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Conceptual Structure of a Compiler

Source code

@exical analysis (Scanner)

@yntactic analysis (Parser)

Semantic analysis)

(S()urcc code optimizatio@

y
(Generation of intermediate code)

y
(Intermediate code optimization)

Y
(Generation of machine code)

Target code
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Code Optimization

Goal: Make generated code faster and/or more compact
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Code Optimization

Goal: Make generated code faster and/or more compact

Common procedure:
@ Gather information about program by performing some kind of
analysis

o Exploit information to optimize code
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Code Optimization

Goal: Make generated code faster and/or more compact

Common procedure:
@ Gather information about program by performing some kind of
analysis

o Exploit information to optimize code

Here: dataflow analysis

= attach properties to program statements
that hold every time when statement is executed
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© Preliminaries on Dataflow Analysis
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Dataflow Analysis: the Approach

o Traditional form of program analysis
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Dataflow Analysis: the Approach

o Traditional form of program analysis

@ Idea: describe how analysis information flows through program
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Dataflow Analysis: the Approach

o Traditional form of program analysis
@ Idea: describe how analysis information flows through program
o Distinctions:

direction of flow: forward vs. backward analyses

quantification over paths: may (union) vs. must (intersection)
analyses

dependence on statement order: flow-sensitive vs. flow-insensitive
analyses

procedures: interprocedural vs. intraprocedural analyses

distinction of procedure calls: context-sensitive vs.
context-insensitive analyses
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Labeled Programs

o Goal: localization of analysis information
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Labeled Programs

o Goal: localization of analysis information
o Dataflow information will be associated with

@ assignments
o tests in conditionals (if) and loops (while)

These constructs will be called blocks (denotation: BIk).
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Labeled Programs

o Goal: localization of analysis information
o Dataflow information will be associated with

@ assignments
o tests in conditionals (if) and loops (while)

These constructs will be called blocks (denotation: BIk).

o Assume set of labels Lab with meta variable | € Lab
(usually Lab = N)
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Labeled Programs

o Goal: localization of analysis information
o Dataflow information will be associated with

@ assignments
o tests in conditionals (if) and loops (while)

These constructs will be called blocks (denotation: BIk).
@ Assume set of labels Lab with meta variable [ € Lab
(usually Lab = N)

Definition 26.1 (Labeled WHILE programs)

The syntax of labeled WHILE programs is defined by the following
context-free grammar:
Au=z|I|A + Ay € AExp
B ::= A; < Ay | not B | By and By € BExp
C == [I := Al | Cy;Cs |
if [B]' then C; else (s | while [B]' do C € Cmd
Here all labels in a statement C' € Cmd are assumed to be distinct.
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A WHILE Program

Example 26.2

X := 6;
W 88 (8
z = 0;

while x > O do
X :=x - 1;

vV o=y,
while v > 0 do
v v 1;

z =z + 1;
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A WHILE Program with Labels

Example 26.2

=
[

LB

=

[z := 0]3;
while [x > 0]* do
[x :=x - 1]5;
v o= 3%
while [v > 0]7 do
[v := v - 1]%;
[z :=z + 1]°
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Representing Control Flow I

o Every (labeled) statement has a single entry (given by the initial
label) and generally multiple exits (given by the final labels)

o Labels are connected via control-flow edges
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Representing Control Flow I

o Every (labeled) statement has a single entry (given by the initial
label) and generally multiple exits (given by the final labels)

o Labels are connected via control-flow edges

o Formally:

o initial label init : Cmd — Lab
o final labels final : Cmd — 2Lab
o (control) flow relation flow(C') C Lab x Lab
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Representing Control Flow II

Example 26.3

C=|z := 1]';
while [x > 0]? do
[z := z*y]3;
[x := x-1]*
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Representing Control Flow II

Example 26.3

C=|z := 1]';
while [x > 0]? do
[z := z*y]3;
[x := x-1]*
init(C) =1
final(C) = {2}
ﬂOW(O) = {(1’ 2)? (2?3)’ (3’4)7 (47 2)}
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Representing Control Flow 11

