

Compiler Construction

Lecture 26: Code Optimization

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/cc10/>

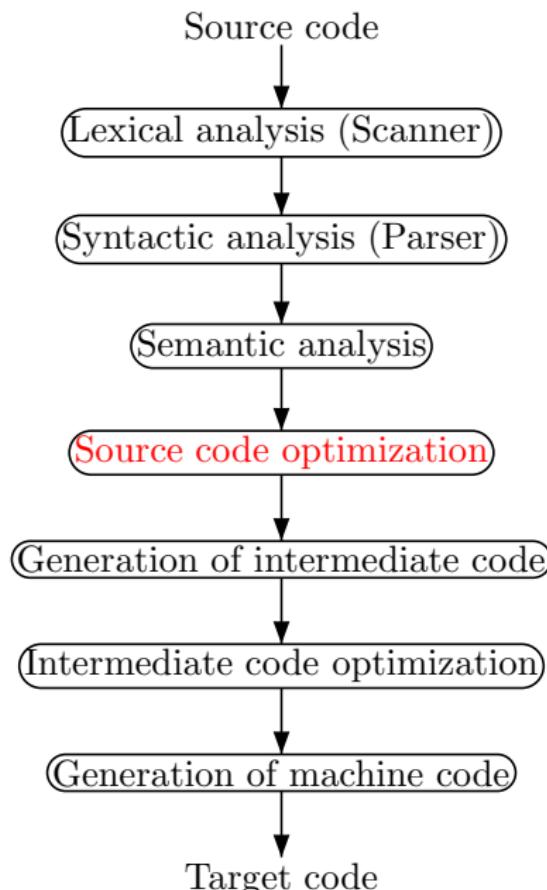
Winter semester 2010/11

<http://www.campus.rwth-aachen.de/evasys/index.php?mca=online/index/>

- In German
- Lösung: **autobahn**
- Advisory service, preparatory CS course
- Conditions of study
- Applied subject
- ...

- 1 Code Optimization
- 2 Preliminaries on Dataflow Analysis
- 3 Example: Available Expressions Analysis
- 4 Example: Live Variables Analysis
- 5 The Dataflow Analysis Framework

Conceptual Structure of a Compiler



Goal: Make generated code **faster** and/or **more compact**

Common procedure:

- Gather **information** about program by performing some kind of **analysis**
- Exploit information to **optimize** code

Here: **dataflow analysis**

⇒ attach properties to program statements
that hold **every time** when statement is executed

- 1 Code Optimization
- 2 Preliminaries on Dataflow Analysis
- 3 Example: Available Expressions Analysis
- 4 Example: Live Variables Analysis
- 5 The Dataflow Analysis Framework

- Traditional form of **program analysis**
- Idea: describe how analysis information **flows** through program
- Distinctions:
 - direction of flow: **forward** vs. **backward** analyses
 - quantification over paths: **may** (**union**) vs. **must** (**intersection**) analyses
 - dependence on statement order: **flow-sensitive** vs. **flow-insensitive** analyses
 - procedures: **interprocedural** vs. **intraprocedural** analyses
 - distinction of procedure calls: **context-sensitive** vs. **context-insensitive** analyses

- Goal: **localization** of analysis information
- Dataflow information will be associated with
 - assignments
 - tests in conditionals (**if**) and loops (**while**)

These constructs will be called **blocks** (denotation: Blk).

- Assume set of **labels** Lab with meta variable $l \in Lab$
(usually $Lab = \mathbb{N}$)

Definition 26.1 (Labeled WHILE programs)

The **syntax of labeled WHILE programs** is defined by the following context-free grammar:

$$A ::= z \mid I \mid A_1 + A_2 \in AExp$$

$$B ::= A_1 < A_2 \mid \text{not } B \mid B_1 \text{ and } B_2 \in BExp$$

$$C ::= [I := A]^l \mid C_1 ; C_2 \mid$$

$$\text{if } [B]^l \text{ then } C_1 \text{ else } C_2 \mid \text{while } [B]^l \text{ do } C \in Cmd$$

Here all labels in a statement $C \in Cmd$ are assumed to be distinct.

