Compiler Construction

Lecture 4: Lexical Analysis I11
(First-Longest-Match Analysis)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

© Repetition: The Extended Matching Problem

Rm Compiler Construction Winter semester 2010/11 2

The Extended Matching Problem I

Definition

Let n>1and aq,...,a, € REq with € ¢ [a;] # 0 for every i € [n]
(={1,...,n}). Let ¥ :={T1,...,T,} be an alphabet of corresponding
tokens and w € Q. If wy,...,w, € QT such that

® w=wi...w; and

o for every j € [k] there exists i; € [n] such that w; € [ay,],
then

@ (wi,...,wy) is called a decomposition and

o (T;,,...,T;,) is called an analysis

of w w.r.t. aq,...,aq,.

Problem (Extended matching problem)

Given a1, ...,a, € REq and w € QF, decide whether there exists a
decomposition of w w.r.t. ay,...,a, and determine a corresponding
analysis.

RWTH Compiler Construction Winter semester 2010/11

The Extended Matching Problem I1

Observation: neither the decomposition nor the analysis are uniquely
determined

Qa=a",w=aa
= two decompositions (aa) and (a,a) with unique analysis each

Qa=albww=alcw=a
= unique decomposition (a) but two analyses (77) and (7%)

Goal: make both unique = deterministic scanning

m' Compiler Construction Winter semester 2010/11 4

© First-Longest-Match Analysis

Rm Compiler Construction ter semester 2010/11

Ensuring Uniqueness

Two principles:
@ Principle of the longest match (“maximal munch tokenization”)
o for uniqueness of decomposition
e make lexemes as long as possible

¢ motivated by applications: e.g., every (non-empty) prefix of an
identifier is also an identifier
© Principle of the first match
o for uniqueness of analysis
o choose first matching regular expression (in the given order)
o therefore: arrange keywords before identifiers (if keywords
protected)

Rm Compiler Construction Winter semester 2010/11

Principle of the Longest Match

Definition 4.1 (Longest-match decomposition)

A decomposition (wq,...,w;) of w € QT w.r.t. a,...,a, € REq is
called a longest-match decomposition (LM decomposition) if, for every
i €[k], z€Qf, and y € QF,

w=wi...w;xzy = there is no j € [n] such that w;z € [a;]

Corollary 4.2

Given w and aq, . . .,y
@ at most one LM decomposition of w ezists (clear by definition) and

@ it is possible that w has a decomposition but no LM decomposition
(see following example).

| A\

Example 4.3

w = aab, oy = a™, ap = ab
—> (a,ab) is a decomposition but no LM decomposition exists

m Compiler Construction Winter semester 2010/11

Principle of the First Match

Problem: a (unique) LM decomposition can have several associated
analyses (since [oy] N ;] # O with ¢ # j is possible; cf.
keyword /identifier problem)

Definition 4.4 (First-longest-match analysis)

Let (w1, ..., wg) be the LM decomposition of w € Q" w.r.t.
a1,...,0n € REq. Tts first-longest-match analysis (FLM analysis)
(T3, ..., T;,) is determined by

i; == min{l € [n] | w; € [oy]} for every j € [k].

Given w and ay,. .., oy, there is at most one FLM analysis of w.
It exists iff the LM decomposition of w exists.

m Compiler Construction Winter semester 2010/11 8

© Implementation of FLM Analysis

Rm Compiler Construction ter semester 2010/11

Implementation of FLM Analysis

Algorithm 4.6 (FLM analysis—overview)

Input: expressions au,...,a, € REq, tokens {T1,...,T,},
input word w € QT
Procedure: @ for every i € [n], construct 2A; € DFAq such that

L(A;) = [as] (see DFA method; Alg. 7?)