Visualization by flow graph:
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© Example: Available Expressions Analysis
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Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.
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Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., composite) arithmetic
expressions
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Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., composite) arithmetic
expressions

Example 26.4 (Available Expressions Analysis)

[x := a+b]!;

[y = axb)?;

while [y > a+b]? do
[a := a+1]*;
[x := a+b]®
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Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., composite) arithmetic
expressions

Example 26.4 (Available Expressions Analysis)

- 1.
% = ZIE% @ a+b available at label 3
while [y > a+b]? do
[a := a+1]4;
[x := a+b]5
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Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., composite) arithmetic
expressions

Example 26.4 (Available Expressions Analysis)

- 1.
% - 212}2 @ a+b available at label 3
while [y > a+b]3 do @ a+b not available at label 5
[a := a+1]*;
[x := a+b]5
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Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., composite) arithmetic
expressions

Example 26.4 (Available Expressions Analysis)

F{ : ::lj; @ a+b available at label 3
W{nle [y > a+b]? do @ at+b not available at label 5
[a := a*1]’; @ possible optimization:
[x := a+b]® while [y > x? do
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Formalizing Available Expressions Analysis I

o Given C € Cmd, Labc/Blkc/AFEzp denote the sets of all
labels/blocks/complex arithmetic expressions occurring in C,
respectively

o Given A € AFEzp, Var(A) denotes the set of all variable
identifiers occurring in A
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Formalizing Available Expressions Analysis I

o Given C € Cmd, Labc/Blkc/AFEzp denote the sets of all
labels/blocks/complex arithmetic expressions occurring in C,
respectively

o Given A € AFEzp, Var(A) denotes the set of all variable
identifiers occurring in A

@ An expression A is killed in a block § if any of the variables in A
is modified in 8

o Formally: kill oz : Blke — 24P¢ is defined by

killag([I := A]") := {A’ € AEwpo | I € Var(A')}
killag([B]") := 0
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Formalizing Available Expressions Analysis I

o Given C € Cmd, Labc/Blkc/AFEzp denote the sets of all
labels/blocks/complex arithmetic expressions occurring in C,
respectively

o Given A € AFEzp, Var(A) denotes the set of all variable
identifiers occurring in A

@ An expression A is killed in a block § if any of the variables in A
is modified in 8

o Formally: kill oz : Blke — 24P¢ is defined by

killag([I := A]") := {A’ € AEwpo | I € Var(A')}
killag([B]") := 0

@ An expression A is generated in a block f if it is evaluated in and

none of its variables are modified by 3

o Formally: gen ,p : Blkc — 247P¢ is defined by
A}l if Ae AFxpq, 1 ¢ Var(A
senap(1 5= Al o= { ped § Vard)

otherwise
geny g ([B)') :== AEpy
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Formalizing Available Expressions Analysis 11

Example 26.5 (kill4g/gen 45 functions)

C =[x := a+b]};
[y := a*b)?;
while [y > a+b]® do
[a := a+1]4;
[x := a+b]5

Compiler Construction

Winter semester 2010/11
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Formalizing Available Expressions Analysis 11

Example 26.5 (kill4g/gen 45 functions)

® AFxp, = {at+b,axb,a+l
C =[x := a+b]}; c=1 J

[y := a*b)?;

while [y > a+b]® do
[a := a+1]4;
[x := a+b]5
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Formalizing Available Expressions Analysis 11

Example 26.5 (kill4g/gen 45 functions)

c . o AExp- = {atb,a*b,a+1}
= = +b 5 .
{; - Z*b}& o Labo Kkillap(8) genyp(8)
while [y > a+b]® do ! [ (vl
[a := a+1]4' 2 0 {axb}
[x := a+b]5’ ; ) {are}
4 {a+b,axb,a+1} 0
5 {a+b}
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The Equation System I

o Analysis itself defined by setting up an equation system
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The Equation System I

o Analysis itself defined by setting up an equation system

@ For each | € Labc, AE; C AEzp, represents the set of available
expressions at the entry of block S
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The Equation System I

o Analysis itself defined by setting up an equation system

@ For each | € Labc, AE; C AEzp, represents the set of available

expressions at the entry of block S
o Formally:

