Compiler Construction

Lecture 5: Lexical Analysis IV (Practical Aspects)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Lehrpreis der Fachgruppe Informatik

Beste selbststéndige Lehre Beste Unterstltzung in der Lehre

Wissenschaftliche Mitarbeiter/-innen und
studentische Hilfskrafte, diemaRgeblichan
derBetreuung von Vorlesungen, Ubungen,
Seminaren und Praktika oder ahnlichem
mitwirken.

Professor/-innen, Juniorprofessor/-innen
und (habilitierte) Mitarbeiter/-innen, die
selbststandig Vorlesungen, Seminare,
Praktika oder &hnliches anbieten.

Vorschlage (mit Begrtindung) bitte bis zum 10. November an:
lehrpreis@informatik.rwth-aachen.de

Die Preisverleihung erfolgt im Rahmen des diesjahrigen Tages der Informatik.

Weitere Informationen:
www. informatik.rwth-aachen.de

RWITH FYINFORMATIK

GRUPPE

Announcement

Due to the Fachschaftsvollversammlung (whatever this means in
English...), the Tuesday lecture on November 2 will start at 14:15.

Rm Compiler Construction Winter semester 2010/11 3

@ Repetition: First-Longest-Match Analysis

Rm Compiler Construction ter semester 2010/11

The Extended Matching Problem

Problem (Extended matching problem)

Given aq,...,a, € REq and w € QF, decide whether there exists a
decomposition of w w.r.t. ay,...,a, and determine a corresponding
analysis.

To ensure uniqueness:
@ Principle of the longest match (“maximal munch tokenization”)

o for uniqueness of decomposition

o make lexemes as long as possible

¢ motivated by applications: usually every (nonempty) prefix of an
identifier is also an identifier

© Principle of the first match

o for uniqueness of analysis
¢ choose first matching regular expression (in the order given)

m' Compiler Construction Winter semester 2010/11

Implementation of FLM Analysis

Algorithm (FLM analysis)

Input: expressions au,...,a, € REq, tokens {T1,...,T,},
input word w € QF
Procedure: @ for every i € [n], construct 2A; € DFAq such that

L(A;) = [as] (see DFA method)

© construct the product automaton A € DFAq such that
L&) = Uiy [oi]

© partition the set of final states of A to follow the
first-match principle

Q@ extend the resulting DFA to a backtracking DFA
which implements the longest-match principle, and let
i run on w

Output: FLM analysis of w (if it exists)

m Compiler Construction Winter semester 2010/11 6

© First-Longest-Match Analysis with NFA

Rm Compiler Construction Winter semester 2010/11 7

A Backtracking NFA

A similar construction is possible for the NFA method:
QO A = (Qi,2,6, 4", F) € NFAq (i € [n]) by NFA method
@ “Product” automaton: @ := {q} W, Q;

@ Partitioning of final states:
o M C @ is called a T;-matching if
MNF,#0andforallje[i—1: MNF; =0
o yields set of Tj-matchings F() C 29
o M C @ is called productive if there exists a productive ¢ € M
o yields productive state sets P C 2¢

@ Backtracking automaton: similar to DFA case

m' Compiler Construction Winter semester 2010/11

© Longest Match in Practice

Rm Compiler Construction nter semester 2010/11

Longest Match in Practice

@ In general: lookahead of arbitrary length required
o that is, |v| unbounded in configurations (7', vqw, W)
e see Example 4.15: a1 = a, ag =a*b, w=a...a
e “Modern” programming languages (Pascal, ...):
lookahead of one or two characters sufficient

e separation of keywords, identifiers, etc. by spaces
o Pascal: two-character lookahead required to distinguish 1.5 (real
number) from 1. .5 (integer range)

However: principle of longest match not always applicable!

m' Compiler Construction Winter semester 2010/11 10

Inadequacy of Longest Match 1

Example 5.1 (Longest Match in FORTRAN)

@ Relational expressions

o valid lexemes: .EQ. (relational operator), EQ (identifier),
12 (integer), 12., .12 (reals)

e input string: 12,,.EQ. 12 ~~ 12 12 (ignoring blanks!)
o intended analysis: (int, 12) (int, 12)
o LM yields: (real,12.0) (real,0.12)
= wrong interpretation
© DO loops

o (correct) input string: DO,5,I =.1,.,20 ~» DO5I=1,20
9 intended analysis:
(do,) (id, I)(gets,) (comma,) (int, 20)
@ LM analysis (wrong): (id,) (int, 1)(comma,)
o (erroneous) input string: DO,5,I,=_1.,20 ~» DO5I=1.20
@ LM analysis (correct): (id,D05I) (real, 1.2)

m Compiler Construction Winter semester 2010/11

Inadequacy of Longest Match II

Example 5.2 (Longest Match in C)

o valid lexemes:
o x (identifier)
o =- (decrement operator; ANSI-C: -=)
o 1, -1 (integers)

@ input string: x=-1
o intended analysis: (id, x)(gets,)(int, —1)
o LM yields: (id,x)(dec.)(int, 1)

= wrong interpretation

Possible solutions:
o Hand-written (non-FLM) scanners
o Lookahead (later)

m' Compiler Construction Winter semester 2010/11 12

© Regular Definitions

Rm Compiler Construction nter semester 2010/11 13

Regular Definitions I

Goal: modularizing the representation of regular sets by introducing
additional identifiers

Definition 5.3 (Regular definition)

Let {Ry,...,R,} be a set of symbols disjoint from 2. A regular
definition (over €2) is a sequence of equations

R1:a1

R, = a,

such that, for every i € [n], a; € REqu(g,....r,_}-

Remark: since no recursion is involved, every R; can (iteratively) be
substituted by a regular expression a € RFq
(otherwise = context-free languages)

m Compiler Construction Winter semester 2010/11 14

Regular Definitions II

Example 5.4 (Symbol classes in Pascal)

