

Compiler Construction

Lecture 5: Lexical Analysis IV (Practical Aspects)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/cc10/>

Winter semester 2010/11

Lehrpreis der Fachgruppe Informatik

Wir suchen:

Beste selbstständige Lehre

Professor/-innen, Juniorprofessor/-innen und (habilitierte) Mitarbeiter/-innen, die selbstständig Vorlesungen, Seminare, Praktika oder ähnliches anbieten.

Beste Unterstützung in der Lehre

Wissenschaftliche Mitarbeiter/-innen und studentische Hilfskräfte, die maßgeblich an der Betreuung von Vorlesungen, Übungen, Seminaren und Praktika oder ähnlichem mitwirken.

Vorschläge (mit Begründung) bitte bis zum 10. November an:

lehrpreis@informatik.rwth-aachen.de

Die Preisverleihung erfolgt im Rahmen des diesjährigen Tages der Informatik.

Weitere Informationen:

www.informatik.rwth-aachen.de

RWTHAACHEN
UNIVERSITY

FACHINFORMATIK
GRUPPE

Announcement

Due to the **Fachschaftsvollversammlung** (whatever this means in English...), the Tuesday lecture on November 2 will start at **14:15**.

1 Repetition: First-Longest-Match Analysis

2 First-Longest-Match Analysis with NFA

3 Longest Match in Practice

4 Regular Definitions

5 Generating Scanners Using `[f]lex`

6 Further Problems in Lexical Analysis

Problem (Extended matching problem)

Given $\alpha_1, \dots, \alpha_n \in RE_\Omega$ and $w \in \Omega^$, decide whether there exists a decomposition of w w.r.t. $\alpha_1, \dots, \alpha_n$ and determine a corresponding analysis.*

To ensure uniqueness:

- ① **Principle of the longest match** (“maximal munch tokenization”)
 - for uniqueness of decomposition
 - make lexemes as long as possible
 - motivated by applications: usually every (nonempty) prefix of an identifier is also an identifier
- ② **Principle of the first match**
 - for uniqueness of analysis
 - choose first matching regular expression (in the order given)

Implementation of FLM Analysis

Algorithm (FLM analysis)

Input: *expressions* $\alpha_1, \dots, \alpha_n \in RE_\Omega$, *tokens* $\{T_1, \dots, T_n\}$,
input word $w \in \Omega^*$

Procedure:

- ① *for every* $i \in [n]$, *construct* $\mathfrak{A}_i \in DFA_\Omega$ *such that*
 $L(\mathfrak{A}_i) = \llbracket \alpha_i \rrbracket$ (*see DFA method*)
- ② *construct the product automaton* $\mathfrak{A} \in DFA_\Omega$ *such that*
 $L(\mathfrak{A}) = \bigcup_{i=1}^n \llbracket \alpha_i \rrbracket$
- ③ *partition the set of final states* of \mathfrak{A} *to follow the*
first-match principle
- ④ *extend the resulting DFA to a backtracking DFA*
which implements the longest-match principle, and let
it run on w

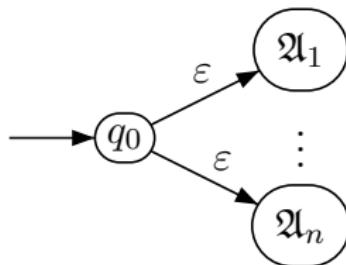
Output: *FLM analysis of* w (*if it exists*)

- 1 Repetition: First-Longest-Match Analysis
- 2 First-Longest-Match Analysis with NFA
- 3 Longest Match in Practice
- 4 Regular Definitions
- 5 Generating Scanners Using `[f]lex`
- 6 Further Problems in Lexical Analysis

A Backtracking NFA

A similar construction is possible for the **NFA method**:

- ① $\mathfrak{A}_i = \langle Q_i, \Omega, \delta_i, q_0^{(i)}, F_i \rangle \in NFA_{\Omega}$ ($i \in [n]$) by NFA method
- ② “Product” automaton: $Q := \{q_0\} \uplus \biguplus_{i=1}^n Q_i$



- ③ Partitioning of final states:

- $M \subseteq Q$ is called a **T_i -matching** if
$$M \cap F_i \neq \emptyset \text{ and for all } j \in [i-1] : M \cap F_j = \emptyset$$
- yields set of T_i -matchings $F^{(i)} \subseteq 2^Q$
- $M \subseteq Q$ is called **productive** if there exists a productive $q \in M$
- yields productive state sets $P \subseteq 2^Q$

- ④ Backtracking automaton: similar to DFA case

- 1 Repetition: First-Longest-Match Analysis
- 2 First-Longest-Match Analysis with NFA
- 3 Longest Match in Practice
- 4 Regular Definitions
- 5 Generating Scanners Using `[f]lex`
- 6 Further Problems in Lexical Analysis

- In general: lookahead of arbitrary length required
 - that is, $|v|$ unbounded in configurations (T, vqw, W)
 - see Example 4.15: $\alpha_1 = a$, $\alpha_2 = a^*b$, $w = a \dots a$
- “Modern” programming languages (Pascal, ...):
lookahead of one or two characters sufficient
 - separation of keywords, identifiers, etc. by spaces
 - Pascal: two-character lookahead required to distinguish `1.5` (real number) from `1..5` (integer range)

However: principle of longest match not always applicable!