AR, — 0 if { = init(C)
7Y ew (AER) | (1) € flow(C)}  otherwise
where @y : 2487c — 24Fc denotes the transfer function of block
ﬁl', given by
pr(4) = (A\ killap(B8)) U gen 45 (8")
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The Equation System I

o Analysis itself defined by setting up an equation system

@ For each | € Labc, AE; C AEzp, represents the set of available
expressions at the entry of block S
o Formally:
AB, = {@ if | = init(C)
N{ev(AEy) | (I',1) € low(C)} otherwise
where @y : 2487c — 24Fc denotes the transfer function of block
B, given by
i (A) = (A\ killap(8")) U gen 45 (8)
@ Characterization of analysis:
forward: starts in init(C') and proceeds downwards
must: () in equation for AFE;
flow-sensitive: results depending on order of assignments
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The Equation System I

o Analysis itself defined by setting up an equation system

@ For each | € Labc, AE; C AEzp, represents the set of available
expressions at the entry of block /3
o Formally:
AB, = {@ if = init(C)
N{ev(AEy) | (I',1) € low(C)} otherwise
where @y : 2487c — 24Fc denotes the transfer function of block
B, given by
r(A) = (A\Killap(8")) Ugenyp(8")
@ Characterization of analysis:
forward: starts in init(C') and proceeds downwards
must: () in equation for AFE;
flow-sensitive: results depending on order of assignments
@ In general: solution not necessarily unique
= choose greatest one
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The Equation System II

) . (0 if I = init(C)
Reminder: AE, = {ﬂ{@l/(AEl' (I',1) € flow(C)} otherwise

|
v (E) = (E\killag(8")) Ugensp(5")
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The Equation System II

) . (0 if I = init(C)
Reminder: AE, = {ﬂ{s@l/(AEl' (I',1) € flow(C)} otherwise

|
v (E) = (E\killag(8")) Ugensp(5")

Example 26.6 (AF equation system)

C =[x := a+b]!;
ly := a%b?;
while [y > a+b]3 do
[a := a+1]*;
[x := a+b]®
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The Equation System II

. - if 1 = init(C)
Reminder: AE, = {ﬂ{wl,(AEl, (I',1) € low(C)} otherwise

|
v (E) = (E\killag(8")) Ugensp(5")

Example 26.6 (AF equation system)

l € Labe  killag(8) gen,p(8Y)

1 0 {a+b}
2 0 {a*b}
3 ) {a+b}
4  {a+b,a*b,a+1} 0

5 ) {a+b}
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The Equation System II

{ if 1 = init(C)
e (AEy) | (I',1) € flow(C)} otherwise

Reminder: AE, = |
v (EB) = (B \ killag(8")) Ugen,5(8")

Example 26.6 (AF equation system)

C=[x := a+b]1; Equations:
[y := a*b]?; ﬁg1 =0 ) U )
hil > a+b|® d 2 = ¢1 1) = 1 a
’ [la ; £ya+1?l4+ e AB3 = p3(AE3) N p5(AEs)
[x := a+b]5, = (AE; U {axb}) N (AE5 U {a+b})

AE4 = p3(AE3) = AE3 U {a+b}
AEs = 04(AE,) = AE4 \ {a+b, a*b,a+1}
l € Labe  killag(8) gen,p(8Y)

1 0 {a+b}
2 0 {a*b}
3 ) {a+b}
4  {a+b,a*b,a+1} 0

5 ) {a+b}
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The Equation System II

{ if 1 = init(C)
e (AEy) | (I',1) € flow(C)} otherwise

Reminder: AE, = |
v (EB) = (B \ killag(8")) Ugen,5(8")

