

Compiler Construction

Lecture 6: Syntactic Analysis I (Introduction)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

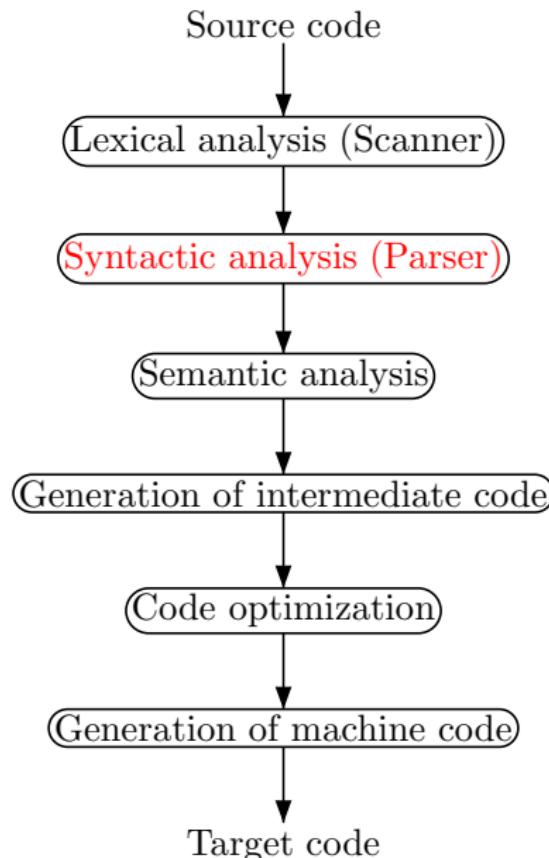
RWTH Aachen University

noll@cs.rwth-aachen.de

<http://www-i2.informatik.rwth-aachen.de/i2/cc10/>

Winter semester 2010/11

Conceptual Structure of a Compiler



1 Problem Statement

2 Context-Free Grammars and Languages

From Merriam-Webster's Online Dictionary

Syntax: the way in which linguistic elements (as words) are put together to form constituents (as phrases or clauses)

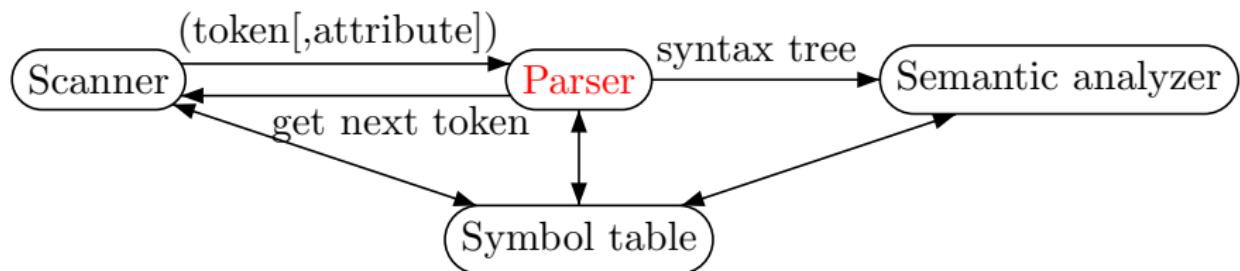
- **Starting point:** sequence of symbols as produced by the scanner
Here: ignore attribute information
 - Σ (finite) set of **tokens** (= syntactic atoms; **terminals**)
(e.g., {id, if, int, ...})
 - $w \in \Sigma^*$ **token sequence**
(of course, not every $w \in \Sigma^*$ forms a valid program)
- **Syntactic units:**
 - atomic: keywords, variable/type/procedure/... identifiers, numerals, arithmetic/Boolean operators, ...
 - complex: declarations, arithmetic/Boolean expressions, statements, ...
- **Observation:** the hierarchical structure of syntactic units can be described by **context-free grammars**

Syntactic Analysis

Definition 6.1

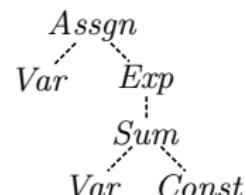
The goal of **syntactic analysis** is to determine the syntactic structure of a program, given by a token sequence, according to a context-free grammar.