Example 5.1 (Longest Match in FORTRAN)

1 Relational expressions

- valid lexemes: `.EQ.` (relational operator), `EQ` (identifier), `12` (integer), `12.`, `.12` (reals)
- input string: `12.EQ.12` \rightsquigarrow `12.EQ.12` (ignoring blanks!)
- intended analysis: `(int, 12)(relop, eq)(int, 12)`
- LM yields: `(real, 12.0)(id, EQ)(real, 0.12)`
 \Rightarrow wrong interpretation

2 `DO` loops

- (correct) input string: `DO5I=1,20` \rightsquigarrow `D05I=1,20`
 - intended analysis:
`(do,)(label, 5)(id, I)(gets,)(int, 1)(comma,)(int, 20)`
 - LM analysis (wrong): `(id,)(gets,)(int, 1)(comma,)(int, 20)`
- (erroneous) input string: `DO5I=1.20` \rightsquigarrow `D05I=1.20`
 - LM analysis (correct): `(id, D05I)(gets,)(real, 1.2)`

Example 5.2 (Longest Match in C)

- valid lexemes:
 - `x` (identifier)
 - `--` (decrement operator; ANSI-C: `==`)
 - `1, -1` (integers)
- input string: `x=-1`
- intended analysis: `(id, x)(gets,)(int, -1)`
- LM yields: `(id, x)(dec,)(int, 1)`

⇒ wrong interpretation

Possible solutions:

- Hand-written (non-FLM) scanners
- Lookahead (later)

- 1 Repetition: First-Longest-Match Analysis
- 2 First-Longest-Match Analysis with NFA
- 3 Longest Match in Practice
- 4 Regular Definitions
- 5 Generating Scanners Using `[f]lex`
- 6 Further Problems in Lexical Analysis

Regular Definitions I

Goal: modularizing the representation of regular sets by introducing additional identifiers

Definition 5.3 (Regular definition)

Let $\{R_1, \dots, R_n\}$ be a set of symbols disjoint from Ω . A **regular definition** (over Ω) is a sequence of equations

$$\begin{aligned} R_1 &= \alpha_1 \\ &\vdots \\ R_n &= \alpha_n \end{aligned}$$

such that, for every $i \in [n]$, $\alpha_i \in RE_{\Omega \cup \{R_1, \dots, R_{i-1}\}}$.

Remark: since no recursion is involved, every R_i can (iteratively) be substituted by a regular expression $\alpha \in RE_{\Omega}$ (otherwise \implies context-free languages)

Example 5.4 (Symbol classes in Pascal)

Identifiers:

$$\text{Letter} = \text{A} \mid \dots \mid \text{Z} \mid \text{a} \mid \dots \mid \text{z}$$
$$\text{Digit} = \text{0} \mid \dots \mid \text{9}$$
$$\text{Id} = \text{Letter} (\text{Letter} \mid \text{Digit})^*$$

Numerals:

(unsigned)

$$\text{Digits} = \text{Digit}^+$$
$$\text{Empty} = \Lambda^*$$
$$\text{OptFrac} = \text{.Digits} \mid \text{Empty}$$
$$\text{OptExp} = \text{E} (\text{+} \mid \text{-} \mid \text{Empty}) \text{Digits} \mid \text{Empty}$$
$$\text{Num} = \text{Digits} \text{ OptFrac } \text{OptExp}$$

Rel. operators:

$$\text{RelOp} = \text{<} \mid \text{<}=\mid \text{=} \mid \text{<} \text{>} \mid \text{>} \text{=}$$

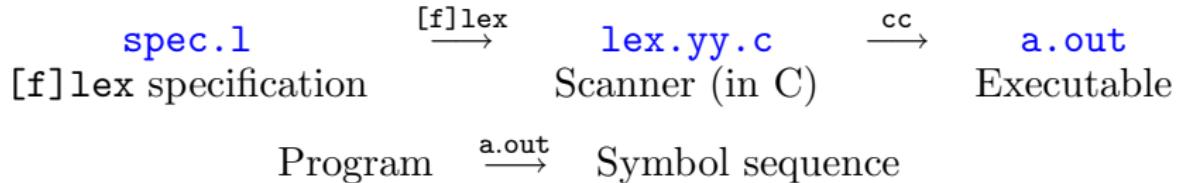
Keywords:

$$\text{If} = \text{if}$$
$$\text{Then} = \text{then}$$
$$\text{Else} = \text{else}$$

- 1 Repetition: First-Longest-Match Analysis
- 2 First-Longest-Match Analysis with NFA
- 3 Longest Match in Practice
- 4 Regular Definitions
- 5 Generating Scanners Using `[f]lex`
- 6 Further Problems in Lexical Analysis

The [f]lex Tool

Usage of [f]lex (“[fast] lexical analyzer generator”):



A [f]lex specification is of the form

Definitions (optional)

%%

Rules

%%

Auxiliary procedures (optional)

Definitions:

- C code for declarations etc.: `%{ Code %}`
- **Regular definitions:** *Name* *RegExp* ...
(non-recursive!)

