
Compiler Construction

Lecture 3: Lexical Analysis II
(The Matching Problem)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Outline

1 Repetition: Lexical Analysis

2 The Simple Matching Problem

3 The Extended Matching Problem

Compiler Construction Winter semester 2010/11 2

Lexical Analysis

Definition

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of
symbols.

The corresponding program is called a scanner:

Source program Scanner Parser

Symbol table

(token,[attribute])

get next token

Example: . . . x1 :=y2+ 1 ; . . .
⇓

. . . (id, p1)(gets,)(id, p2)(plus,)(int, 1)(sem,) . . .

Compiler Construction Winter semester 2010/11 3

Outline

1 Repetition: Lexical Analysis

2 The Simple Matching Problem

3 The Extended Matching Problem

Compiler Construction Winter semester 2010/11 4

The Simple Matching Problem I

Problem 3.1 (Simple matching problem)

Given α ∈ REΩ and w ∈ Ω∗, decide whether w ∈ JαK or not.

Compiler Construction Winter semester 2010/11 5

The Simple Matching Problem I

Problem 3.1 (Simple matching problem)

Given α ∈ REΩ and w ∈ Ω∗, decide whether w ∈ JαK or not.

This problem can be solved using the following concept:

Definition 3.2 (Finite automaton)

A nondeterministic finite automaton (NFA) is of the form
A = 〈Q,Ω, δ, q0, F 〉 where

Q is a finite set of states
Ω denotes the input alphabet
δ : Q × Ωε → 2Q is the transition function where Ωε := Ω ∪ {ε}
(notation: q

x
−→ q′ for q′

∈ δ(q, x))

q0 ∈ Q is the initial state
F ⊆ Q is the set of final states

The set of all NFA over Ω is denoted by NFAΩ.
If δ(q, ε) = ∅ and |δ(q, a)| = 1 for every q ∈ Q and a ∈ Ω (i.e.,
δ : Q×Ω → Q), then A is called deterministic (DFA). Notation: DFAΩ

Compiler Construction Winter semester 2010/11 5

The Simple Matching Problem II

Definition 3.3 (Acceptance condition)

Let A = 〈Q,Ω, δ, q0, F 〉 ∈ NFAΩ and w = a1 . . . an ∈ Ω∗.

A w-labeled A-run from q1 to q2 is a sequence of transitions

q1
ε

−→
∗ a1−→

ε
−→

∗ a2−→
ε

−→
∗

. . .
ε

−→
∗ an−→

ε
−→

∗
q2

A accepts w if there is a w-labeled A-run from q0 to some q ∈ F

The language recognized by A is

L(A) := {w ∈ Ω∗ | A accepts w}

A language L ⊆ Ω∗ is called NFA-recognizable if there exists a
NFA A such that L(A) = L

Compiler Construction Winter semester 2010/11 6

The Simple Matching Problem II

Definition 3.3 (Acceptance condition)

Let A = 〈Q,Ω, δ, q0, F 〉 ∈ NFAΩ and w = a1 . . . an ∈ Ω∗.

A w-labeled A-run from q1 to q2 is a sequence of transitions

q1
ε

−→
∗ a1−→

ε
−→

∗ a2−→
ε

−→
∗

. . .
ε

−→
∗ an−→

ε
−→

∗
q2

A accepts w if there is a w-labeled A-run from q0 to some q ∈ F

The language recognized by A is

L(A) := {w ∈ Ω∗ | A accepts w}

A language L ⊆ Ω∗ is called NFA-recognizable if there exists a
NFA A such that L(A) = L

Example 3.4

NFA for a∗b | a∗ (on the board)

Compiler Construction Winter semester 2010/11 6

The Simple Matching Problem III

Remarks:

NFA as specified in Definition 3.2 are sometimes called NFA with
ε-transitions (ε-NFA).

Compiler Construction Winter semester 2010/11 7

The Simple Matching Problem III

Remarks:

NFA as specified in Definition 3.2 are sometimes called NFA with
ε-transitions (ε-NFA).

For A ∈ DFAΩ, the acceptance condition yields δ̂ : Q × Ω∗ → Q
with δ̂(q, ε) = q and δ̂(q, aw) = δ̂(δ(q, a), w), and

L(A) = {w ∈ Ω∗ | δ̂(q0, w) ∈ F}.

Compiler Construction Winter semester 2010/11 7

The DFA Method I

Known from Automata Theory and Formal Languages:

Algorithm 3.5 (DFA method)

Input: regular expression α ∈ REΩ, input string w ∈ Ω∗

Compiler Construction Winter semester 2010/11 8

The DFA Method I

Known from Automata Theory and Formal Languages:

Algorithm 3.5 (DFA method)

Input: regular expression α ∈ REΩ, input string w ∈ Ω∗

Procedure: 1 using Kleene’s Theorem, construct Aα ∈ NFAΩ such

that L(Aα) = JαK
2 apply powerset construction to obtain

A
′
α = 〈Q′,Ω, δ′, q′0, F

′〉 ∈ DFAΩ with

L(A′
α) = L(Aα) = JαK

3 solve the matching problem by deciding whether

δ̂′(q′0, w) ∈ F ′

Compiler Construction Winter semester 2010/11 8

The DFA Method I

Known from Automata Theory and Formal Languages:

Algorithm 3.5 (DFA method)

Input: regular expression α ∈ REΩ, input string w ∈ Ω∗

Procedure: 1 using Kleene’s Theorem, construct Aα ∈ NFAΩ such

that L(Aα) = JαK
2 apply powerset construction to obtain

A
′
α = 〈Q′,Ω, δ′, q′0, F

′〉 ∈ DFAΩ with

L(A′
α) = L(Aα) = JαK

3 solve the matching problem by deciding whether

δ̂′(q′0, w) ∈ F ′

Output: “yes” or “no”

Compiler Construction Winter semester 2010/11 8

The DFA Method II

The powerset construction involves the following concept:

Definition 3.6 (ε-closure)

Let A = 〈Q,Ω, δ, q0, F 〉 ∈ NFAΩ. The ε-closure ε(T) ⊆ Q of a subset
T ⊆ Q is defined by

T ⊆ ε(T) and

if q ∈ ε(T), then δ(q, ε) ⊆ ε(T)

Compiler Construction Winter semester 2010/11 9

The DFA Method II

The powerset construction involves the following concept:

Definition 3.6 (ε-closure)

Let A = 〈Q,Ω, δ, q0, F 〉 ∈ NFAΩ. The ε-closure ε(T) ⊆ Q of a subset
T ⊆ Q is defined by

T ⊆ ε(T) and

if q ∈ ε(T), then δ(q, ε) ⊆ ε(T)

Example 3.7

1 Kleene’s Theorem (in general)

2 Powerset construction
(for NFA Aα with α := a∗b | a∗; cf. Example 3.4)

(on the board)

Compiler Construction Winter semester 2010/11 9

Complexity of DFA Method

1 In construction phase:

Kleene method: time and space O(|α|) (|α| := length of α)
Powerset construction: time and space O(2|Aα|) = O(2|α|)
(|Aα| := # of states)

Compiler Construction Winter semester 2010/11 10

Complexity of DFA Method

1 In construction phase:

Kleene method: time and space O(|α|) (|α| := length of α)
Powerset construction: time and space O(2|Aα|) = O(2|α|)
(|Aα| := # of states)

2 At runtime:

Word problem: time O(|w|) (|w| := length of w), space O(1)
(but O(2|α|) for storing DFA)

Compiler Construction Winter semester 2010/11 10

Complexity of DFA Method

1 In construction phase:

Kleene method: time and space O(|α|) (|α| := length of α)
Powerset construction: time and space O(2|Aα|) = O(2|α|)
(|Aα| := # of states)

2 At runtime:

Word problem: time O(|w|) (|w| := length of w), space O(1)
(but O(2|α|) for storing DFA)

=⇒ Nice runtime behavior but memory requirements too high
(and exponential time in construction phase)

Compiler Construction Winter semester 2010/11 10

The NFA Method

Idea: decrease memory requirements by applying powerset
construction at runtime, i.e., only “to the run of w through Aα”

Compiler Construction Winter semester 2010/11 11

The NFA Method

Idea: decrease memory requirements by applying powerset
construction at runtime, i.e., only “to the run of w through Aα”

Algorithm 3.8 (NFA method)

Input: automaton Aα = 〈Q,Ω, δ, q0, F 〉 ∈ NFAΩ,

input string w ∈ Ω∗

Compiler Construction Winter semester 2010/11 11

The NFA Method

Idea: decrease memory requirements by applying powerset
construction at runtime, i.e., only “to the run of w through Aα”

Algorithm 3.8 (NFA method)

Input: automaton Aα = 〈Q,Ω, δ, q0, F 〉 ∈ NFAΩ,

input string w ∈ Ω∗

Variables: T ⊆ Q, a ∈ Ω
Procedure: T := ε({q0});

while w 6= ε do
a := head(w);

T := ε
(⋃

q∈T δ(q, a)
)

;

w := tail(w)
od

Compiler Construction Winter semester 2010/11 11

The NFA Method

Idea: decrease memory requirements by applying powerset
construction at runtime, i.e., only “to the run of w through Aα”

Algorithm 3.8 (NFA method)

Input: automaton Aα = 〈Q,Ω, δ, q0, F 〉 ∈ NFAΩ,

input string w ∈ Ω∗

Variables: T ⊆ Q, a ∈ Ω
Procedure: T := ε({q0});

while w 6= ε do
a := head(w);

T := ε
(⋃

q∈T δ(q, a)
)

;

w := tail(w)
od

Output: if T ∩ F 6= ∅ then “yes” else “no”

Compiler Construction Winter semester 2010/11 11

The NFA Method

Idea: decrease memory requirements by applying powerset
construction at runtime, i.e., only “to the run of w through Aα”

Algorithm 3.8 (NFA method)

Input: automaton Aα = 〈Q,Ω, δ, q0, F 〉 ∈ NFAΩ,

input string w ∈ Ω∗

Variables: T ⊆ Q, a ∈ Ω
Procedure: T := ε({q0});

while w 6= ε do
a := head(w);

T := ε
(⋃

q∈T δ(q, a)
)

;

w := tail(w)
od

Output: if T ∩ F 6= ∅ then “yes” else “no”

Example 3.9 (cf. Example 3.4)

NFA Aα for α := a∗b | a∗, w := aab

Compiler Construction Winter semester 2010/11 11

Complexity Analysis

For NFA method at runtime:

Space: O(|α|) (for storing NFA and T)

Time: O(|α| · |w|)
(In the loop’s body, |T | states need to be considered. Here
evaluation of δ(q, a) is considered as one operation.)

