
Compiler Construction
Lecture 4: Lexical Analysis III
(First-Longest-Match Analysis)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Outline

1 Repetition: The Extended Matching Problem

2 First-Longest-Match Analysis

3 Implementation of FLM Analysis

Compiler Construction Winter semester 2010/11 2

The Extended Matching Problem I

Definition

Let n ≥ 1 and α1, . . . , αn ∈ REΩ with ε /∈ JαiK 6= ∅ for every i ∈ [n]
(= {1, . . . , n}). Let Σ := {T1, . . . , Tn} be an alphabet of corresponding
tokens and w ∈ Ω+. If w1, . . . , wk ∈ Ω+ such that

w = w1 . . . wk and
for every j ∈ [k] there exists ij ∈ [n] such that wj ∈ Jαij K,

then

(w1, . . . , wk) is called a decomposition and
(Ti1 , . . . , Tik) is called an analysis

of w w.r.t. α1, . . . , αn.

Problem (Extended matching problem)

Given α1, . . . , αn ∈ REΩ and w ∈ Ω+, decide whether there exists a
decomposition of w w.r.t. α1, . . . , αn and determine a corresponding
analysis.

Compiler Construction Winter semester 2010/11 3

The Extended Matching Problem II

Observation: neither the decomposition nor the analysis are uniquely
determined

Example

1 α = a+, w = aa
=⇒ two decompositions (aa) and (a, a) with unique analysis each

2 α1 = a | b, α2 = a | c, w = a
=⇒ unique decomposition (a) but two analyses (T1) and (T2)

Goal: make both unique =⇒ deterministic scanning

Compiler Construction Winter semester 2010/11 4

Outline

1 Repetition: The Extended Matching Problem

2 First-Longest-Match Analysis

3 Implementation of FLM Analysis

Compiler Construction Winter semester 2010/11 5

Ensuring Uniqueness

Two principles:
1 Principle of the longest match (“maximal munch tokenization”)

for uniqueness of decomposition
make lexemes as long as possible
motivated by applications: e.g., every (non-empty) prefix of an
identifier is also an identifier

2 Principle of the first match

for uniqueness of analysis
choose first matching regular expression (in the given order)
therefore: arrange keywords before identifiers (if keywords
protected)

Compiler Construction Winter semester 2010/11 6

Principle of the Longest Match

Definition 4.1 (Longest-match decomposition)

A decomposition (w1, . . . , wk) of w ∈ Ω+ w.r.t. α1, . . . , αn ∈ REΩ is
called a longest-match decomposition (LM decomposition) if, for every
i ∈ [k], x ∈ Ω+, and y ∈ Ω∗,

w = w1 . . . wixy =⇒ there is no j ∈ [n] such that wix ∈ JαjK

Corollary 4.2

Given w and α1, . . . , αn,

at most one LM decomposition of w exists (clear by definition) and

it is possible that w has a decomposition but no LM decomposition
(see following example).

Example 4.3

w = aab, α1 = a+, α2 = ab
=⇒ (a, ab) is a decomposition but no LM decomposition exists

Compiler Construction Winter semester 2010/11 7

Principle of the First Match

Problem: a (unique) LM decomposition can have several associated
analyses (since JαiK ∩ JαjK 6= ∅ with i 6= j is possible; cf.
keyword/identifier problem)

Definition 4.4 (First-longest-match analysis)

Let (w1, . . . , wk) be the LM decomposition of w ∈ Ω+ w.r.t.
α1, . . . , αn ∈ REΩ. Its first-longest-match analysis (FLM analysis)
(Ti1 , . . . , Tik) is determined by

ij := min{l ∈ [n] | wj ∈ JαlK} for every j ∈ [k].

Corollary 4.5

Given w and α1, . . . , αn, there is at most one FLM analysis of w.
It exists iff the LM decomposition of w exists.

Compiler Construction Winter semester 2010/11 8

Outline

1 Repetition: The Extended Matching Problem

2 First-Longest-Match Analysis

3 Implementation of FLM Analysis

Compiler Construction Winter semester 2010/11 9

Implementation of FLM Analysis

Algorithm 4.6 (FLM analysis—overview)

Input: expressions α1, . . . , αn ∈ REΩ, tokens {T1, . . . , Tn},
input word w ∈ Ω+

Procedure: 1 for every i ∈ [n], construct Ai ∈ DFAΩ such that
L(Ai) = JαiK (see DFA method; Alg. ??)

