions Analysis)

[x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

a+b available at label 3

a+b not available at label 5

possible optimization:
while [y > x]3 do
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Formalizing Available Expressions Analysis I

Given C ∈ Cmd , LabC/BlkC/AExpC denote the sets of all
labels/blocks/complex arithmetic expressions occurring in C,
respectively

Given A ∈ AExpC , Var(A) denotes the set of all variable
identifiers occurring in A
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Formalizing Available Expressions Analysis I

Given C ∈ Cmd , LabC/BlkC/AExpC denote the sets of all
labels/blocks/complex arithmetic expressions occurring in C,
respectively

Given A ∈ AExpC , Var(A) denotes the set of all variable
identifiers occurring in A

An expression A is killed in a block β if any of the variables in A
is modified in β

Formally: killAE : BlkC → 2AExpC is defined by
killAE ([I := A]l) := {A′ ∈ AExpC | I ∈ Var(A′)}

killAE ([B]l) := ∅
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Formalizing Available Expressions Analysis I

Given C ∈ Cmd , LabC/BlkC/AExpC denote the sets of all
labels/blocks/complex arithmetic expressions occurring in C,
respectively

Given A ∈ AExpC , Var(A) denotes the set of all variable
identifiers occurring in A

An expression A is killed in a block β if any of the variables in A
is modified in β

Formally: killAE : BlkC → 2AExpC is defined by
killAE ([I := A]l) := {A′ ∈ AExpC | I ∈ Var(A′)}

killAE ([B]l) := ∅

An expression A is generated in a block β if it is evaluated in and
none of its variables are modified by β

Formally: genAE : BlkC → 2AExpC is defined by

genAE ([I := A]l) :=

{

{A} if A ∈ AExpC , I /∈ Var(A)
∅ otherwise

genAE ([B]l) := AExpB
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Formalizing Available Expressions Analysis II

Example 26.5 (killAE/genAE functions)

C = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5
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Formalizing Available Expressions Analysis II

Example 26.5 (killAE/genAE functions)

C = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

AExpC = {a+b, a*b, a+1}

Compiler Construction Winter semester 2010/11 15



Formalizing Available Expressions Analysis II

Example 26.5 (killAE/genAE functions)

C = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

AExpC = {a+b, a*b, a+1}

LabC killAE (β
l) genAE (β

l)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Compiler Construction Winter semester 2010/11 15



The Equation System I

Analysis itself defined by setting up an equation system
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The Equation System I

Analysis itself defined by setting up an equation system

For each l ∈ LabC , AE l ⊆ AExpC represents the set of available
expressions at the entry of block βl
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The Equation System I

Analysis itself defined by setting up an equation system

For each l ∈ LabC , AE l ⊆ AExpC represents the set of available
expressions at the entry of block βl

Formally:

AE l =

{

∅ if l = init(C)
⋂

{ϕl′(AE l′) | (l
′, l) ∈ flow(C)} otherwise

where ϕl′ : 2
AExpC → 2AExpC denotes the transfer function of block

βl′ , given by
ϕl′(A) := (A \ killAE (β

l′)) ∪ genAE (β
l′)
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The Equation System I

Analysis itself defined by setting up an equation system

For each l ∈ LabC , AE l ⊆ AExpC represents the set of available
expressions at the entry of block βl

Formally:

AE l =

{

∅ if l = init(C)
⋂

{ϕl′(AE l′) | (l
′, l) ∈ flow(C)} otherwise

where ϕl′ : 2
AExpC → 2AExpC denotes the transfer function of block

βl′ , given by
ϕl′(A) := (A \ killAE (β

l′)) ∪ genAE (β
l′)

Characterization of analysis:

forward: starts in init(C) and proceeds downwards
must:

⋂

in equation for AE l

flow-sensitive: results depending on order of assignments
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The Equation System I

Analysis itself defined by setting up an equation system

For each l ∈ LabC , AE l ⊆ AExpC represents the set of available
expressions at the entry of block βl

Formally:

AE l =

{

∅ if l = init(C)
⋂

{ϕl′(AE l′) | (l
′, l) ∈ flow(C)} otherwise

where ϕl′ : 2
AExpC → 2AExpC denotes the transfer function of block

βl′ , given by
ϕl′(A) := (A \ killAE (β

l′)) ∪ genAE (β
l′)