=⇒ Trades exponential space for increase in time

Compiler Construction Winter semester 2010/11 12

Complexity Analysis

For NFA method at runtime:

Space: O(|α|) (for storing NFA and T)

Time: O(|α| · |w|)
(In the loop’s body, |T | states need to be considered. Here
evaluation of δ(q, a) is considered as one operation.)

=⇒ Trades exponential space for increase in time

Comparison:

Method Space Time (for “w ∈ JαK?”)

DFA O(2|α|) O(|w|)
NFA O(|α|) O(|α| · |w|)

Compiler Construction Winter semester 2010/11 12

Complexity Analysis

For NFA method at runtime:

Space: O(|α|) (for storing NFA and T)

Time: O(|α| · |w|)
(In the loop’s body, |T | states need to be considered. Here
evaluation of δ(q, a) is considered as one operation.)

=⇒ Trades exponential space for increase in time

Comparison:

Method Space Time (for “w ∈ JαK?”)

DFA O(2|α|) O(|w|)
NFA O(|α|) O(|α| · |w|)

In practice:

Exponential blowup of DFA method usually does not occur in
“real” applications (=⇒ used in [f]lex)

Improvement of NFA method: caching of transitions δ̂(T, a)
=⇒ combination of both methods

Compiler Construction Winter semester 2010/11 12

Outline

1 Repetition: Lexical Analysis

2 The Simple Matching Problem

3 The Extended Matching Problem

Compiler Construction Winter semester 2010/11 13

The Extended Matching Problem I

Definition 3.10

Let n ≥ 1 and α1, . . . , αn ∈ REΩ with ε /∈ JαiK 6= ∅ for every i ∈ [n]
(= {1, . . . , n}). Let Σ := {T1, . . . , Tn} be an alphabet of corresponding
tokens and w ∈ Ω+. If w1, . . . , wk ∈ Ω+ such that

w = w1 . . . wk and
for every j ∈ [k] there exists ij ∈ [n] such that wj ∈ Jαij K,

then

(w1, . . . , wk) is called a decomposition and
(Ti1 , . . . , Tik) is called an analysis

of w w.r.t. α1, . . . , αn.

Compiler Construction Winter semester 2010/11 14

The Extended Matching Problem I

Definition 3.10

Let n ≥ 1 and α1, . . . , αn ∈ REΩ with ε /∈ JαiK 6= ∅ for every i ∈ [n]
(= {1, . . . , n}). Let Σ := {T1, . . . , Tn} be an alphabet of corresponding
tokens and w ∈ Ω+. If w1, . . . , wk ∈ Ω+ such that

w = w1 . . . wk and
for every j ∈ [k] there exists ij ∈ [n] such that wj ∈ Jαij K,

then

(w1, . . . , wk) is called a decomposition and
(Ti1 , . . . , Tik) is called an analysis

of w w.r.t. α1, . . . , αn.

Problem 3.11 (Extended matching problem)

Given α1, . . . , αn ∈ REΩ and w ∈ Ω+, decide whether there exists a

decomposition of w w.r.t. α1, . . . , αn and determine a corresponding

analysis.

Compiler Construction Winter semester 2010/11 14

The Extended Matching Problem II

Observation: neither the decomposition nor the analysis are uniquely
determined

Example 3.12

1 α = a+, w = aa
=⇒ two decompositions (aa) and (a, a) with unique analysis each

Compiler Construction Winter semester 2010/11 15

The Extended Matching Problem II

Observation: neither the decomposition nor the analysis are uniquely
determined

Example 3.12

1 α = a+, w = aa
=⇒ two decompositions (aa) and (a, a) with unique analysis each

2 α1 = a | b, α2 = a | c, w = a
=⇒ unique decomposition (a) but two analyses (T1) and (T2)

Compiler Construction Winter semester 2010/11 15

The Extended Matching Problem II

Observation: neither the decomposition nor the analysis are uniquely
determined

Example 3.12

1 α = a+, w = aa
=⇒ two decompositions (aa) and (a, a) with unique analysis each

2 α1 = a | b, α2 = a | c, w = a
=⇒ unique decomposition (a) but two analyses (T1) and (T2)

Goal: make both unique =⇒ deterministic scanning

Compiler Construction Winter semester 2010/11 15

	Repetition: Lexical Analysis
	The Simple Matching Problem
	The Extended Matching Problem