Example 26.6 (AF equation system)

C =[x := a+b]!; Equations:
[y := a*b]?; ﬁg1 =0 ) U )
hil > a+b|® d 2 = ¢1 1) = 1 a
’ [la ; £ya+1?l4+ e AB3 = p3(AE3) N p5(AEs)
[x := a+b]5, = (AE; U {axb}) N (AE5 U {a+b})

AE4 = p3(AE3) = AE3 U {a+b}
AEs = 04(AE,) = AE4 \ {a+b, a*b,a+1}
l € Labe  killag(8) gen,p(8Y)

1 D {a*b} Solution: AE; = 0
5 0 {axb] olution: AE; ~ fast)
3 0 {a+b} AE; = {a+b}
4 {a+b,axb,a+1} 0 AE, = {a+b}
5 0 {a+b} AEs = ()
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@ Example: Live Variables Analysis
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Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.
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Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

@ A variable is called live at the exit of a block if there exists a path
from the block to a use of the variable that does not re-define the
variable
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Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

@ A variable is called live at the exit of a block if there exists a path
from the block to a use of the variable that does not re-define the
variable

o All variables considered to be live at the end of the program
(alternative: restriction to output variables)
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Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

@ A variable is called live at the exit of a block if there exists a path
from the block to a use of the variable that does not re-define the
variable

o All variables considered to be live at the end of the program
(alternative: restriction to output variables)

@ Can be used for Dead Code Elimination:
remove assignments to non-live variables
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An Example

Example 26.7 (Live Variables Analysis)
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An Example

Example 26.7 (Live Variables Analysis)

[y := 4]%; @ x not live at exit from label 1
[x := 1]%;
if [y > 0]* then
[z := x]°
else
[z = y*y]%
[x := 2]
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An Example

Example 26.7 (Live Variables Analysis)

[y := 4]§§ @ x not live at exit from label 1
[LXf [Y= >1]Oj4 then @ y live at exit from 2
[Z 1= x]5
else
[z = y*y]%;
[x = 2]7
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An Example

Example 26.7 (Live Variables Analysis)

[y := 4]§§ @ x not live at exit from label 1
[le [Y= >1]O] 4 then @ y live at exit from 2
[z := x]° @ x live at exit from 3
else
[z = y*y]%;
x := 2]
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An Example

Example 26.7 (Live Variables Analysis)

[y := 4]§§ @ x not live at exit from label 1
[le [Y= >1]O] 4 then @ y live at exit from 2
[z := x° @ x live at exit from 3
else @ z live at exits from 5 and 6
[z = y*y]%;
x := 2]
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An Example

Example 26.7 (Live Variables Analysis)

[y := 4]3, @ x not live at exit from label 1
[le [Y_ >1]O] 1 then @ vy live at exit from 2
[z := x)° @ x live at exit from 3
else . ] @ z live at exits from 5 and 6
[x [z= ;]7Y*Y] ’ @ possible optimization: remove [x := 2!
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Formalizing Live Variables Analysis I

@ A variable on the left-hand side of an assignment is killed by the
assignment; tests do not kill
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Formalizing Live Variables Analysis I

@ A variable on the left-hand side of an assignment is killed by the
assignment; tests do not kill

o Formally: kill,y : Blkc — 2V%¢ is defined by

killy ([I := A)) = {1}
kill,y ([B]') := 0
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Formalizing Live Variables Analysis I

@ A variable on the left-hand side of an assignment is killed by the
assignment; tests do not kill
o Formally: kill,y : Blkc — 2V%¢ is defined by
killy ([I := A)) = {1}
kill,y ([B]!) :== 0
o Every reading access generates a live variable
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Formalizing Live Variables Analysis I

©

A variable on the left-hand side of an assignment is killed by the
assignment; tests do not kill
Formally: kill;y : Blkc — 2V%¢ is defined by
killy ([I := A)) = {1}
kill,y ([B]!) :== 0
Every reading access generates a live variable