A WHILE Program with Labels

Example 26.2

```
x := 6;  
y := 7;  
z := 0;  
while x > 0 do  
    x := x - 1;  
    v := y;  
    while v > 0 do  
        v := v - 1;  
        z := z + 1;
```

- Every (labeled) statement has a single entry (given by the initial label) and generally multiple exits (given by the final labels)
- Labels are connected via control-flow edges
- Formally:
 - **initial label** $\text{init} : \text{Cmd} \rightarrow \text{Lab}$
 - **final labels** $\text{final} : \text{Cmd} \rightarrow 2^{\text{Lab}}$
 - **(control) flow relation** $\text{flow}(\text{C}) \subseteq \text{Lab} \times \text{Lab}$

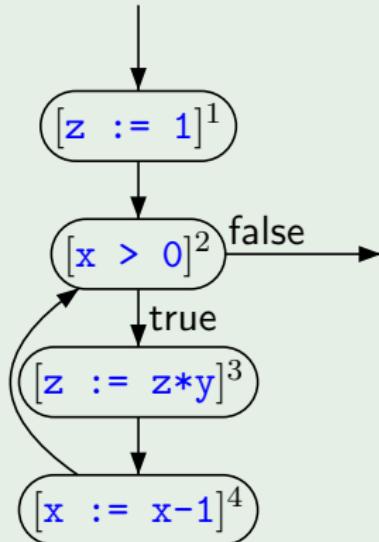
Representing Control Flow II

Example 26.3

Visualization by **flow graph**:

```
C = [z := 1]1;  
    while [x > 0]2 do  
        [z := z*y]3;  
        [x := x-1]4
```

$\text{init}(C) = 1$
 $\text{final}(C) = \{2\}$
 $\text{flow}(C) = \{(1, 2), (2, 3), (3, 4), (4, 2)\}$



- 1 Code Optimization
- 2 Preliminaries on Dataflow Analysis
- 3 Example: Available Expressions Analysis
- 4 Example: Live Variables Analysis
- 5 The Dataflow Analysis Framework

Goal of the Analysis

Available Expressions Analysis

The goal of **Available Expressions Analysis** is to determine, for each program point, which (complex) expressions *must* have been computed, and not later modified, on all paths to the program point.

- can be used to **avoid recomputations** of expressions
- only interesting for non-trivial (i.e., composite) arithmetic expressions

Example 26.4 (Available Expressions Analysis)

```
[x := a+b]1;  
[y := a*b]2;  
while [y > a+b]3 do  
  [a := a+1]4;  
  [x := a+b]5
```

- $a+b$ available at label 3
- $a+b$ not available at label 5
- possible optimization:
`while [y > x]3 do`

- Given $C \in Cmd$, $\text{Lab}_C / \text{Blk}_C / AExp_C$ denote the sets of all labels/blocks/complex arithmetic expressions occurring in C , respectively
- Given $A \in AExp_C$, $\text{Var}(A)$ denotes the set of all variable identifiers occurring in A
- An expression A is **killed** in a block β if any of the variables in A is modified in β
- Formally: $\text{kill}_{AE} : \text{Blk}_C \rightarrow 2^{AExp_C}$ is defined by

$$\text{kill}_{AE}([I := A]^l) := \{A' \in AExp_C \mid I \in \text{Var}(A')\}$$

$$\text{kill}_{AE}([B]^l) := \emptyset$$
- An expression A is **generated** in a block β if it is evaluated in and none of its variables are modified by β
- Formally: $\text{gen}_{AE} : \text{Blk}_C \rightarrow 2^{AExp_C}$ is defined by

$$\text{gen}_{AE}([I := A]^l) := \begin{cases} \{A\} & \text{if } A \in AExp_C, I \notin \text{Var}(A) \\ \emptyset & \text{otherwise} \end{cases}$$

$$\text{gen}_{AE}([B]^l) := AExp_B$$

Example 26.5 ($\text{kill}_{AE}/\text{gen}_{AE}$ functions)

```

 $C = [x := a+b]^1;$ 
 $[y := a*b]^2;$ 
 $\text{while } [y > a+b]^3 \text{ do}$ 
 $[a := a+1]^4;$ 
 $[x := a+b]^5$ 