Characterization of analysis:

forward: starts in init(C) and proceeds downwards
must:

⋂

in equation for AE l

flow-sensitive: results depending on order of assignments

In general: solution not necessarily unique
=⇒ choose greatest one
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The Equation System II

Reminder: AE l =

{

∅ if l = init(C)
⋂

{ϕl′(AE l′) | (l
′, l) ∈ flow(C)} otherwise

ϕl′ (E) = (E \ killAE (β
l
′

)) ∪ genAE (β
l
′

)
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The Equation System II

Reminder: AE l =

{

∅ if l = init(C)
⋂

{ϕl′(AE l′) | (l
′, l) ∈ flow(C)} otherwise

ϕl′ (E) = (E \ killAE (β
l
′

)) ∪ genAE (β
l
′

)

Example 26.6 (AE equation system)

C = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do
[a := a+1]4;
[x := a+b]5
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The Equation System II

Reminder: AE l =

{

∅ if l = init(C)
⋂

{ϕl′(AE l′) | (l
′, l) ∈ flow(C)} otherwise

ϕl′ (E) = (E \ killAE (β
l
′

)) ∪ genAE (β
l
′

)

Example 26.6 (AE equation system)

C = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do
[a := a+1]4;
[x := a+b]5

l ∈ LabC killAE (β
l) genAE (β

l)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}
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The Equation System II

Reminder: AE l =

{

∅ if l = init(C)
⋂

{ϕl′(AE l′) | (l
′, l) ∈ flow(C)} otherwise

ϕl′ (E) = (E \ killAE (β
l
′

)) ∪ genAE (β
l
′

)

Example 26.6 (AE equation system)

C = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do
[a := a+1]4;
[x := a+b]5

l ∈ LabC killAE (β
l) genAE (β

l)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Equations:
AE1 = ∅
AE2 = ϕ1(AE1) = AE1 ∪ {a+b}
AE3 = ϕ2(AE2) ∩ ϕ5(AE5)

= (AE 2 ∪ {a*b}) ∩ (AE 5 ∪ {a+b})
AE4 = ϕ3(AE3) = AE3 ∪ {a+b}
AE5 = ϕ4(AE4) = AE4 \ {a+b, a*b, a+1}
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The Equation System II

Reminder: AE l =

{

∅ if l = init(C)
⋂

{ϕl′(AE l′) | (l
′, l) ∈ flow(C)} otherwise

ϕl′ (E) = (E \ killAE (β
l
′

)) ∪ genAE (β
l
′

)

Example 26.6 (AE equation system)

C = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do
[a := a+1]4;
[x := a+b]5

l ∈ LabC killAE (β
l) genAE (β

l)
1 ∅ {a+b}
2 ∅ {a*b}
3 ∅ {a+b}
4 {a+b, a*b, a+1} ∅
5 ∅ {a+b}

Equations:
AE1 = ∅
AE2 = ϕ1(AE1) = AE1 ∪ {a+b}
AE3 = ϕ2(AE2) ∩ ϕ5(AE5)

= (AE 2 ∪ {a*b}) ∩ (AE 5 ∪ {a+b})
AE4 = ϕ3(AE3) = AE3 ∪ {a+b}
AE5 = ϕ4(AE4) = AE4 \ {a+b, a*b, a+1}

Solution: AE1 = ∅
AE2 = {a+b}
AE3 = {a+b}
AE4 = {a+b}
AE5 = ∅
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Outline

1 Code Optimization

2 Preliminaries on Dataflow Analysis

3 Example: Available Expressions Analysis

4 Example: Live Variables Analysis

5 The Dataflow Analysis Framework
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Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.
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Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

A variable is called live at the exit of a block if there exists a path
from the block to a use of the variable that does not re-define the
variable
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Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

A variable is called live at the exit of a block if there exists a path
from the block to a use of the variable that does not re-define the
variable

All variables considered to be live at the end of the program
(alternative: restriction to output variables)
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Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

A variable is called live at the exit of a block if there exists a path
from the block to a use of the variable that does not re-define the
variable

All variables considered to be live at the end of the program
(alternative: restriction to output variables)

Can be used for Dead Code Elimination:
remove assignments to non-live variables
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An Example

Example 26.7 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7
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An Example

Example 26.7 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1
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An Example

