Compiler Construction

Lecture 3: Lexical Analysis 11
(The Matching Problem)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

@ Repetition: Lexical Analysis

Rm Compiler Construction nter semester 2010/11

Lexical Analysis

The goal of lexical analysis is to decompose a source program into a
sequence of lexemes and their transformation into a sequence of
symbols.

The corresponding program is called a scanner:

(token,[attribute])
Source program —><Scanner Je i(Parser)— --->

get next token

Symbol table

Example: coenxlgiEy2+ 0100,

4
... (id, p1)(gets,)(id, p2)(plus,) (int, 1)(sem,) . ..

m' Compiler Construction Winter semester 2010/11

© The Simple Matching Problem

Rm Compiler Construction ter semester 2010/11

The Simple Matching Problem I

Problem 3.1 (Simple matching problem)

Given o € REq and w € ¥, decide whether w € [o] or not.

This problem can be solved using the following concept:

Definition 3.2 (Finite automaton)

A nondeterministic finite automaton (NFA) is of the form
A =(Q,Q,0,q, F) where
@ () is a finite set of states
o () denotes the input alphabet
0 §:Q x Q. — 2% is the transition function where Q. := QU {&}
(notation: ¢ — ¢ for ¢’ € 6(q,x))
@ qo € @ is the initial state
o I' C (is the set of final states
The set of all NFA over (2 is denoted by NFAq.
If 6(q,e) = 0 and |6(q,a)] =1 for every ¢ € Q and a € Q (i.e.,
0:QxQ — @), then A is called deterministic (DFA). Notation: DFAq

m Compiler Construction Winter semester 2010/11 5

The Simple Matching Problem II

Definition 3.3 (Acceptance condition)
Let 2 =(Q,Q,9,q0,F) € NFAq and w = ay . ..a, € Q*.

o A w-labeled 2(-run from ¢; to ¢o is a sequence of transitions

e * a1 e * ap e * e * ap, € *
qgqg —> — — —— —— .. —— — —— (9

@ 2 accepts w if there is a w-labeled A-run from ¢y to some q € F

@ The language recognized by 2 is
L) :={w € Q" | A accepts w}

o A language L C Q* is called NFA-recognizable if there exists a
NFA 2 such that L(2A) = L

NFA for a*b | a* (on the board)

m Compiler Construction Winter semester 2010/11 6

The Simple Matching Problem III

Remarks:

o NFA as specified in Definition 3.2 are sometimes called NFA with
e-transitions (e-NFA).

e For & € DFAq, the acceptance condition yields 5 QX —Q
with §(q,e) = ¢ and 0(q, aw) = §(d(q,a),w), and

~

L) = {w € Q| 6(qo,w) € F}.

Rm Compiler Construction Winter semester 2010/11 7

The DFA Method 1

Known from Automata Theory and Formal Languages:

Algorithm 3.5 (DFA method)

Input: regular expression o € REq, input string w € Q*
Procedure: @ using Kleene’s Theorem, construct A, € NFAq such

that L(Uy) = [o]

Q apply powerset construction to obtain

L =1(Q, 2,9, q, F") € DFAq with

L(2,) = L(%a) = [o]

Q solve the matching problem by deciding whether
&' (qp,w) € F'

Output: “yes” or “no”

m Compiler Construction Winter semester 2010/11 8

The DFA Method 11

The powerset construction involves the following concept:

Definition 3.6 (e-closure)

Let 2 =(Q,Q,9,q0, F) € NFAq. The e-closure e(T') C @ of a subset
T C @ is defined by

o T Ce(T) and
o if ¢ € ¢(T), then 6(q,e) C &(T)

Q Kleene’s Theorem (in general)

© Powerset construction
(for NFA 2, with «a := a*b | a*; cf. Example 3.4)

(on the board)

m Compiler Construction Winter semester 2010/11 9

Complexity of DFA Method

@ In construction phase:
o Kleene method: time and space O(|a]) (]| := length of «)
o Powerset construction: time and space O(2/%«l) = O(2l])
(|2a| := # of states)
O At runtime:
o Word problem: time O(|w|) (Jw| := length of w), space O(1)
(but O(2/el) for storing DFA)
— Nice runtime behavior but memory requirements too high
(and exponential time in construction phase)

Rm Compiler Construction Winter semester 2010/11 10

The NFA Method

Idea: decrease memory requirements by applying powerset
construction at runtime, i.e., only “to the run of w through 2,”

Algorithm 3.8 (NFA method)

Input: automaton A, = (Q,Q,0,q0, F') € NFAq,
mnput string w € Q*
Variables: T C Q, a € Q2

Procedure: T :=e({qo});
while w # € do
a := head(w);
T i=e (Uyer 0(0,)) ;
w = tail(w)
od
Output: if TN F # 0 then “yes” else “no”

Example 3.9 (cf. Example 3.4)
NFA 2, for a :=a*b | a*, w := aab

m Compiler Construction Winter semester 2010/11

Complexity Analysis

For NFA method at runtime:
e Space: O(|a|) (for storing NFA and T')
o Time: O(|a] - |w|)
(In the loop’s body, |T'| states need to be considered. Here
evaluation of d(q, a) is considered as one operation.)
—> Trades exponential space for increase in time

Comparison:

Method | Space Time (for “w € [a]?”)
DFA | O(2l°l) O(|wl)
NFA | O(af) O(la] - [wl)

In practice:
o Exponential blowup of DFA method usually does not occur in
“real” applications (= used in [f]1lex)
o Improvement of NFA method: caching of transitions S(T, a)

—> combination of both methods
m Compiler Construction Winter semester 2010/11

© The Extended Matching Problem

Rm Compiler Construction ter semester 2010/11 13

The Extended Matching Problem I

Definition 3.10

Let n > 1 and ay,...,a, € REq with € ¢ [o;] # 0 for every i € [n]
(={1,...,n}). Let ¥ :={T1,...,T,} be an alphabet of corresponding
tokens and w € Q. If wy,...,w, € QT such that

® w=wi...w; and

o for every j € [k] there exists i; € [n] such that w; € [ay,],
then

@ (wi,...,wy) is called a decomposition and

o (T;,,...,T;,) is called an analysis

of w w.r.t. aq,...,aq,.

Problem 3.11 (Extended matching problem)

Given a1, ...,a, € REq and w € QF, decide whether there exists a
decomposition of w w.r.t. ay,...,a, and determine a corresponding
analysis.

RWTH Compiler Construction Winter semester 2010/11

The Extended Matching Problem I1

Observation: neither the decomposition nor the analysis are uniquely
determined

Qa=a",w=aa
= two decompositions (aa) and (a,a) with unique analysis each

Qa=albww=alcw=a
= unique decomposition (a) but two analyses (77) and (7%)

Goal: make both unique = deterministic scanning

m' Compiler Construction Winter semester 2010/11 15

	Repetition: Lexical Analysis
	The Simple Matching Problem
	The Extended Matching Problem