```

•	$AExp_C = \{a+b, a*b, a+1\}$	
•	Lab_C	$\text{kill}_{AE}(\beta^l)$ $\text{gen}_{AE}(\beta^l)$
	1	\emptyset $\{a+b\}$
	2	\emptyset $\{a*b\}$
	3	\emptyset $\{a+b\}$
	4	$\{a+b, a*b, a+1\}$ \emptyset
	5	\emptyset $\{a+b\}$

The Equation System I

- Analysis itself defined by setting up an **equation system**
- For each $l \in Lab_C$, $AE_l \subseteq AExp_C$ represents the **set of available expressions at the entry of block β^l**
- Formally:

$$AE_l = \begin{cases} \emptyset & \text{if } l = \text{init}(C) \\ \bigcap \{\varphi_{l'}(AE_{l'}) \mid (l', l) \in \text{flow}(C)\} & \text{otherwise} \end{cases}$$

where $\varphi_{l'} : 2^{AExp_C} \rightarrow 2^{AExp_C}$ denotes the **transfer function** of block $\beta^{l'}$, given by

$$\varphi_{l'}(A) := (A \setminus \text{kill}_{AE}(\beta^{l'})) \cup \text{gen}_{AE}(\beta^{l'})$$

- Characterization of analysis:
 - forward: starts in $\text{init}(C)$ and proceeds downwards
 - must: \bigcap in equation for AE_l
 - flow-sensitive: results depending on order of assignments
- In general: solution **not necessarily unique**
⇒ choose **greatest one**

The Equation System II

Reminder: $AE_l = \begin{cases} \emptyset & \text{if } l = \text{init}(C) \\ \bigcap \{\varphi_{l'}(AE_{l'}) \mid (l', l) \in \text{flow}(C)\} & \text{otherwise} \end{cases}$
 $\varphi_{l'}(E) = (E \setminus \text{kill}_{AE}(\beta^{l'})) \cup \text{gen}_{AE}(\beta^{l'})$

Example 26.6 (AE equation system)

$C = [x := a+b]^1;$
 $[y := a*b]^2;$
 $\text{while } [y > a+b]^3 \text{ do}$
 $[a := a+1]^4;$
 $[x := a+b]^5$

Equations:

$$AE_1 = \emptyset$$

$$AE_2 = \varphi_1(AE_1) = AE_1 \cup \{a+b\}$$

$$AE_3 = \varphi_2(AE_2) \cap \varphi_5(AE_5) \\ = (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\})$$

$$AE_4 = \varphi_3(AE_3) = AE_3 \cup \{a+b\}$$

$$AE_5 = \varphi_4(AE_4) = AE_4 \setminus \{a+b, a*b, a+1\}$$

$l \in \text{Lab}_C$	$\text{kill}_{AE}(\beta^l)$	$\text{gen}_{AE}(\beta^l)$
1	\emptyset	$\{a+b\}$
2	\emptyset	$\{a*b\}$
3	\emptyset	$\{a+b\}$
4	$\{a+b, a*b, a+1\}$	\emptyset
5	\emptyset	$\{a+b\}$

Solution: $AE_1 = \emptyset$

$$AE_2 = \{a+b\}$$

$$AE_3 = \{a+b\}$$

$$AE_4 = \{a+b\}$$

$$AE_5 = \emptyset$$

- 1 Code Optimization
- 2 Preliminaries on Dataflow Analysis
- 3 Example: Available Expressions Analysis
- 4 Example: Live Variables Analysis
- 5 The Dataflow Analysis Framework

Live Variables Analysis

The goal of **Live Variables Analysis** is to determine, for each program point, which variables *may* be live at the exit from the point.

