
Compiler Construction

Lecture 5: Lexical Analysis IV (Practical Aspects)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Announcement

Due to the Fachschaftsvollversammlung (whatever this means in
English...), the Tuesday lecture on November 2 will start at 14:15.

Compiler Construction Winter semester 2010/11 3

Outline

1 Repetition: First-Longest-Match Analysis

2 First-Longest-Match Analysis with NFA

3 Longest Match in Practice

4 Regular Definitions

5 Generating Scanners Using [f]lex

6 Further Problems in Lexical Analysis

Compiler Construction Winter semester 2010/11 4

The Extended Matching Problem

Problem (Extended matching problem)

Given α1, . . . , αn ∈ REΩ and w ∈ Ω∗, decide whether there exists a
decomposition of w w.r.t. α1, . . . , αn and determine a corresponding
analysis.

To ensure uniqueness:
1 Principle of the longest match (“maximal munch tokenization”)

for uniqueness of decomposition
make lexemes as long as possible
motivated by applications: usually every (nonempty) prefix of an
identifier is also an identifier

2 Principle of the first match

for uniqueness of analysis
choose first matching regular expression (in the order given)

Compiler Construction Winter semester 2010/11 5

Implementation of FLM Analysis

Algorithm (FLM analysis)

Input: expressions α1, . . . , αn ∈ REΩ, tokens {T1, . . . , Tn},
input word w ∈ Ω∗

Procedure: 1 for every i ∈ [n], construct Ai ∈ DFAΩ such that
L(Ai) = JαiK (see DFA method)

2 construct the product automaton A ∈ DFAΩ such that
L(A) =

⋃n
i=1JαiK

3 partition the set of final states of A to follow the
first-match principle

4 extend the resulting DFA to a backtracking DFA
which implements the longest-match principle, and let
it run on w

Output: FLM analysis of w (if it exists)

Compiler Construction Winter semester 2010/11 6

Outline

1 Repetition: First-Longest-Match Analysis

2 First-Longest-Match Analysis with NFA

3 Longest Match in Practice

4 Regular Definitions

5 Generating Scanners Using [f]lex

6 Further Problems in Lexical Analysis

Compiler Construction Winter semester 2010/11 7

A Backtracking NFA

A similar construction is possible for the NFA method:

1 Ai = 〈Qi,Ω, δi, q
(i)
0 , Fi〉 ∈ NFAΩ (i ∈ [n]) by NFA method

2 “Product” automaton: Q := {q0}]
⊎n

i=1 Qi

q0

A1

An

...

ε

ε

3 Partitioning of final states:

M ⊆ Q is called a Ti-matching if
M ∩ Fi 6= ∅ and for all j ∈ [i − 1] : M ∩ Fj = ∅

yields set of Ti-matchings F (i) ⊆ 2Q

M ⊆ Q is called productive if there exists a productive q ∈ M

yields productive state sets P ⊆ 2Q

4 Backtracking automaton: similar to DFA case

Compiler Construction Winter semester 2010/11 8

Outline

1 Repetition: First-Longest-Match Analysis

2 First-Longest-Match Analysis with NFA

3 Longest Match in Practice

4 Regular Definitions

5 Generating Scanners Using [f]lex

6 Further Problems in Lexical Analysis

Compiler Construction Winter semester 2010/11 9

Longest Match in Practice

In general: lookahead of arbitrary length required

that is, |v| unbounded in configurations (T, vqw, W)
see Example 4.15: α1 = a, α2 = a∗b, w = a . . . a

“Modern” programming languages (Pascal, ...):
lookahead of one or two characters sufficient

separation of keywords, identifiers, etc. by spaces
Pascal: two-character lookahead required to distinguish 1.5 (real
number) from 1..5 (integer range)

However: principle of longest match not always applicable!