Rules: of the form *Pattern* { *Action* }

- *Pattern*: regular expression, possibly using *Names*
- *Action*: C code for computing
symbol = (token, attribute)
 - **token**: integer `return` value, 0 = `EOF`
 - **attribute**: passed in global variable `yyval`
 - **lexeme**: accessible by `yytext`
- matching rule found by **FLM strategy**
- **lexical errors** catched by `.` (any character)

Example [f]lex Specification

```
%{  
    #include <stdio.h>  
    typedef enum {EOF, IF, ID, RELOP, LT, ...} token_t;  
    unsigned int yylval; /* attribute values */  
}  
LETTER [A-Za-z]  
DIGIT [0-9]  
ALPHANUM {LETTER}|{DIGIT}  
SPACE [ \t\n]  
%%  
"if"           { return IF; }  
"<"            { yylval = LT; return RELOP; }  
{LETTER}{ALPHANUM}* { yylval = install_id(); return ID; }  
{SPACE}+        /* eat up whitespace */  
.              { fprintf (stderr, "Invalid character '%c'\n", yytext[0]); }  
%%  
int main(void) {  
    token_t token;  
    while ((token = yylex()) != EOF)  
        printf("(Token %d, Attribute %d)\n", token, yylval);  
    exit (0);  
}  
unsigned int install_id () {...} /* identifier name in yytext */
```

Regular Expressions in [f]lex

Syntax	Meaning
printable character	this character
<code>\n, \t, \123</code> , etc.	newline, tab, octal representation, etc.
.	any character except <code>\n</code>
<code>[Chars]</code>	one of <i>Chars</i> ; ranges possible ("0-9")
<code>[\^Chars]</code>	none of <i>Chars</i>
<code>\\", \., \[, etc.</code>	<code>\, ., [, etc.</code>
<code>"Text"</code>	<i>Text</i> without interpretation of <code>.</code> , <code>[</code> , <code>\</code> , etc.
<code>^α</code>	α at beginning of line
<code>α\$</code>	α at end of line
<code>{Name}</code>	<i>RegExp</i> for <i>Name</i>
<code>α?</code>	zero or one α
<code>α*</code>	zero or more α
<code>α+</code>	one or more α
<code>α{n,m}</code>	between n and m times α (" m " optional)
<code>(α)</code>	α
$\alpha_1\alpha_2$	concatenation
$\alpha_1 \alpha_2$	alternative
α_1/α_2	α_1 but only if followed by α_2 (lookahead)

Using the Lookahead Operator

Example 5.5 (Lookahead in FORTRAN)

① DO loops (cf. Example 5.1)

- input string: `DO 5 I = 1, 20`
- LM yields: `(id,)(gets,)(int, 1)(comma,)(int, 20)`
- observation: decision for do only possible after reading `,`
- specification of `DO` keyword in [f]lex, using lookahead:
`DO / ({LETTER}|{DIGIT})* = ({LETTER}|{DIGIT})* ,`

② IF statement

- problem: FORTRAN keywords not reserved
- example: `IF(I,J) = 3` (assignment to an element of matrix `IF`)
- conditional: `IF (condition) THEN ...` (`IF` keyword)
- specification of `IF` keyword in [f]lex, using lookahead:
`IF / \(.*\) THEN`

Longest Match and Lookahead in [f]lex

```
%{  
    #include <stdio.h>  
    typedef enum {EoF, AB, A} token_t;  
}  
%%  
ab      { return AB; }  
a/bc   { return A; }  
.      { fprintf (stderr, "Invalid character '%c'\n", yytext[0]); }  
%%  
int main(void) {  
    token_t token;  
    while ((token = yylex()) != EoF) printf ("Token %d\n", token);  
    exit (0);  
}
```

returns on input

- a: Invalid character 'a'
- ab: Token 1
- abc: Token 2 Invalid character 'b' Invalid character 'c'

⇒ lookahead counts for length of match

- 1 Repetition: First-Longest-Match Analysis
- 2 First-Longest-Match Analysis with NFA
- 3 Longest Match in Practice
- 4 Regular Definitions
- 5 Generating Scanners Using `[f]lex`
- 6 Further Problems in Lexical Analysis

Identifiers that influence subsequent parsing

- **Example:** (type definitions in C)

The program fragment `(T *)` is

- valid in the scope of declaration `typedef int T;`
(casting to type “pointer to `T`”)
- invalid in the scope of declaration `int T;`
(incorrect expression with missing second multiplication factor)

- **Solution:** exploit symbol table information

Macro processing

- macro substitution
- parameter substitution
- file inclusion
- conditional compilation
- **Solution:** separate preprocessing phase between reading and lexical analysis