- A variable is called **live** at the exit of a block if there exists a path from the block to a use of the variable that does not re-define the variable
- All variables considered to be live at the **end** of the program (alternative: restriction to output variables)
- Can be used for **Dead Code Elimination**: remove assignments to non-live variables

An Example

Example 26.7 (Live Variables Analysis)

```
[x := 2]1;  
[y := 4]2;  
[x := 1]3;  
if [y > 0]4 then  
  [z := x]5  
else  
  [z := y*y]6;  
[x := z]7
```

- x not live at exit from label 1
- y live at exit from 2
- x live at exit from 3
- z live at exits from 5 and 6
- possible optimization: remove [x := 2]¹

- A variable on the left-hand side of an assignment is **killed** by the assignment; tests do not kill
- Formally: $\text{kill}_{LV} : Blk_C \rightarrow 2^{Var_C}$ is defined by
$$\text{kill}_{LV}([I := A]^l) := \{I\}$$
$$\text{kill}_{LV}([B]^l) := \emptyset$$
- Every reading access **generates** a live variable
- Formally: $\text{gen}_{LV} : Blk_C \rightarrow 2^{Var_C}$ is defined by
$$\text{gen}_{LV}([I := A]^l) := \text{Var}(A)$$
$$\text{gen}_{LV}([B]^l) := \text{Var}(B)$$

Example 26.8 ($\text{kill}_{LV}/\text{gen}_{LV}$ functions)

```
c = [x := 2]1;  
     [y := 4]2;  
     [x := 1]3;  
     if [y > 0]4 then  
       [z := x]5  
     else  
       [z := y*y]6;  
     [x := z]7
```

• $Var_c = \{\mathbf{x}, \mathbf{y}, \mathbf{z}\}$		
• $l \in \text{Lab}_c \quad \frac{}{\begin{array}{ccc} 1 & \{\mathbf{x}\} & \emptyset \\ 2 & \{\mathbf{y}\} & \emptyset \\ 3 & \{\mathbf{x}\} & \emptyset \\ 4 & \emptyset & \{\mathbf{y}\} \\ 5 & \{\mathbf{z}\} & \{\mathbf{x}\} \\ 6 & \{\mathbf{z}\} & \{\mathbf{y}\} \\ 7 & \{\mathbf{x}\} & \{\mathbf{z}\} \end{array}}$		
	1	$\{\mathbf{x}\}$
	2	$\{\mathbf{y}\}$
	3	$\{\mathbf{x}\}$
	4	\emptyset
	5	$\{\mathbf{z}\}$
	6	$\{\mathbf{z}\}$
	7	$\{\mathbf{x}\}$

The Equation System I

- For each $l \in Lab_C$, $LV_l \subseteq Var_c$ represents the set of **live variables at the exit of block β^l**

- Formally, for a program $C \in Cmd$ with isolated exits:

$$LV_l = \begin{cases} Var_C & \text{if } l \in \text{final}(C) \\ \bigcup \{\varphi_{l'}(LV_{l'}) \mid (l, l') \in \text{flow}(C)\} & \text{otherwise} \end{cases}$$

where $\varphi_{l'} : 2^{Var_C} \rightarrow 2^{Var_C}$ denotes the **transfer function** of block $\beta^{l'}$, given by

$$\varphi_{l'}(V) := (V \setminus \text{kill}_{LV}(\beta^{l'})) \cup \text{gen}_{LV}(\beta^{l'})$$