Compiler Construction Winter semester 2010/11 10

Inadequacy of Longest Match I

Example 5.1 (Longest Match in FORTRAN)

1 Relational expressions

valid lexemes: .EQ. (relational operator), EQ (identifier),
12 (integer), 12., .12 (reals)
input string: 12 .EQ. 12 12.EQ.12 (ignoring blanks!)
intended analysis: (int, 12)(relop, eq)(int, 12)
LM yields: (real, 12.0)(id, EQ)(real, 0.12)

⇒ wrong interpretation

2 DO loops
(correct) input string: DO 5 I = 1, 20 DO5I=1,20

intended analysis:
(do,)(label, 5)(id, I)(gets,)(int, 1)(comma,)(int, 20)
LM analysis (wrong): (id,)(gets,)(int, 1)(comma,)(int, 20)

(erroneous) input string: DO 5 I = 1. 20 DO5I=1.20

LM analysis (correct): (id, DO5I)(gets,)(real, 1.2)

Compiler Construction Winter semester 2010/11 11

Inadequacy of Longest Match II

Example 5.2 (Longest Match in C)

valid lexemes:

x (identifier)
=- (decrement operator; ANSI-C: -=)
1, -1 (integers)

input string: x=-1

intended analysis: (id, x)(gets,)(int,−1)

LM yields: (id, x)(dec,)(int, 1)

⇒ wrong interpretation

Possible solutions:

Hand-written (non-FLM) scanners

Lookahead (later)

Compiler Construction Winter semester 2010/11 12

Outline

1 Repetition: First-Longest-Match Analysis

2 First-Longest-Match Analysis with NFA

3 Longest Match in Practice

4 Regular Definitions

5 Generating Scanners Using [f]lex

6 Further Problems in Lexical Analysis

Compiler Construction Winter semester 2010/11 13

Regular Definitions I

Goal: modularizing the representation of regular sets by introducing
additional identifiers

Definition 5.3 (Regular definition)

Let {R1, . . . , Rn} be a set of symbols disjoint from Ω. A regular
definition (over Ω) is a sequence of equations

R1 = α1
...

Rn = αn

such that, for every i ∈ [n], αi ∈ REΩ]{R1,...,Ri−1}.

Remark: since no recursion is involved, every Ri can (iteratively) be
substituted by a regular expression α ∈ REΩ

(otherwise =⇒ context-free languages)

Compiler Construction Winter semester 2010/11 14

Regular Definitions II

Example 5.4 (Symbol classes in Pascal)

Identifiers: Letter = A | . . . | Z | a | . . . | z
Digit = 0 | . . . | 9

Id = Letter (Letter | Digit)∗

Numerals: Digits = Digit+

(unsigned) Empty = Λ∗

OptFrac = .Digits | Empty
OptExp = E (+ | - | Empty)Digits | Empty

Num = Digits OptFrac OptExp

Rel. operators: RelOp = < | <= | = | <> | > | >=

Keywords: If = if
Then = then
Else = else

Compiler Construction Winter semester 2010/11 15

Outline

1 Repetition: First-Longest-Match Analysis

2 First-Longest-Match Analysis with NFA

3 Longest Match in Practice

4 Regular Definitions

5 Generating Scanners Using [f]lex

6 Further Problems in Lexical Analysis

Compiler Construction Winter semester 2010/11 16

The [f]lex Tool

Usage of [f]lex (“[fast] lexical analyzer generator”):

spec.l
[f]lex
−→ lex.yy.c

cc
−→ a.out

[f]lex specification Scanner (in C) Executable

Program
a.out
−→ Symbol sequence

A [f]lex specification is of the form

Definitions (optional)
%%

Rules
%%

Auxiliary procedures (optional)

Compiler Construction Winter semester 2010/11 17

[f]lex Specifications

Definitions: C code for declarations etc.: %{ Code %}
Regular definitions: Name RegExp ...
(non-recursive!)