©

©

Formally: gen; : Blkc — 2V%¢ is defined by
gen, ([I := A)!) := Var(A)
genpy ([B]') := Var(B)
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Formalizing Live Variables Analysis II

Example 26.8 (kill;y/gen;, functions)
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Formalizing Live Variables Analysis II

Example 26.8 (kill;y/gen;, functions)

C:[X = 2]1; C VO/I’C:{X,Y,Z}
ly == 4%
[x = 1]3;
if [y > 0]4 then
[z :=x]°
else
z := y*y]%;
x := 2]
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Formalizing Live Variables Analysis II

Example 26.8 (kill;y/gen;, functions)

C:[X = 2]1; 9 Varc:{X7Y7Z}

[y := 4% o | € Lab, killpy (BY) geny (8Y)

[x := 1]3; 1 {x} 0

if [y > 0]* then 2 {y} 0

[z := x]° 3 {x} 0

else 4 0 {v}

[z = y*yl°; 5 {z} {x}

[x = 2] 6 {z} {y}

7 {x} {z}
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The Equation System I

@ For each [ € Labg, LV C Var, represents the set of live variables
at the exit of block A
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The Equation System I

@ For each [ € Labg, LV C Var, represents the set of live variables
at the exit of block A

o Formally, for a program C € Cmd with isolated exits:

LV, — Vare if [ € final(C)
7 YW (LVy) | (1,1) € flow(C)}  otherwise
where ¢y : 2Verc — 2Vere denotes the transfer function of block
BY, given by
e (V) i= (V \ Killy (8)) U genyy (8")
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The Equation System I

@ For each [ € Labg, LV C Var, represents the set of live variables
at the exit of block A
o Formally, for a program C € Cmd with isolated exits:
LV, = { Varc if [ € final(C)
U{er (LVy) | (1,1) € low(C)} otherwise
where ¢y : 2Verc — 2Vere denotes the transfer function of block
BY, given by
(V) = (V \ Killy (8)) U genpy (8")
@ Characterization of analysis:
backward: starts in final(C') and proceeds upwards
may: J in equation for LV
flow-sensitive: results depending on order of assignments
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The Equation System I

@ For each [ € Labg, LV C Var, represents the set of live variables
at the exit of block A
o Formally, for a program C € Cmd with isolated exits:
LV, = { Varc if | € ﬁpal(C’)
U{er (LVy) | (1,1) € low(C)} otherwise
where ¢y : 2Verc — 2Vere denotes the transfer function of block
BY, given by
(V) = (V \ Killy (8)) U genpy (8")
@ Characterization of analysis:
backward: starts in final(C') and proceeds upwards
may: J in equation for LV
flow-sensitive: results depending on order of assignments
@ In general: solution not necessarily unique
= choose least one
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The Equation System II

] . [ Vare if [ € final(C)
Reminder: LV, = {U{Qpl,(Lvl, (1,1") € low(C)} otherwise

|
or (V) = (V\ killy (")) U genp,y (")
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The Equation System II

] . [ Vare if [ € final(C)
Reminder: LV, = {U{Qpl,(Lvl,) (1,1") € low(C)} otherwise

|
(V) = (V \ killy (8")) U genpy (8")

Example 26.9 (LV equation system)

[z := x°
else

[z := y*y°%;
[x := 2"
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The Equation System II

Varc if [ € final(C)

Reminder: LV, = {U{ﬁpz'(Lvl’) 1,1y € flow(C)} otherwise

|
(V) = (V \ killy (8")) U genpy (8")

Example 26.9 (LV equation system)

l € Lab, killpy (8Y) genLV(Bl)
1 {x} 0
2 {v} 0
3 {x} 0
4 {v}
5 {z} {x}
6 {z} {v}
7 {x} {z}
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The Equation System II