Identifiers: Letter =A|...|Z|a|...|z
Digit =01...|9
Id = Letter (Letter | Digit)*
Numerals: Digits = Digit™
(unsigned) Empty = A*

OptFrac = . Digits | Empty
OptEzp = E(+ | - | Empty) Digits | Empty
Num = Digits OptFrac OptExp

Rel. operators: RelOp =< |<=|=|<>|>]|>=
Keywords: If =if
Then = then

FElse = else

m Compiler Construction Winter semester 2010/11

© Generating Scanners Using [f]1lex

Rm Compiler Construction ter semester 2010/11 16

The [f]lex Tool

Usage of [f]lex (“[fast] lexical analyzer generator”):

£]1
spec.1l [fl1ex lex.yy.c = a.out

[£f]1ex specification Scanner (in C) Executable

Program 2088 Symbol sequence

A [f]lex specification is of the form
Definitions (optional)
Toto
Rules
Totho

Augziliary procedures (optional)

m' Compiler Construction Winter semester 2010/11

[f]1lex Specifications

Definitions: @ C code for declarations etc.: %{ Code %}
@ Regular definitions: Name RegEzp ...
(non-recursive!)

Rules: of the form Pattern { Action }

@ Pattern: regular expression, possibly using Names
o Action: C code for computing
symbol = (token, attribute)
o token: integer return value, 0 = EOF
o attribute: passed in global variable yylval
o lexeme: accessible by yytext
@ matching rule found by FLM strategy
@ lexical errors catched by . (any character)

Rm Compiler Construction Winter semester 2010/11 18

Example [f]lex Specification

w{
#include <stdio.h>
typedef enum {EOF, IF, ID, RELOP, LT, ...} token_t;
unsigned int yylval; /* attribute values */

)

LETTER [A-Za-z]

DIGIT [0-9]

ALPHANUM {LETTER}|{DIGIT}

SPACE [\t\n]

hh

"if" { return IF; }

e { yylval = LT; return RELOP; }
{LETTER}{ALPHANUM}* { yylval = install_id(); return ID; }
{SPACE}+ /* eat up whitespace */

. { fprintf (stderr, "Invalid character ’%c’\n", yytext[0]); }

Y44

int main(void) {
token_t token;
while ((token = yylex()) != EOF)

printf ("(Token %d, Attribute %d)\n", token, yylval);

exit (0);

}

unsigned int install_id () {...} /* identifier name in yytext */

Rm Compiler Construction ter semester 2010/11 19

Regular Expressions in [f]lex

| Syntax | Meaning |
printable character | this character
\n, \t, \123, etc. newline, tab, octal representation, etc.
. any character except \n
[Chars] one of Chars; ranges possible (“0-97)
[~ Chars] none of Chars
\\, \., \ [, etc. \ .. [ete.
"Text" Text without interpretation of ., [, \, etc.
"« a at beginning of line
o$ « at end of line
{Name} RegEzxp for Name
a? Zero or one «
ok ZEero Or more o
a+ one or more
a{n,m?} between n and m times « (“,m” optional)
(o) «
a0 concatenation
aqlag alternative
ay/ag aq but only if followed by s (Iookahead)

m Compiler Construction Winter semester 2010/11 20

Using the Lookahead Operator

Example 5.5 (Lookahead in FORTRAN)

© DO loops (cf. Example 5.1)

input string: DO 5 I = 1, 20
LM yields: (id,)(gets,)(int, 1)(comma,)(int, 20)
observation: decision for do only possible after reading “,”

specification of DO keyword in [f]1lex, using lookahead:

DO / ({LETTER}|{DIGIT})* = ({LETTER}|{DIGIT})* ,

© IF statement

problem: FORTRAN keywords not reserved

example: IF(I,J) = 3 (assignment to an element of matrix IF)
conditional: IF (condition) THEN ... (IF keyword)
specification of IF keyword in [£]1lex, using lookahead:

IF / \(C .x \) THEN

¢ ¢ ¢ ¢

¢ © ¢ ¢

m Compiler Construction Winter semester 2010/11 21

Longest Match and Lookahead in [f]lex

w{
#include <stdio.h>
typedef enum {EoF, AB, A} token_t;
h}
hh
ab { return AB; }
a/bc { return A; }
. { fprintf (stderr, "Invalid character ’%c’\n", yytext[01); }
hh
int main(void) {
token_t token;
while ((token = yylex()) != EoF) printf ("Token 7%d\n", token);
exit (0);

}
returns on input
@ a: Invalid character ’a’
@ ab: Token 1
@ abc: Token 2 Invalid character ’b’ Invalid character ’c’

—> lookahead counts for length of match

Rm Compiler Construction Winter semester 2010/11

@ Further Problems in Lexical Analysis

Rm Compiler Construction nter semester 2010/11

Further Problems

Identifiers that influence subsequent parsing

o Example: (type definitions in C)
The program fragment (T *) is
¢ valid in the scope of declaration typedef int T;
(casting to type “pointer to T”)
¢ invalid in the scope of declaration int T;
(incorrect expression with missing second multiplication factor)

@ Solution: exploit symbol table information

Macro processing

@ macro substitution
parameter substitution
file inclusion

conditional compilation

e 6 ¢ ¢

Solution: separate preprocessing phase between reading and
lexical analysis
m Compiler Construction Winter semester 2010/11

	Repetition: First-Longest-Match Analysis
	First-Longest-Match Analysis with NFA
	Longest Match in Practice
	Regular Definitions
	Generating Scanners Using [f]lex
	Further Problems in Lexical Analysis

