Compiler Construction

Lecture 26: Code Optimization

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/
P

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Online Evaluation of CS Curricula

http://wuw.campus.rwth-aachen.de/evasys/index.php?mca=online/index/

In German

Losung: autobahn

Advisory service, preparatory CS course
Conditions of study

Applied subject

e © & ¢ ¢ ¢

m' Compiler Construction Winter semester 2010/11 2

http://www.campus.rwth-aachen.de/evasys/index.php?mca=online/index/

@ Code Optimization

Rm Compiler Construction nter semester 2010/11

Conceptual Structure of a Compiler

Source code

@exical analysis (Scanner)

@yntactic analysis (Parser)

Semantic analysis)

(S()urcc code optimizatio@

y
(Generation of intermediate code)

y
(Intermediate code optimization)

Y
(Generation of machine code)

Target code

m' Compiler Construction Winter semester 2010/11 4

Code Optimization

Goal: Make generated code faster and/or more compact

Common procedure:
@ Gather information about program by performing some kind of
analysis

o Exploit information to optimize code

Here: dataflow analysis

= attach properties to program statements
that hold every time when statement is executed

Rm Compiler Construction Winter semester 2010/11

© Preliminaries on Dataflow Analysis

Rm Compiler Construction nter semester 2010/11

Dataflow Analysis: the Approach

o Traditional form of program analysis
@ Idea: describe how analysis information flows through program
o Distinctions:

direction of flow: forward vs. backward analyses

quantification over paths: may (union) vs. must (intersection)
analyses

dependence on statement order: flow-sensitive vs. flow-insensitive
analyses

procedures: interprocedural vs. intraprocedural analyses

distinction of procedure calls: context-sensitive vs.
context-insensitive analyses

Rm Compiler Construction Winter semester 2010/11 7

Labeled Programs

o Goal: localization of analysis information
o Dataflow information will be associated with

@ assignments
o tests in conditionals (if) and loops (while)

These constructs will be called blocks (denotation: BIk).
@ Assume set of labels Lab with meta variable [€ Lab
(usually Lab = N)

Definition 26.1 (Labeled WHILE programs)

The syntax of labeled WHILE programs is defined by the following
context-free grammar:
Au=z|I|A + Ay € AExp
B ::= A; < Ay | not B | By and By € BExp
C == [I := Al | Cy;Cs |
if [B]' then C; else (s | while [B]' do C € Cmd
Here all labels in a statement C' € Cmd are assumed to be distinct.

m Compiler Construction Winter semester 2010/11

A WHILE Program with Labels

Example 26.2

X := 6;
W 88 (8
z := 0;

while x > O do
X :=x - 1;

vV o=y,
while v > 0 do
v v 1;

z =z + 1;

m' Compiler Construction Winter semester 2010/11

Representing Control Flow I

o Every (labeled) statement has a single entry (given by the initial
label) and generally multiple exits (given by the final labels)

o Labels are connected via control-flow edges

o Formally:

o initial label init : Cmd — Lab
o final labels final : Cmd — 2Lab
o (control) flow relation flow(C') C Lab x Lab

Rm Compiler Construction Winter semester 2010/11

Representing Control Flow 11

Visualization by flow graph:

Compiler Construction Winter semester 2010/11 11

© Example: Available Expressions Analysis

Rm Compiler Construction nter semester 2010/11 12

Goal of the Analysis

Available Expressions Analysis

The goal of Available Expressions Analysis is to determine, for each
program point, which (complex) expressions must have been computed,
and not later modified, on all paths to the program point.

@ can be used to avoid recomputations of expressions

@ only interesting for non-trivial (i.e., composite) arithmetic
expressions

Example 26.4 (Available Expressions Analysis)

F{ : ZIE}; @ a+b available at label 3
wﬁnle [y > a+b]3 do @ atb not available at label 5
[a := a*1]*; @ possible optimization:
[x := a+b]® while [y > x? do

m Compiler Construction Winter semester 2010/11 13

Formalizing Available Expressions Analysis I

o Given C € Cmd, Labc/Blkc/AFEzp denote the sets of all
labels/blocks/complex arithmetic expressions occurring in C,
respectively

o Given A € AFEzp, Var(A) denotes the set of all variable
identifiers occurring in A

@ An expression A is killed in a block § if any of the variables in A
is modified in 8

o Formally: kill oz : Blke — 24P¢ is defined by

killag([I := A]") := {A’ € AEwpo | I € Var(A')}
killag([B]") := 0

@ An expression A is generated in a block f if it is evaluated in and

none of its variables are modified by 3

o Formally: gen ,p : Blkc — 247P¢ is defined by
A}l if Ae AFxpq, 1 ¢ Var(A
senap(1 5= Al o= { ped § Vard)

otherwise
geny g ([B)') :== AEpy

m' Compiler Construction Winter semester 2010/11 14

Formalizing Available Expressions Analysis 11

Example 26.5 (kill4g/gen 45 functions)