- Characterization of analysis:

backward: starts in $\text{final}(C)$ and proceeds upwards

may: \bigcup in equation for LV_l

flow-sensitive: results depending on order of assignments

- In general: solution **not necessarily unique**

\implies choose **least one**

The Equation System II

Reminder: $LV_l = \begin{cases} Var_C & \text{if } l \in \text{final}(C) \\ \bigcup \{\varphi_{l'}(LV_{l'}) \mid (l, l') \in \text{flow}(C)\} & \text{otherwise} \end{cases}$

$$\varphi_{l'}(V) = (V \setminus \text{kill}_{LV}(\beta^{l'})) \cup \text{gen}_{LV}(\beta^{l'})$$

Example 26.9 (LV equation system)

```

 $C = [x := 2]^1; [y := 4]^2;$ 
       $[x := 1]^3;$ 
       $\text{if } [y > 0]^4 \text{ then}$ 
           $[z := x]^5$ 
       $\text{else}$ 
           $[z := y*y]^6;$ 
       $[x := z]^7$ 
  
```

$l \in \text{Lab}_c \text{ kill}_{LV}(\beta^l) \text{ gen}_{LV}(\beta^l)$

1	$\{x\}$	\emptyset
2	$\{y\}$	\emptyset
3	$\{x\}$	\emptyset
4	\emptyset	$\{y\}$
5	$\{z\}$	$\{x\}$
6	$\{z\}$	$\{y\}$
7	$\{x\}$	$\{z\}$

$$\begin{aligned}
 LV_1 &= \varphi_2(LV_2) = LV_2 \setminus \{y\} \\
 LV_2 &= \varphi_3(LV_3) = LV_3 \setminus \{x\} \\
 LV_3 &= \varphi_4(LV_4) = LV_4 \cup \{y\} \\
 LV_4 &= \varphi_5(LV_5) \cup \varphi_6(LV_6) \\
 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup \\
 &\quad ((LV_6 \setminus \{z\}) \cup \{y\}) \\
 LV_5 &= \varphi_7(LV_7) = (LV_7 \setminus \{x\}) \cup \{z\} \\
 LV_6 &= \varphi_7(LV_7) = (LV_7 \setminus \{x\}) \cup \{z\} \\
 LV_7 &= \{x, y, z\}
 \end{aligned}$$

Solution: $LV_1 = \emptyset$
 $LV_2 = \{y\}$
 $LV_3 = \{x, y\}$
 $LV_4 = \{x, y\}$
 $LV_5 = \{y, z\}$
 $LV_6 = \{y, z\}$
 $LV_7 = \{x, y, z\}$

- 1 Code Optimization
- 2 Preliminaries on Dataflow Analysis
- 3 Example: Available Expressions Analysis
- 4 Example: Live Variables Analysis
- 5 The Dataflow Analysis Framework

Similarities between Analysis Problems

- **Observation:** the analyses presented so far have some **similarities**
⇒ Look for underlying **framework**
- **Advantage:** possibility for designing (efficient) **generic algorithms** for solving **dataflow equations**
- **Overall pattern:** for $C \in Cmd$ and $l \in Lab_C$, the **analysis information** (AI) is described by **equations** of the form

$$AI_l = \begin{cases} \iota & \text{if } l \in E \\ \bigoplus \{\varphi_{l'}(AI_{l'}) \mid (l', l) \in F\} & \text{otherwise} \end{cases}$$

where

- ι specifies the initial analysis information
- E is $\{\text{init}(C)\}$ or $\text{final}(C)$
- \bigoplus is \bigcap or \bigcup
- $\varphi_{l'}$ denotes the transfer function of block $\beta^{l'}$
- F is $\text{flow}(C)$ or $\text{flow}^R(C)$ ($:= \{(l', l) \mid (l, l') \in \text{flow}(C)\}$)

- **Direction of information flow:**

- **forward:**

- $E = \{\text{init}(C)\}$
 - c has isolated entry
 - $F = \text{flow}(C)$
 - AI_l concerns entry of β^l