Example 26.7 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1

y live at exit from 2
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An Example

Example 26.7 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1

y live at exit from 2

x live at exit from 3
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An Example

Example 26.7 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1

y live at exit from 2

x live at exit from 3

z live at exits from 5 and 6
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An Example

Example 26.7 (Live Variables Analysis)

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

x not live at exit from label 1

y live at exit from 2

x live at exit from 3

z live at exits from 5 and 6

possible optimization: remove [x := 2]1
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Formalizing Live Variables Analysis I

A variable on the left-hand side of an assignment is killed by the
assignment; tests do not kill
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Formalizing Live Variables Analysis I

A variable on the left-hand side of an assignment is killed by the
assignment; tests do not kill

Formally: killLV : BlkC → 2VarC is defined by
killLV ([I := A]l) := {I}

killLV ([B]l) := ∅
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Formalizing Live Variables Analysis I

A variable on the left-hand side of an assignment is killed by the
assignment; tests do not kill

Formally: killLV : BlkC → 2VarC is defined by
killLV ([I := A]l) := {I}

killLV ([B]l) := ∅

Every reading access generates a live variable
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Formalizing Live Variables Analysis I

A variable on the left-hand side of an assignment is killed by the
assignment; tests do not kill

Formally: killLV : BlkC → 2VarC is defined by
killLV ([I := A]l) := {I}

killLV ([B]l) := ∅

Every reading access generates a live variable

Formally: genLV : BlkC → 2VarC is defined by
genLV ([I := A]l) := Var(A)

genLV ([B]l) := Var(B)
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Formalizing Live Variables Analysis II

Example 26.8 (killLV /genLV functions)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7
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Formalizing Live Variables Analysis II

Example 26.8 (killLV /genLV functions)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Var c = {x, y, z}

Compiler Construction Winter semester 2010/11 22



Formalizing Live Variables Analysis II

Example 26.8 (killLV /genLV functions)

c = [x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Var c = {x, y, z}

l ∈ Labc killLV (βl) genLV (βl)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}
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The Equation System I

For each l ∈ LabC , LV l ⊆ Var c represents the set of live variables
at the exit of block βl
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The Equation System I

For each l ∈ LabC , LV l ⊆ Var c represents the set of live variables
at the exit of block βl

Formally, for a program C ∈ Cmd with isolated exits:

LV l =

{

VarC if l ∈ final(C)
⋃

{ϕl′(LV l′) | (l, l
′) ∈ flow(C)} otherwise

where ϕl′ : 2
VarC → 2VarC denotes the transfer function of block

βl′ , given by
ϕl′(V ) := (V \ killLV (βl′)) ∪ genLV (βl′)
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The Equation System I

For each l ∈ LabC , LV l ⊆ Var c represents the set of live variables
at the exit of block βl

Formally, for a program C ∈ Cmd with isolated exits:

LV l =

{

VarC if l ∈ final(C)
⋃

{ϕl′(LV l′) | (l, l
′) ∈ flow(C)} otherwise

where ϕl′ : 2
VarC → 2VarC denotes the transfer function of block

βl′ , given by
ϕl′(V ) := (V \ killLV (βl′)) ∪ genLV (βl′)

Characterization of analysis:

backward: starts in final(C) and proceeds upwards
may:

⋃

in equation for LV l

flow-sensitive: results depending on order of assignments
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The Equation System I

For each l ∈ LabC , LV l ⊆ Var c represents the set of live variables
at the exit of block βl

Formally, for a program C ∈ Cmd with isolated exits:

LV l =

{

VarC if l ∈ final(C)
⋃

{ϕl′(LV l′) | (l, l
′) ∈ flow(C)} otherwise

where ϕl′ : 2
VarC → 2VarC denotes the transfer function of block

βl′ , given by
ϕl′(V ) := (V \ killLV (βl′)) ∪ genLV (βl′)

Characterization of analysis:

backward: starts in final(C) and proceeds upwards
may:

⋃

in equation for LV l

flow-sensitive: results depending on order of assignments

In general: solution not necessarily unique
=⇒ choose least one

Compiler Construction Winter semester 2010/11 23



The Equation System II

Reminder: LV l =

{

VarC if l ∈ final(C)
⋃

{ϕl′(LV l′) | (l, l′) ∈ flow(C)} otherwise

ϕl′ (V ) = (V \ killLV (βl
′

)) ∪ genLV (βl
′

)
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The Equation System II

Reminder: LV l =

{

VarC if l ∈ final(C)
⋃

{ϕl′(LV l′) | (l, l′) ∈ flow(C)} otherwise

ϕl′ (V ) = (V \ killLV (βl
′

)) ∪ genLV (βl
′

)