] . [ Vare if [ € final(C)
Reminder: LV, = {U{ﬁpz/(LVl') (1,I') € low(C)} otherwise

|
or (V) = (V\ killy (")) U genp,y (")

Example 26.9 (LV equation system)

= o]y o= 4 (LV2) = LV3 \ {}
[X .= 1]3; LV2 = (pg(LVg) = LV3 \ {X}
a5 [Y N 0]4 e LVg = 4(LVy)=LV,U {y}
[z - X] LV = o5(LV5)Ups(LVe)
else = ((LVs\{z})u{x}) U
[z = yxy]°; (LVe\{z}) U{y})
B = gt LV = pr(LV7) = (LV7\ <)) U {z}
‘ LV = pr(LV7) = (LV7 \ {x}) U {z}
JC D killy (8") gen%(m Lvy = {xy,z}
2 {y} 0
3 x 0
4 {y}
5 {z} {x}
6 {z} {y}
7 {x} {z}
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The Equation System II

] . [ Vare if [ € final(C)
Reminder: LV, = {U{ﬁpl/(LVl') (1,I') € low(C)} otherwise

|
or (V) = (V\ killy (")) U genp,y (")

Example 26.9 (LV equation system)

C=[x := 24y := 4% LV = @a(LV2) = LV2 \ {y}
[x := 1J3; LVy = p3(LV3) = LV3\ {x}
540 [Y > 0]4 e LV = g04(LV4) =LV4U {y}
[z - X] LV = o5(LV5)Ups(LVe)
else = ((égf) \ {Z}) U {X}) U
i Vs = L) = (VA G U e}
‘ LV = pr(LV7) = (LV7 \ {x}) U {z}
I € Lab, killLy (8") gen,y (6Y) LV ={x,y,2}
1 {x} 0 Solution: LV =0
2 v} 0 LV, = {y}
3 {x} 0 LVs = {x,v}
4 0 {v} LV4 = {x,y}
0B
z y LVe ={y,z
7 {X} {Z} LV7 = {X7 Y Z}
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© The Dataflow Analysis Framework
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Similarities between Analysis Problems

@ Observation: the analyses presented so far have some similarities
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Similarities between Analysis Problems

@ Observation: the analyses presented so far have some similarities
— Look for underlying framework
@ Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

o Overall pattern: for C € Cmd and [ € Labc, the analysis
information (AI) is described by equations of the form

Al — {L ifleE
PZ Y@ v (AIy) | (I')1) € F}  otherwise
where
o ¢ specifies the initial analysis information
o E is {init(C)} or final(C)
s PisNorlY
e ¢ denotes the transfer function of block B
o Fis flow(C) or flow™(C) (:= {(I',1) | (I,I') € flow(C)})
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Characterization of Analyses

o Direction of information flow:

o forward:

o FE = {init(C)}

@ c has isolated entry

o F =flow(C)

@ AI; concerns entry of Jix
o backward:

o E = final(C)

@ ¢ has isolated exits

o F =flow™(0)

@ AI; concerns exit of !
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Characterization of Analyses

@ Direction of information flow:

o forward:
o FE = {init(C)}
@ c has isolated entry
o F =flow(C)
@ AI; concerns entry of Jix

@ backward:
o E = final(C)
@ c has isolated exits
o F =flow™(0)
@ AI; concerns exit of !

o Quantification over paths:

e may:
o ®=U
@ property satisfied by some path
@ interested in least solution (later)

9 must:
e ®d=0N
@ property satisfied by all paths
@ interested in greatest solution (later)
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Fixpoint Iteration I

Idea: use fixpoint iteration to solve dataflow equation system
@ For C' € Omd and [ € Labc, start with “initial” information Al
(AE, = AExps, LV, = 0)

Q Iteratively evaluate dataflow equations until fixpoint reached
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Fixpoint Iteration I

Idea: use fixpoint iteration to solve dataflow equation system

@ For C' € Omd and [ € Labc, start with “initial” information Al
(AE, = AExps, LV, = 0)