- **backward:**

- $E = \text{final}(C)$
 - c has isolated exits
 - $F = \text{flow}^R(C)$
 - AI_l concerns exit of β^l

- **Quantification over paths:**

- **may:**

- $\oplus = \bigcup$
 - property satisfied by some path
 - interested in least solution (later)

- **must:**

- $\oplus = \bigcap$
 - property satisfied by all paths
 - interested in greatest solution (later)

Idea: use fixpoint iteration to solve dataflow equation system

- ① For $C \in Cmd$ and $l \in Lab_C$, start with “initial” information AI_l
($AE_l = AExp_C$, $LV_l = \emptyset$)
- ② Iteratively evaluate dataflow equations until fixpoint reached

Theoretical foundations:

- Analysis information D forms **complete lattice**
($D_{AE} = 2^{AExp_C}$, $D_{LV} = 2^{Var_C}$)
 - every subset of D has a least upper/greatest lower bound
 \implies well-definedness of \bigoplus
- ... that satisfies the **ascending chain condition**
 - $d_1 \supseteq d_2 \supseteq \dots \implies \exists n : d_n = d_{n+1} = \dots$
- Combination operator and all transfer functions **monotonic**
 - $d_1 \supseteq d_2 \implies \varphi(d_1) \supseteq \varphi(d_2)$

\implies Fixpoint effectively computable by iteration

Fixpoint Iteration II

Example 26.10 (Available Expressions; cf. Example 26.6)

Program:

```
C = [x := a+b]1;  
     [y := a*b]2;  
     while [y > a+b]3 do  
         [a := a+1]4;  
         [x := a+b]5
```

Equation system:

$$\begin{aligned}AE_1 &= \emptyset \\AE_2 &= AE_1 \cup \{a+b\} \\AE_3 &= (AE_2 \cup \{a*b\}) \cap (AE_5 \cup \{a+b\}) \\AE_4 &= AE_3 \cup \{a+b\} \\AE_5 &= AE_4 \setminus \{a+b, a*b, a+1\}\end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5
0	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$	$AExp_c$
1	\emptyset	$AExp_c$	$AExp_c$	$AExp_c$	\emptyset
2	\emptyset	$\{a+b\}$	$\{a+b\}$	$AExp_c$	\emptyset
3	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset
4	\emptyset	$\{a+b\}$	$\{a+b\}$	$\{a+b\}$	\emptyset

Example 26.11 (Live Variables; cf. Example 26.9)

Program:

```
[x := 2]1;  

[y := 4]2;  

[x := 1]3;  

if [y > 0]4 then  

  [z := x]5  

else  

  [z := y*y]6;  

[x := z]7
```

Equation system:

$$\begin{aligned} LV_1 &= LV_2 \setminus \{y\} \\ LV_2 &= LV_3 \setminus \{x\} \\ LV_3 &= LV_4 \cup \{y\} \\ LV_4 &= ((LV_5 \setminus \{z\}) \cup \{x\}) \cup ((LV_6 \setminus \{z\}) \cup \{y\}) \\ LV_5 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_6 &= (LV_7 \setminus \{x\}) \cup \{z\} \\ LV_7 &= \{x, y, z\} \end{aligned}$$

Fixpoint iteration:

i	1	2	3	4	5	6	7
0	\emptyset						
1	\emptyset	\emptyset	$\{y\}$	$\{x, y\}$	$\{z\}$	$\{z\}$	$\{x, y, z\}$
2	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{y, z\}$	$\{y, z\}$	$\{x, y, z\}$
3	\emptyset	$\{y\}$	$\{x, y\}$	$\{x, y\}$	$\{y, z\}$	$\{y, z\}$	$\{x, y, z\}$

Summer Semester 2011: Static Program Analysis

- More on dataflow analysis
- Constraint-based analysis
- Abstract interpretation
- Pointer analysis