Example 26.9 (LV equation system)

C = [x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then
[z := x]5

else
[z := y*y]6;

[x := z]7
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The Equation System II

Reminder: LV l =

{

VarC if l ∈ final(C)
⋃

{ϕl′(LV l′) | (l, l′) ∈ flow(C)} otherwise

ϕl′ (V ) = (V \ killLV (βl
′

)) ∪ genLV (βl
′

)

Example 26.9 (LV equation system)

C = [x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then
[z := x]5

else
[z := y*y]6;

[x := z]7

l ∈ Labc killLV (βl) genLV (βl)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}
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The Equation System II

Reminder: LV l =

{

VarC if l ∈ final(C)
⋃

{ϕl′(LV l′) | (l, l′) ∈ flow(C)} otherwise

ϕl′ (V ) = (V \ killLV (βl
′

)) ∪ genLV (βl
′

)

Example 26.9 (LV equation system)

C = [x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then
[z := x]5

else
[z := y*y]6;

[x := z]7

l ∈ Labc killLV (βl) genLV (βl)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

LV 1 = ϕ2(LV 2) = LV 2 \ {y}
LV 2 = ϕ3(LV 3) = LV 3 \ {x}
LV 3 = ϕ4(LV 4) = LV 4 ∪ {y}
LV 4 = ϕ5(LV 5) ∪ ϕ6(LV 6)

= ((LV 5 \ {z}) ∪ {x}) ∪
((LV 6 \ {z}) ∪ {y})

LV 5 = ϕ7(LV 7) = (LV 7 \ {x}) ∪ {z}
LV 6 = ϕ7(LV 7) = (LV 7 \ {x}) ∪ {z}
LV 7 = {x, y, z}
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The Equation System II

Reminder: LV l =

{

VarC if l ∈ final(C)
⋃

{ϕl′(LV l′) | (l, l′) ∈ flow(C)} otherwise

ϕl′ (V ) = (V \ killLV (βl
′

)) ∪ genLV (βl
′

)

Example 26.9 (LV equation system)

C = [x := 2]1;[y := 4]2;
[x := 1]3;
if [y > 0]4 then
[z := x]5

else
[z := y*y]6;

[x := z]7

l ∈ Labc killLV (βl) genLV (βl)
1 {x} ∅
2 {y} ∅
3 {x} ∅
4 ∅ {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}

LV 1 = ϕ2(LV 2) = LV 2 \ {y}
LV 2 = ϕ3(LV 3) = LV 3 \ {x}
LV 3 = ϕ4(LV 4) = LV 4 ∪ {y}
LV 4 = ϕ5(LV 5) ∪ ϕ6(LV 6)

= ((LV 5 \ {z}) ∪ {x}) ∪
((LV 6 \ {z}) ∪ {y})

LV 5 = ϕ7(LV 7) = (LV 7 \ {x}) ∪ {z}
LV 6 = ϕ7(LV 7) = (LV 7 \ {x}) ∪ {z}
LV 7 = {x, y, z}

Solution: LV 1 = ∅
LV 2 = {y}
LV 3 = {x, y}
LV 4 = {x, y}
LV 5 = {y, z}
LV 6 = {y, z}
LV 7 = {x, y, z}
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Outline

1 Code Optimization

2 Preliminaries on Dataflow Analysis

3 Example: Available Expressions Analysis

4 Example: Live Variables Analysis

5 The Dataflow Analysis Framework
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Similarities between Analysis Problems

Observation: the analyses presented so far have some similarities
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=⇒ Look for underlying framework
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Similarities between Analysis Problems

Observation: the analyses presented so far have some similarities

=⇒ Look for underlying framework

Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations
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Similarities between Analysis Problems

Observation: the analyses presented so far have some similarities

=⇒ Look for underlying framework

Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

Overall pattern: for C ∈ Cmd and l ∈ LabC , the analysis
information (AI ) is described by equations of the form