Q Iteratively evaluate dataflow equations until fixpoint reached

Theoretical foundations:

o Analysis information D forms complete lattice
(Dap = 245c, Dy = 2Vere)
o every subset of D has a least upper/greatest lower bound
= well-definedness of €

@ ... that satisfies the ascending chain condition
o di 2do2 ... = Inidy=dpy1=...

o Combination operator and all transfer functions monotonic
o di 2dy = p(d) 2 pl(do)

— Fixpoint effectively computable by iteration
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Fixpoint Iteration II

Example 26.10 (Available Expressions; cf. Example 26.6)

Program:
C =[x := a+b]};
[y := a%b]*;

while [y > a+b]3 do
[a := a+1]*;
[x := a+b]®
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Fixpoint Iteration II

Example 26.10 (Available Expressions; cf. Example 26.6)

Program: Equation system:
C =[x := a+b]}; AE; =0
[y .= a*b]2; AE; = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) M (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
[x := a+b]’ AEs = AE4\ {a+b,axb,a+1}
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Fixpoint Iteration II

Example 26.10 (Available Expressions; cf. Example 26.6)

Program: Equation system:
C =[x := a+b]}; AE; =0
[y .= a*b]2; AE; = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) M (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
[x := a+b]’ AEs = AE4\ {a+b,axb,a+1}

Fixpoint iteration:

i| 1 2 3 1 5
0| AEzp, AEzp, AExzp., AFxp. AEzp,
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Fixpoint Iteration II

Example 26.10 (Available Expressions; cf. Example 26.6)

Program: Equation system:
C =[x := a+b]}; AE, =10
[y .= a*b]2; AE; = AE1 U {a+b}

while [y > a+b]3 do AE3 = (AE2 U {a*b}) N (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
[x := a+b]’ AE5 = AE4\ {a+b,a*b,a+1}

Fixpoint iteration:

1 1 2 3 4 )
0| AExp, AExp. AFEzp, AFExp. AEzp,
1 0 AExp, AExp, AExp, 0
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Fixpoint Iteration II

Example 26.10 (Available Expressions; cf. Example 26.6)

Program: Equation system:
C =[x := a+b]}; AE, =10
[y .= a*b]2; AE; = AE1 U {a+b}

while [y > a+b]3 do AE3 = (AE2 U {a*b}) N (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
[x := a+b]’ AE5 = AE4\ {a+b,a*b,a+1}

Fixpoint iteration:

) 1 2 3 4 )
0| AExp, AExp, AFzp, AExp. AExp,
1 0 AEzp, AEzp. AEap, 0
2 0 {a+b} {a+b} AFzp, 0
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Fixpoint Iteration II

Example 26.10 (Available Expressions; cf. Example 26.6)

Program: Equation system:
C =[x := a+b]}; AE; =0
[y .= a*b]2; AE; = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) M (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
[x := a+b]’ AEs = AE4\ {a+b,axb,a+1}

Fixpoint iteration:

1 2 3 4 )
AFExp, AExp. AFEzp, AFExp. AEzp,

0

0

0

C

0 AFEzp, AExp. AEzp,
0 {atb} {atb} AEaxp,
0 {a+b} {a+b} {a+b}

W N = Of .
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Fixpoint Iteration II

Example 26.10 (Available Expressions; cf. Example 26.6)

Program: Equation system:
C =[x := a+b]}; AE; =0
[y .= a*b]2; AE; = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) M (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
[x := a+b]’ AEs = AE4\ {a+b,axb,a+1}

Fixpoint iteration:

1 2 3 4 )
AFExp, AExp. AFEzp, AFExp. AEzp,
0 AEzp, AEzp. AEap, 0
0 {a+b} {a+b} AFzp, 0
0 {a+b} {a+b} {a+b} 0
0 {a+b} {a+b} {a+b} 0

BN = O .
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Fixpoint Iteration III

Example 26.11 (Live Variables; cf. Example 26.9)