c . o AExp- = {atb,a*b,a+1}
= = +b 5 .
{; - Z*b}& o Labo Kkillap(8) genyp(8)
while [y > a+b]® do ! [(vl
[a := a+1]4' 2 0 {axb}
[x := a+b]5’ ;) {are}
4 {a+b,axb,a+1} 0
5 {a+b}

m' Compiler Construction Winter semester 2010/11 15

The Equation System I

o Analysis itself defined by setting up an equation system

@ For each | € Labc, AE; C AEzp, represents the set of available
expressions at the entry of block /3
o Formally:
AB, = {@ if = init(C)
N{ev(AEy) | (I',1) € low(C)} otherwise
where @y : 2487c — 24Fc denotes the transfer function of block
B, given by
r(A) = (A\Killap(8")) Ugenyp(8")
@ Characterization of analysis:
forward: starts in init(C') and proceeds downwards
must: () in equation for AFE;
flow-sensitive: results depending on order of assignments
@ In general: solution not necessarily unique
= choose greatest one

Rm Compiler Construction Winter semester 2010/11

The Equation System II

{ if 1 = init(C)
e (AEy) | (I',1) € flow(C)} otherwise

Reminder: AE, = |
v (EB) = (B \ killag(8")) Ugen,5(8")

Example 26.6 (AF equation system)

C =[x := a+b]!; Equations:
[y := a*b]?; ﬁg1 =0) U)
hil > a+b|® d 2 = ¢1 1) = 1 a
’ [la ; £ya+1?l4+ e AB3 = p3(AE3) N p5(AEs)
[x := a+b]5, = (AE; U {axb}) N (AE5 U {a+b})

AE4 = p3(AE3) = AE3 U {a+b}
AEs = 04(AE,) = AE4 \ {a+b, a*b,a+1}
l € Labe killag(8) gen,p(8Y)

1 D {a*b} Solution: AE; = 0
5 0 {axb] olution: AE; ~ fast)
3 0 {a+b} AE; = {a+b}
4 {a+b,axb,a+1} 0 AE, = {a+b}
5 0 {a+b} AEs = ()

m Compiler Construction Winter semester 2010/11 17

@ Example: Live Variables Analysis

Rm Compiler Construction nter semester 2010/11

Goal of the Analysis

Live Variables Analysis

The goal of Live Variables Analysis is to determine, for each program
point, which variables may be live at the exit from the point.

@ A variable is called live at the exit of a block if there exists a path
from the block to a use of the variable that does not re-define the
variable

o All variables considered to be live at the end of the program
(alternative: restriction to output variables)

@ Can be used for Dead Code Elimination:
remove assignments to non-live variables

m' Compiler Construction Winter semester 2010/11 19

An Example

Example 26.7 (Live Variables Analysis)

[y := 4]3, @ x not live at exit from label 1
[le [y_ >1]O] 1 then @ y live at exit from 2
[z := x° @ x live at exit from 3
else .] @ z live at exits from 5 and 6
[x [Z= ;]7Y*Y] ’ @ possible optimization: remove [x := 2!

m' Compiler Construction Winter semester 2010/11 20

Formalizing Live Variables Analysis I

©

A variable on the left-hand side of an assignment is killed by the
assignment; tests do not kill
Formally: kill;y : Blkc — 2V%¢ is defined by
killy ([I := A)) = {1}
kill,y ([B]!) :== 0
Every reading access generates a live variable

©

©

Formally: gen; : Blkc — 2V%¢ is defined by
gen, ([I := A)!) := Var(A)
genpy ([B]') := Var(B)

Rm Compiler Construction Winter semester 2010/11

Formalizing Live Variables Analysis II

Example 26.8 (kill;y/gen;, functions)

C:[X = 2]1; 9 Varc:{X7Y7Z}

[y := 4% o | € Lab, killpy (BY) geny (8Y)

[x := 1]3; 1 {x} 0

if [y > 0]* then 2 {y} 0

[z := x]° 3 {x} 0

else 4 0 {v}

[z = y*yl°; 5 {z} {x}

[x = 2] 6 {z} {y}

7 {x} {z}

m Compiler Construction Winter semester 2010/11

The Equation System I

@ For each [€ Labg, LV C Var, represents the set of live variables
at the exit of block A
o Formally, for a program C € Cmd with isolated exits:
LV, = { Varc if | € ﬁpal(C’)
U{er (LVy) | (1,1) € low(C)} otherwise
where ¢y : 2Verc — 2Vere denotes the transfer function of block
BY, given by
(V) = (V \ Killy (8)) U genpy (8")
@ Characterization of analysis:
backward: starts in final(C') and proceeds upwards
may: J in equation for LV
flow-sensitive: results depending on order of assignments
@ In general: solution not necessarily unique
= choose least one

m' Compiler Construction Winter semester 2010/11

The Equation System II

] . [Vare if [€ final(C)
Reminder: LV, = {U{ﬁpl/(LVl') (1,I') € low(C)} otherwise

|
or (V) = (V\ killy (")) U genp,y (")

Example 26.9 (LV equation system)