AI l =

{

ι if l ∈ E
⊕

{ϕl′(AI l′) | (l
′, l) ∈ F} otherwise

where

ι specifies the initial analysis information
E is {init(C)} or final(C)
⊕

is
⋂

or
⋃

ϕl′ denotes the transfer function of block βl
′

F is flow(C) or flowR(C) (:= {(l′, l) | (l, l′) ∈ flow(C)})
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Characterization of Analyses

Direction of information flow:
forward:

E = {init(C)}
c has isolated entry
F = flow(C)
AI l concerns entry of βl

backward:
E = final(C)
c has isolated exits
F = flowR(C)
AI l concerns exit of βl
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Characterization of Analyses

Direction of information flow:
forward:

E = {init(C)}
c has isolated entry
F = flow(C)
AI l concerns entry of βl

backward:
E = final(C)
c has isolated exits
F = flowR(C)
AI l concerns exit of βl

Quantification over paths:
may:

⊕
=

⋃

property satisfied by some path
interested in least solution (later)

must:
⊕

=
⋂

property satisfied by all paths
interested in greatest solution (later)
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Fixpoint Iteration I

Idea: use fixpoint iteration to solve dataflow equation system

1 For C ∈ Cmd and l ∈ LabC , start with “initial” information AI l
(AE l = AExpC , LV l = ∅)

2 Iteratively evaluate dataflow equations until fixpoint reached
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Fixpoint Iteration I

Idea: use fixpoint iteration to solve dataflow equation system

1 For C ∈ Cmd and l ∈ LabC , start with “initial” information AI l
(AE l = AExpC , LV l = ∅)

2 Iteratively evaluate dataflow equations until fixpoint reached

Theoretical foundations:

Analysis information D forms complete lattice
(DAE = 2AExpC , DLV = 2VarC )

every subset of D has a least upper/greatest lower bound
=⇒ well-definedness of

⊕

... that satisfies the ascending chain condition

d1
⊇

⊆
d2

⊇

⊆
. . . =⇒ ∃n : dn = dn+1 = . . .

Combination operator and all transfer functions monotonic

d1
⊇

⊆
d2 =⇒ ϕ(d1)

⊇

⊆
ϕ(d2)

=⇒ Fixpoint effectively computable by iteration
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Fixpoint Iteration II

Example 26.10 (Available Expressions; cf. Example 26.6)

Program:

C = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5
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Fixpoint Iteration II

Example 26.10 (Available Expressions; cf. Example 26.6)

Program:

C = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE 1 = ∅
AE 2 = AE 1 ∪ {a+b}
AE 3 = (AE 2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE 4 = AE 3 ∪ {a+b}
AE 5 = AE 4 \ {a+b, a*b, a+1}
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Fixpoint Iteration II

Example 26.10 (Available Expressions; cf. Example 26.6)

Program:

C = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE 1 = ∅
AE 2 = AE 1 ∪ {a+b}
AE 3 = (AE 2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE 4 = AE 3 ∪ {a+b}
AE 5 = AE 4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc
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Fixpoint Iteration II

Example 26.10 (Available Expressions; cf. Example 26.6)

Program:

C = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE 1 = ∅
AE 2 = AE 1 ∪ {a+b}
AE 3 = (AE 2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE 4 = AE 3 ∪ {a+b}
AE 5 = AE 4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc
1 ∅ AExpc AExpc AExpc ∅

Compiler Construction Winter semester 2010/11 29



Fixpoint Iteration II

Example 26.10 (Available Expressions; cf. Example 26.6)

Program:

C = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE 1 = ∅
AE 2 = AE 1 ∪ {a+b}
AE 3 = (AE 2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE 4 = AE 3 ∪ {a+b}
AE 5 = AE 4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc
1 ∅ AExpc AExpc AExpc ∅
2 ∅ {a+b} {a+b} AExpc ∅
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Fixpoint Iteration II

Example 26.10 (Available Expressions; cf. Example 26.6)

Program:

C = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE 1 = ∅
AE 2 = AE 1 ∪ {a+b}
AE 3 = (AE 2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE 4 = AE 3 ∪ {a+b}
AE 5 = AE 4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc
1 ∅ AExpc AExpc AExpc ∅
2 ∅ {a+b} {a+b} AExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅
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Fixpoint Iteration II

Example 26.10 (Available Expressions; cf. Example 26.6)