2 construct the product automaton A ∈ DFAΩ such that
L(A) =

⋃n
i=1JαiK

3 partition the set of final states of A to follow the
first-match principle

4 extend the resulting DFA to a backtracking DFA
which implements the longest-match principle, and let
it run on w

Output: FLM analysis of w (if existing)

Compiler Construction Winter semester 2010/11 10

(2) The Product Automaton

Definition 4.7 (Product automaton)

Let Ai = 〈Qi,Ω, δi, q
(i)
0 , Fi〉 ∈ DFAΩ for every i ∈ [n]. The product

automaton A = 〈Q,Ω, δ, q0, F 〉 ∈ DFAΩ is defined by

Q := Q1 × . . . × Qn

q0 := (q
(1)
0 , . . . , q

(n)
0)

δ((q(1), . . . , q(n)), a) := (δ1(q
(1), a), . . . , δn(q(n), a))

(q(1), . . . , q(n)) ∈ F iff there ex. i ∈ [n] such that q(i) ∈ Fi

Lemma 4.8

The above construction yields L(A) =
⋃n

i=1 L(Ai) (=
⋃n

i=1JαiK).

Remark: similar construction for intersection (F := F1 × . . . × Fn)

Compiler Construction Winter semester 2010/11 11

(3) Partitioning the Final States

Definition 4.9 (Partition of final states)

Let A = 〈Q,Ω, δ, q0, F 〉 ∈ DFAΩ be the product automaton as
constructed before. Its set of final states is partitioned into
F =

⊎n
i=1 F (i) by the requirement

(q(1), . . . , q(n)) ∈ F (i) iff q(i) ∈ Fi and ∀j ∈ [i − 1] : q(j) /∈ Fj

(or: F (i) := (Q1 \ F1) × . . . × (Qi−1 \ Fi−1) × Fi × Qi+1 × . . . × Qn)

Corollary 4.10

The above construction yields (w ∈ Ω+, i ∈ [n]):
δ̂(q0, w) ∈ F (i) iff w ∈ JαiK and w /∈

⋃i−1
j=1JαjK.

Definition 4.11 (Productive states)

Given A as above, a state q ∈ Q is called productive if there exists
w ∈ Ω∗ such that δ̂(q, w) ∈ F . The set of productive states of A is
denoted by P (and thus F ⊆ P).

Compiler Construction Winter semester 2010/11 12

(4) The Backtracking DFA I

Goal: extend A to the backtracking DFA B with output by equipping the
input tape with two pointers: a backtracking head for marking the last
encountered match, and a lookahead for determining the longest match.

A configuration of B has three components
(remember: Σ := {T1, . . . , Tn} denotes the set of tokens):

1 a mode m ∈ {N}] Σ:

m = N (“normal”): look for first match (no final state reached yet)
m = T ∈ Σ: token T has been recognized, looking for possible
longer match

2 an input tape vqw ∈ Ω∗ · Q · Ω∗:

v: lookahead part of input (v 6= ε =⇒ m ∈ Σ)
q: current state of A

w: remaining input

3 an output tape W ∈ Σ∗ · {ε, lexerr}:

Σ∗: sequence of tokens recognized so far
lexerr: a lexical error has occurred (i.e., a non-productive state was
entered or the suffix of the input is not a valid lexeme)

Compiler Construction Winter semester 2010/11 13

(4) The Backtracking DFA II

Definition 4.12 (Backtracking DFA)

The set of configurations of B is given by
({N}] Σ) × Ω∗ · Q · Ω∗ × Σ∗ · {ε, lexerr}

The initial configuration for an input word w ∈ Ω+ is (N, q0w, ε).

The transitions of B are defined as follows (where q′ := δ(q, a)):

normal mode: look for a match

(N, qaw, W) `







(Ti, q
′w, W) if q′ ∈ F (i)

(N, q′w, W) if q′ ∈ P \ F
output: W · lexerr if q′ /∈ P

backtrack mode: look for longest match

(T, vqaw, W) `







(Ti, q
′w, W) if q′ ∈ F (i)

(T, vaq′w, W) if q′ ∈ P \ F
(N, q0vaw, WT) if q′ /∈ P

end of input
(T, q, W) ` output: WT if q ∈ F
(N, q, W) ` output: W · lexerr if q ∈ P \ F

(T, vaq, W) ` (N, q0va, WT) if q ∈ P \ F

Compiler Construction Winter semester 2010/11 14

(4) The Backtracking DFA III

Lemma 4.13

Given the backtracking DFA B as before and w ∈ Ω+,

(N, q0w, ε) `∗

{

W ∈ Σ∗ iff W is the FLM analysis of w
W · lexerr iff no FLM analysis of w exists

Example 4.14

α = (ab)+, w = abaa (on the board)

Compiler Construction Winter semester 2010/11 15

(4) The Backtracking DFA IV

Remarks:

Time complexity: O(|w|2) in worst case

Example 4.15

α1 = a, α2 = a∗b, w = am requires O(m2)

Improvement by tabular method (similar to Knuth-Morris-Pratt
Algorithm for pattern matching in strings)

Literature: Th. Reps: “Maximal-Munch” Tokenization in Linear

Time, ACM TOPLAS 20(2), 1998, 259–273

Compiler Construction Winter semester 2010/11 16

	Repetition: The Extended Matching Problem
	First-Longest-Match Analysis
	Implementation of FLM Analysis