C=[x := 24y := 4% LV = @a(LV2) = LV2 \ {y}
[x := 1J3; LVy = p3(LV3) = LV3\ {x}
540 [Y > 0]4 e LV = g04(LV4) =LV4U {y}
[z - X] LV = o5(LV5)Ups(LVe)
else = ((égf) \ {Z}) U {X}) U
i Vs = L) = (VA G U e}
‘ LV = pr(LV7) = (LV7 \ {x}) U {z}
I € Lab, killLy (8") gen,y (6Y) LV ={x,y,2}
1 {x} 0 Solution: LV =0
2 v} 0 LV, = {y}
3 {x} 0 LVs = {x,v}
4 0 {v} LV4 = {x,y}
0B
z y LVe ={y,z
7 {X} {Z} LV7 = {X7 Y Z}

m Compiler Construction Winter semester 2010/11 24

© The Dataflow Analysis Framework

Rm Compiler Construction nter semester 2010/11 25

Similarities between Analysis Problems

@ Observation: the analyses presented so far have some similarities
— Look for underlying framework
@ Advantage: possibility for designing (efficient) generic algorithms
for solving dataflow equations

o Overall pattern: for C € Cmd and [€ Labc, the analysis
information (AI) is described by equations of the form

Al — {L ifleE
PZ Y@ v (AIy) | (I')1) € F} otherwise
where
o ¢ specifies the initial analysis information
o E is {init(C)} or final(C)
s PisNorlY
e ¢ denotes the transfer function of block B
o Fis flow(C) or flow™(C) (:= {(I',1) | (I,I') € flow(C)})

m' Compiler Construction Winter semester 2010/11

Characterization of Analyses

@ Direction of information flow:

o forward:
o FE = {init(C)}
@ c has isolated entry
o F =flow(C)
@ AI; concerns entry of Jix

@ backward:
o E = final(C)
@ c has isolated exits
o F =flow™(0)
@ AI; concerns exit of !

o Quantification over paths:

e may:
o ®=U
@ property satisfied by some path
@ interested in least solution (later)

9 must:
e ®d=0N
@ property satisfied by all paths
@ interested in greatest solution (later)

m' Compiler Construction Winter semester 2010/11

Fixpoint Iteration I

Idea: use fixpoint iteration to solve dataflow equation system

@ For C' € Omd and [€ Labc, start with “initial” information Al
(AE, = AExps, LV, = 0)

Q Iteratively evaluate dataflow equations until fixpoint reached

Theoretical foundations:

o Analysis information D forms complete lattice
(Dap = 245c, Dy = 2Vere)
o every subset of D has a least upper/greatest lower bound
= well-definedness of €

@ ... that satisfies the ascending chain condition
o di 2do2 ... = Inidy=dpy1=...

o Combination operator and all transfer functions monotonic
o di 2dy = p(d) 2 pl(do)

— Fixpoint effectively computable by iteration

m' Compiler Construction Winter semester 2010/11

Fixpoint Iteration II

Example 26.10 (Available Expressions; cf. Example 26.6)

Program: Equation system:
C =[x := a+b]}; AE; =0
[y .= a*b]2; AE; = AE1 U {a+b}
while [y > a+b]3 do AE3 = (AE2 U {a*b}) M (AE5 U {a+b})
[a := a+1]*; AE4 = AE3 U {a+b}
[x := a+b]’ AEs = AE4\ {a+b,axb,a+1}

Fixpoint iteration:

1 2 3 4)
AFExp, AExp. AFEzp, AFExp. AEzp,
0 AEzp, AEzp. AEap, 0
0 {a+b} {a+b} AFzp, 0
0 {a+b} {a+b} {a+b} 0
0 {a+b} {a+b} {a+b} 0

BN = O .

m Compiler Construction Winter semester 2010/11 29

Fixpoint Iteration III

Example 26.11 (Live Variables; cf. Example 26.9)

Program: Equation system:

[x := 2]}; LVy = LV \{y}

[y := 4)%; LVy = LV3\ {x}

[x := 1]3; LV =LV4U{y}

if [y > 0]* then LVy = ((LVs\{z}) U{x}) U((LVe \ {z}) U{y})
[z := X]5 LVs = (LV7\ {x}) U{z}

else LVg = (LV7 \ {X}) U {Z}
[Z .= Y*Y]G; LV7 = {Xuya Z}

E = 2]’

i1 2 3 4 5 6 7
0 0 0 0 0 0
0 b {xyr = {zr {xy.z
y
y

} {xy} {xy} {v.z} {v.z} {xv,z}
}o{xyr {xy} {v.z} {v.z} {xy.z}

m Compiler Construction Winter semester 2010/11 30

Outlook

Summer Semester 2011: Static Program Analysis
S o

o More on dataflow analysis
o Constraint-based analysis
o Abstract interpretation

@ Pointer analysis

m' Compiler Construction Winter semester 2010/11 31

	Code Optimization
	Preliminaries on Dataflow Analysis
	Example: Available Expressions Analysis
	Example: Live Variables Analysis
	The Dataflow Analysis Framework