Program:
[x := 2]};
[y := 4%
[x := 1]3;
if [y > 0]* then
[z = x°
else
[z := yxy]%;
[x = 2"
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Fixpoint Iteration III

Example 26.11 (Live Variables; cf. Example 26.9)

Program: Equation system:

[x := 2]}; LVy = LV \{y}

[y := 4)%; LVy = LV3\ {x}

[X o= 1]3; LVs=LV4U {y}

ity > o then  LVa = ((LVs\{z}) U {x}) U((LV6 \ {=}) U {3})
z := x° LVs = (LV7\ {x}) U{z}

else LVg = (LV7 \ {X}) U {Z}
[Z = Y*Y]G; LV7 = {Xuya Z}

[x = 2]




Fixpoint Iteration III

Example 26.11 (Live Variables; cf. Example 26.9)

Program: Equation system:

[x := 2]}; LVy = LV \{y}

[y := 4)%; LVy = LV3\ {x}

[X o= 1]3; LVs=LV4U {y}

ity > o then  LVa = ((LVs\{z}) U {x}) U((LV6 \ {=}) U {3})
z := x° LVs = (LV7\ {x}) U{z}

else LVg = (LV7 \ {X}) U {Z}
[Z = Y*Y]G; LV7 = {Xuya Z}

[x = 2]

Fixpoint iteration:

i1 2 3 4 5
0[0 0 0 0 0

= O
=




Fixpoint Iteration III

Example 26.11 (Live Variables; cf. Example 26.9)

Program: Equation system:

[x := 2]}; LVy = LV \{y}

[Y .= 4]2; LVy =LVg \ {X}

[X o= 1]3; LVs=LV4U {y}

if [y > 0]* then LVy = ((LVs\{z}) U{x}) U((LVe \ {z}) U{y})
z := x° LVs = (LV7\ {x}) U{z}

else LVg = (LV7 \ {X}) U {Z}
[Z o= Y*Y]G; LV; = {Xayu Z}

E = 2]’

Fixpoint iteration:

i1 2 3 4 5 6 7
olo 0 0 0 0 0 0
Lo 0 {yy {xyt {z2 {2} {xyz
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Fixpoint Iteration III

Example 26.11 (Live Variables; cf. Example 26.9)

Program: Equation system:

[x := 2]}; LVy = LV \{y}

[Y = 4]2; LVy = LVg \ {X}

[X o= 1]3; LVs=LV4U {y}

if [y > 0]* then LVy = ((LVs\{z}) U{x}) U((LVe \ {z}) U{y})
o = LVs = (LV7\ {x}) U {z}

else LVg = (LV7 \ {X}) U {Z}
[Z .= Y*Y]G; LV7 = {Xuya Z}

E = 2]’

Fixpoint iteration:

il1 2 3 4 5 6 7
0 0 0 0 0 0
0 {y} {xyt {z} {z} {xyz}
v} {=vy} {xy} {v.z} {v.z} {xvyz}

-_—
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Fixpoint Iteration III

Example 26.11 (Live Variables; cf. Example 26.9)

Program: Equation system:

[x := 2]}; LVy = LV \{y}

[y := 4)%; LVy = LV3\ {x}

[x := 1]3; LV =LV4U{y}

if [y > 0]* then LVy = ((LVs\{z}) U{x}) U((LVe \ {z}) U{y})
[z := X]5 LVs = (LV7\ {x}) U{z}

else LVg = (LV7 \ {X}) U {Z}
[Z .= Y*Y]G; LV7 = {Xuya Z}

E = 2]’

i1 2 3 4 5 6 7
0 0 0 0 0 0
0 b {xyr = {zr {xy.z
y
y

} {xy} {xy} {v.z} {v.z} {xv,z}
}o{xyr {xy} {v.z} {v.z} {xy.z}
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Outlook

Summer Semester 2011: Static Program Analysis
S o

o More on dataflow analysis
o Constraint-based analysis
o Abstract interpretation

@ Pointer analysis
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