The corresponding program is called a **parser**:



Example: ... $\underline{x1} := y2 + \underline{u1}; \underline{u2} \dots$

↓ Scanner
... (id, p₁)(gets,)(id, p₂)(plus,)(int, 1)(sem,) ... $\xrightarrow{\text{Parser}}$



1 Problem Statement

2 Context-Free Grammars and Languages

Definition 6.2 (Syntax of context-free grammars)

A **context-free grammar (CFG)** (over Σ) is a quadruple

$$G = \langle N, \Sigma, P, S \rangle$$

where

- N is a finite set of **nonterminal symbols**,
- Σ is a (finite) alphabet of **terminal symbols** (disjoint from N),
- P is a finite set of **production rules** of the form $A \rightarrow \alpha$ where $A \in N$ and $\alpha \in X^*$ for $X := N \cup \Sigma$, and
- $S \in N$ is a **start symbol**.

The set of all context-free grammars over Σ is denoted by CFG_Σ .

Remarks: as denotations we generally use

- $A, B, C, \dots \in N$ for nonterminal symbols
- $a, b, c, \dots \in \Sigma$ for terminal symbols
- $u, v, w, \dots \in \Sigma^*$ for terminal words
- $\alpha, \beta, \gamma, \dots \in X^*$ for **sentences**

Context-free grammars generate context-free languages:

Definition 6.3 (Semantics of context-free grammars)

Let $G = \langle N, \Sigma, P, S \rangle$ be a context-free grammar.

- The **derivation relation** $\Rightarrow \subseteq X^* \times X^*$ of G is defined by
$$\alpha \Rightarrow \beta \text{ iff there exist } \alpha_1, \alpha_2 \in X^*, A \rightarrow \gamma \in P \\ \text{such that } \alpha = \alpha_1 A \alpha_2 \text{ and } \beta = \alpha_1 \gamma \alpha_2.$$
- If in addition $\alpha_1 \in \Sigma^*$ or $\alpha_2 \in \Sigma^*$, then we write $\alpha \Rightarrow_l \beta$ or $\alpha \Rightarrow_r \beta$, respectively (**leftmost/rightmost** derivation).
- The **language generated by G** is given by
$$L(G) := \{w \in \Sigma^* \mid S \Rightarrow^* w\}.$$
- If a language $L \subseteq \Sigma^*$ is generated by some $G \in CFG_\Sigma$, then L is called **context free**. The set of all **context-free languages** over Σ is denoted by CFL_Σ .

Remark: obviously,

$$L(G) = \{w \in \Sigma^* \mid S \Rightarrow_l^* w\} = \{w \in \Sigma^* \mid S \Rightarrow_r^* w\}$$

Context-Free Languages

Example 6.4

The grammar $G = \langle N, \Sigma, P, S \rangle \in CFG_{\Sigma}$ over $\Sigma := \{a, b\}$, given by the productions

$$S \rightarrow aSb \mid \varepsilon,$$

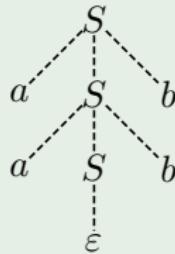
generates the context-free (and non-regular) language

$$L = \{a^n b^n \mid n \in \mathbb{N}\}.$$

The example derivation

$$S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$$

can be represented by the following **syntax tree** for $aabb$:



Remark: the connection between derivations, syntax trees, and generated words is **not unique**

- ① A syntax tree generally represents several derivations.
- ② A derivation can generally be represented by several syntax trees.
- ③ A word can generally be produced by several derivations.
- ④ A word can have several syntax trees.

Example 6.5

on the board

However:

- ① Every syntax tree yields exactly one word
(= concatenation of leafs).
- ② Every syntax tree corresponds to exactly one leftmost derivation,
and vice versa.
- ③ Every syntax tree corresponds to exactly one rightmost derivation,
and vice versa.

Definition 6.6 (Ambiguity)

- A context-free grammar $G \in CFG_{\Sigma}$ is called **unambiguous** if every word $w \in L(G)$ has exactly one syntax tree. Otherwise it is called **ambiguous**.
- A context-free language $L \in CFL_{\Sigma}$ is called **inherently ambiguous** if every grammar $G \in CFG_{\Sigma}$ with $L(G) = L$ is ambiguous.

Example 6.7

on the board

Corollary 6.8

*A grammar $G \in CFG_{\Sigma}$ is unambiguous
iff every word $w \in L(G)$ has exactly one leftmost derivation
iff every word $w \in L(G)$ has exactly one rightmost derivation.*