
Compiler Construction
Lecture 6: Syntactic Analysis I (Introduction)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/


Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntactic analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
Compiler Construction Winter semester 2010/11 2



Outline

1 Problem Statement

2 Context-Free Grammars and Languages

Compiler Construction Winter semester 2010/11 3



Syntactic Structures

From Merriam-Webster’s Online Dictionary

Syntax: the way in which linguistic elements (as words) are put
together to form constituents (as phrases or clauses)

Starting point: sequence of symbols as produced by the scanner
Here: ignore attribute information

Σ (finite) set of tokens (= syntactic atoms; terminals)
(e.g., {id, if, int, . . .})
w ∈ Σ∗ token sequence
(of course, not every w ∈ Σ∗ forms a valid program)

Syntactic units:

atomic: keywords, variable/type/procedure/... identifiers,
numerals, arithmetic/Boolean operators, ...

complex: declarations, arithmetic/Boolean expressions,
statements, ...

Observation: the hierarchical structure of syntactic units can be
described by context-free grammars

Compiler Construction Winter semester 2010/11 4



Syntactic Analysis

Definition 6.1

The goal of syntactic analysis is to determine the syntactic structure of
a program, given by a token sequence, according to a context-free
grammar.

The corresponding program is called a parser:

Scanner Parser Semantic analyzer

Symbol table

(token[,attribute])

get next token

syntax tree

Example: . . . x1 :=y2+ 1 ; . . .

↓ Scanner

. . . (id, p1)(gets, )(id, p2)(plus, )(int, 1)(sem, ) . . .
Parser
−→

Assgn

Var Exp

Sum

Var Const

Compiler Construction Winter semester 2010/11 5



Outline

1 Problem Statement

2 Context-Free Grammars and Languages

Compiler Construction Winter semester 2010/11 6



Context-Free Grammars I

Definition 6.2 (Syntax of context-free grammars)

A context-free grammar (CFG) (over Σ) is a quadruple
G = 〈N,Σ, P, S〉

where

N is a finite set of nonterminal symbols,
Σ is a (finite) alphabet of terminal symbols (disjoint from N),
P is a finite set of production rules of the form A → α where
A ∈ N and α ∈ X∗ for X := N ∪ Σ, and
S ∈ N is a start symbol.

The set of all context-free grammars over Σ is denoted by CFGΣ.

Remarks: as denotations we generally use

A,B,C, . . . ∈ N for nonterminal symbols
a, b, c, . . . ∈ Σ for terminal symbols
u, v,w, . . . ∈ Σ∗ for terminal words
α, β, γ, . . . ∈ X∗ for sentences

Compiler Construction Winter semester 2010/11 7



Context-Free Grammars II

Context-free grammars generate context-free languages:

Definition 6.3 (Semantics of context-free grammars)

Let G = 〈N,Σ, P, S〉 be a context-free grammar.

The derivation relation ⇒ ⊆ X∗ × X∗ of G is defined by
α ⇒ β iff there exist α1, α2 ∈ X∗, A → γ ∈ P

such that α = α1Aα2 and β = α1γα2.
If in addition α1 ∈ Σ∗ or α2 ∈ Σ∗, then we write α ⇒l β or
α ⇒r β, respectively (leftmost/rightmost derivation).
The language generated by G is given by

L(G) := {w ∈ Σ∗ | S ⇒∗ w}.
If a language L ⊆ Σ∗ is generated by some G ∈ CFGΣ, then L is
called context free. The set of all context-free languages over Σ is
denoted by CFLΣ.

Remark: obviously,

L(G) = {w ∈ Σ∗ | S ⇒∗

l w} = {w ∈ Σ∗ | S ⇒∗

r w}

Compiler Construction Winter semester 2010/11 8



Context-Free Languages

Example 6.4

The grammar G = 〈N,Σ, P, S〉 ∈ CFGΣ over Σ := {a, b}, given by the
productions

S → aSb | ε,

generates the context-free (and non-regular) language
L = {anbn | n ∈ N}.

The example derivation
S ⇒ aSb ⇒ aaSbb ⇒ aabb

can be represented by the following syntax tree for aabb:
S

S

S

a

a

b

b

ε

Compiler Construction Winter semester 2010/11 9



Syntax Trees, Derivations, and Words

Remark: the connection between derivations, syntax trees, and
generated words is not unique

1 A syntax tree generally represents several derivations.
2 A derivation can generally be represented by several syntax trees.
3 A word can generally be produced by several derivations.
4 A word can have several syntax trees.

Example 6.5

on the board

However:

1 Every syntax tree yields exactly one word
(= concatenation of leafs).

2 Every syntax tree corresponds to exactly one leftmost derivation,
and vice versa.

3 Every syntax tree corresponds to exactly one rightmost derivation,
and vice versa.

Compiler Construction Winter semester 2010/11 10



(Un-)Ambiguity of CFGs and CFLs

Definition 6.6 (Ambiguity)

A context-free grammar G ∈ CFGΣ is called unambiguous if every
word w ∈ L(G) has exactly one syntax tree. Otherwise it is called
ambiguous.

A context-free language L ∈ CFLΣ is called inherently ambiguous
if every grammar G ∈ CFGΣ with L(G) = L is ambiguous.

Example 6.7

on the board

Corollary 6.8

A grammar G ∈ CFGΣ is unambiguous

iff every word w ∈ L(G) has exactly one leftmost derivation

iff every word w ∈ L(G) has exactly one rightmost derivation.

Compiler Construction Winter semester 2010/11 11


	Problem Statement
	Context-Free Grammars and Languages