© construct the product automaton A € DFAq such that
L&) = Uiy [oi]

© partition the set of final states of A to follow the
first-match principle

Q@ extend the resulting DFA to a backtracking DFA
which implements the longest-match principle, and let
i run on w

Output: FLM analysis of w (if existing)

m Compiler Construction Winter semester 2010/11 10

(2) The Product Automaton

Definition 4.7 (Product automaton)

Let 2; = (Q:,9Q, 65, q(()i), F;) € DFAq for every i € [n]. The product
automaton 2 = (Q,Q, 9, qo, F') € DFAq is defined by

@ Q=01 X...xQp
9 qo = (q(()l)’ 7q(()n))
o 5((qM,....q™),a) == (61(¢M,a),...,6,(¢™, a))

o (qW,...,¢™) € F iff there ex. i € [n] such that ¢\ € F

The above construction yields L(A) = Uy L(2) (= Ui, [eu])-

Remark: similar construction for intersection (F':= F} X ... X F},)

m Compiler Construction Winter semester 2010/11 11

(3) Partitioning the Final States

Definition 4.9 (Partition of final states)

Let A = (Q,Q,0,q0, F) € DFAq be the product automaton as
constructed before. Its set of final states is partitioned into
F =, F® by the requirement

(@M,...,¢") e FO iff ¢) € F; and Vj € [i — 1] : ¢V) ¢ F;

(or: FO := (Q1\ F1) X ... X (Qi—1 \ Fi—1) X Fy X Qi1 X ... X Qn)

4

Corollary 4.10

The above construction yields (w € QF, i € [n]):
6(qo,w) € FO iff w € [oy] and w ¢ U;;ll le;]-

Definition 4.11 (Productive states)

Given 2 as above,Aa state g € @ is called productive if there exists
w € Q* such that §(¢, w) € F. The set of productive states of A is
denoted by P (and thus F' C P).

m Compiler Construction Winter semester 2010/11 12

(4) The Backtracking DFA I

Goal: extend 2 to the backtracking DFA 9B with output by equipping the
input tape with two pointers: a backtracking head for marking the last
encountered match, and a lookahead for determining the longest match.

A configuration of 8 has three components
(remember: ¥ := {Ty,...,T,} denotes the set of tokens):

Q amodeme {N}wX:
¢ m =N (“normal”): look for first match (no final state reached yet)

o m =T € X: token T has been recognized, looking for possible
longer match

@ an input tape vqw € Q* - Q - Q*:
o v: lookahead part of input (v #e = m €)
@ ¢: current state of A
@ w: remaining input

@ an output tape W € £* - {e, lexerr}:

@ X*: sequence of tokens recognized so far
o lexerr: a lexical error has occurred (i.e., a non-productive state was
entered or the suffix of the input is not a valid lexeme)

m' Compiler Construction Winter semester 2010/11 13

(4) The Backtracking DFA II

Definition 4.12 (Backtracking DFA)

@ The set of configurations of B is given by
{NIWX) x Q- Q- Q" x X* - {e, lexerr}
@ The initial configuration for an input word w € Q% is (N, gow, €).
@ The transitions of B are defined as follows (where ¢’ := (g, a)):
o normal mode: look for a match ‘
(Ti, q'w, W) if ¢ € FO
(N, gaw, W) = ¢ (N, q'w, W) if ¢ € P\F
output: W -lexerr if ¢ ¢ P
e backtrack mode: look for longest match
(T;,qw, W) if ¢ € FO
(T, vgaw, W) & < (T, vaq'w, W) if¢ e P\F

(N, qovaw, WT) ifq ¢ P
¢ end of input

(T,q,W) - output: WT ifge F
(N,q, W) I output: W -lexerr if g€ P\ F
(T,vaq, W) F (N, gova, WT) ifge P\F
m Compiler Construction

Winter semester 2010/11

(4) The Backtracking DFA III

Given the backtracking DFA B as before and w € Q7

W e ¥* iff W is the FLM analysis of w

*
(N, qow,e) F {W - lexerr iff no FLM analysis of w exists

a = (ab)™, w = abaa (on the board)

m' Compiler Construction Winter semester 2010/11 15

(4) The Backtracking DFA IV

Remarks:

e Time complexity: O(Jw|?) in worst case

a1 = a, ay = a*b, w = a™ requires O(m?)

@ Improvement by tabular method (similar to Knuth-Morris-Pratt
Algorithm for pattern matching in strings)

Literature: Th. Reps: “Maximal-Munch” Tokenization in Linear
Time, ACM TOPLAS 20(2), 1998, 259273

Rm Compiler Construction Winter semester 2010/11 16

	Repetition: The Extended Matching Problem
	First-Longest-Match Analysis
	Implementation of FLM Analysis