Rules: of the form Pattern { Action }

Pattern: regular expression, possibly using Names
Action: C code for computing
symbol = (token, attribute)

token: integer return value, 0 = EOF

attribute: passed in global variable yylval

lexeme: accessible by yytext

matching rule found by FLM strategy
lexical errors catched by . (any character)

Compiler Construction Winter semester 2010/11 18

Example [f]lex Specification

%{
#include <stdio.h>

typedef enum {EOF, IF, ID, RELOP, LT, ...} token_t;

unsigned int yylval; /* attribute values */

%}
LETTER [A-Za-z]

DIGIT [0-9]

ALPHANUM {LETTER}|{DIGIT}
SPACE [\t\n]

%%

"if" { return IF; }
"<" { yylval = LT; return RELOP; }
{LETTER}{ALPHANUM}* { yylval = install_id(); return ID; }
{SPACE}+ /* eat up whitespace */

. { fprintf (stderr, "Invalid character ’%c’\n", yytext[0]); }
%%

int main(void) {
token_t token;

while ((token = yylex()) != EOF)

printf ("(Token %d, Attribute %d)\n", token, yylval);

exit (0);

}
unsigned int install_id () {...} /* identifier name in yytext */

Compiler Construction Winter semester 2010/11 19

Regular Expressions in [f]lex

Syntax Meaning

printable character this character
\n, \t, \123, etc. newline, tab, octal representation, etc.
. any character except \n
[Chars] one of Chars ; ranges possible (“0-9”)
[^Chars] none of Chars
\\, \., \[, etc.

\, ., [, etc.
"Text" Text without interpretation of ., [, \, etc.
^α α at beginning of line
α$ α at end of line
{Name} RegExp for Name
α? zero or one α
α* zero or more α
α+ one or more α
α{n,m} between n and m times α (“,m” optional)
(α) α
α1α2 concatenation
α1|α2 alternative
α1/α2 α1 but only if followed by α2 (lookahead)

Compiler Construction Winter semester 2010/11 20

Using the Lookahead Operator

Example 5.5 (Lookahead in FORTRAN)

1 DO loops (cf. Example 5.1)

input string: DO 5 I = 1, 20

LM yields: (id,)(gets,)(int, 1)(comma,)(int, 20)
observation: decision for do only possible after reading “,”
specification of DO keyword in [f]lex, using lookahead:
DO / ({LETTER}|{DIGIT})* = ({LETTER}|{DIGIT})* ,

2 IF statement

problem: FORTRAN keywords not reserved
example: IF(I,J) = 3 (assignment to an element of matrix IF)
conditional: IF (condition) THEN ... (IF keyword)
specification of IF keyword in [f]lex, using lookahead:
IF / \(.* \) THEN

Compiler Construction Winter semester 2010/11 21

Longest Match and Lookahead in [f]lex

%{
#include <stdio.h>

typedef enum {EoF, AB, A} token_t;

%}
%%

ab { return AB; }
a/bc { return A; }
. { fprintf (stderr, "Invalid character ’%c’\n", yytext[0]); }
%%

int main(void) {
token_t token;

while ((token = yylex()) != EoF) printf ("Token %d\n", token);

exit (0);

}

returns on input

a: Invalid character ’a’

ab: Token 1

abc: Token 2 Invalid character ’b’ Invalid character ’c’

=⇒ lookahead counts for length of match

Compiler Construction Winter semester 2010/11 22

Outline

1 Repetition: First-Longest-Match Analysis

2 First-Longest-Match Analysis with NFA

3 Longest Match in Practice

4 Regular Definitions

5 Generating Scanners Using [f]lex

6 Further Problems in Lexical Analysis

Compiler Construction Winter semester 2010/11 23

Further Problems

Identifiers that influence subsequent parsing

Example: (type definitions in C)
The program fragment (T *) is

valid in the scope of declaration typedef int T;

(casting to type “pointer to T”)
invalid in the scope of declaration int T;

(incorrect expression with missing second multiplication factor)

Solution: exploit symbol table information

Macro processing

macro substitution

parameter substitution

file inclusion

conditional compilation

Solution: separate preprocessing phase between reading and
lexical analysis

Compiler Construction Winter semester 2010/11 24

	Repetition: First-Longest-Match Analysis
	First-Longest-Match Analysis with NFA
	Longest Match in Practice
	Regular Definitions
	Generating Scanners Using [f]lex
	Further Problems in Lexical Analysis