Program:

C = [x := a+b]1;
[y := a*b]2;
while [y > a+b]3 do

[a := a+1]4;
[x := a+b]5

Equation system:

AE 1 = ∅
AE 2 = AE 1 ∪ {a+b}
AE 3 = (AE 2 ∪ {a*b}) ∩ (AE5 ∪ {a+b})
AE 4 = AE 3 ∪ {a+b}
AE 5 = AE 4 \ {a+b, a*b, a+1}

Fixpoint iteration:

i 1 2 3 4 5
0 AExpc AExpc AExpc AExpc AExpc
1 ∅ AExpc AExpc AExpc ∅
2 ∅ {a+b} {a+b} AExpc ∅
3 ∅ {a+b} {a+b} {a+b} ∅
4 ∅ {a+b} {a+b} {a+b} ∅
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Fixpoint Iteration III

Example 26.11 (Live Variables; cf. Example 26.9)

Program:

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7
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Fixpoint Iteration III

Example 26.11 (Live Variables; cf. Example 26.9)

Program:

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV 1 = LV 2 \ {y}
LV 2 = LV 3 \ {x}
LV 3 = LV 4 ∪ {y}
LV 4 = ((LV 5 \ {z}) ∪ {x}) ∪ ((LV 6 \ {z}) ∪ {y})
LV 5 = (LV 7 \ {x}) ∪ {z}
LV 6 = (LV 7 \ {x}) ∪ {z}
LV 7 = {x, y, z}
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Fixpoint Iteration III

Example 26.11 (Live Variables; cf. Example 26.9)

Program:

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV 1 = LV 2 \ {y}
LV 2 = LV 3 \ {x}
LV 3 = LV 4 ∪ {y}
LV 4 = ((LV 5 \ {z}) ∪ {x}) ∪ ((LV 6 \ {z}) ∪ {y})
LV 5 = (LV 7 \ {x}) ∪ {z}
LV 6 = (LV 7 \ {x}) ∪ {z}
LV 7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
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Fixpoint Iteration III

Example 26.11 (Live Variables; cf. Example 26.9)

Program:

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV 1 = LV 2 \ {y}
LV 2 = LV 3 \ {x}
LV 3 = LV 4 ∪ {y}
LV 4 = ((LV 5 \ {z}) ∪ {x}) ∪ ((LV 6 \ {z}) ∪ {y})
LV 5 = (LV 7 \ {x}) ∪ {z}
LV 6 = (LV 7 \ {x}) ∪ {z}
LV 7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}

Compiler Construction Winter semester 2010/11 30



Fixpoint Iteration III

Example 26.11 (Live Variables; cf. Example 26.9)

Program:

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV 1 = LV 2 \ {y}
LV 2 = LV 3 \ {x}
LV 3 = LV 4 ∪ {y}
LV 4 = ((LV 5 \ {z}) ∪ {x}) ∪ ((LV 6 \ {z}) ∪ {y})
LV 5 = (LV 7 \ {x}) ∪ {z}
LV 6 = (LV 7 \ {x}) ∪ {z}
LV 7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}
2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
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Fixpoint Iteration III

Example 26.11 (Live Variables; cf. Example 26.9)

Program:

[x := 2]1;
[y := 4]2;
[x := 1]3;
if [y > 0]4 then

[z := x]5

else

[z := y*y]6;
[x := z]7

Equation system:

LV 1 = LV 2 \ {y}
LV 2 = LV 3 \ {x}
LV 3 = LV 4 ∪ {y}
LV 4 = ((LV 5 \ {z}) ∪ {x}) ∪ ((LV 6 \ {z}) ∪ {y})
LV 5 = (LV 7 \ {x}) ∪ {z}
LV 6 = (LV 7 \ {x}) ∪ {z}
LV 7 = {x, y, z}

Fixpoint iteration:

i 1 2 3 4 5 6 7
0 ∅ ∅ ∅ ∅ ∅ ∅ ∅
1 ∅ ∅ {y} {x, y} {z} {z} {x, y, z}
2 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
3 ∅ {y} {x, y} {x, y} {y, z} {y, z} {x, y, z}
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Outlook

Summer Semester 2011: Static Program Analysis

More on dataflow analysis

Constraint-based analysis

Abstract interpretation

Pointer analysis
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