Compiler Construction

Lecture 6: Syntactic Analysis I (Introduction)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

Y
CSyntactic analysis (Parsor)

y
Semantic analysis)

Y
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code)

Target code

Rm Compiler Construction Winter semester 2010/11 2

@ Problem Statement

Rm Compiler Construction nter semester 2010/11

Syntactic Structures

From Merriam-Webster’s Online Dictionary

Syntax: the way in which linguistic elements (as words) are put
together to form constituents (as phrases or clauses)

@ Starting point: sequence of symbols as produced by the scanner
Here: ignore attribute information
o X (finite) set of tokens (= syntactic atoms; terminals)

(e.g., {id,if int,...})
e w € X* token sequence
(of course, not every w € ¥* forms a valid program)

o Syntactic units:
atomic: keywords, variable/type/procedure/... identifiers,
numerals, arithmetic/Boolean operators, ...
complex: declarations, arithmetic/Boolean expressions,
statements, ...
@ Observation: the hierarchical structure of syntactic units can be
described by context-free grammars

m' Compiler Construction Winter semester 2010/11 4

Syntactic Analysis

The goal of syntactic analysis is to determine the syntactic structure of
a program, given by a token sequence, according to a context-free
grammar.

The corresponding program is called a parser:

(token[,attribute])

4 syntax tree -
Scanner) i Pars_er>y—><8emantlc analyzea

et next token &

Y
Symbol table

Assgn
Example: ... x1,:=y2+,1;4,... Va%f \Eg:p
| Scanner Sz;m
. . . Pars
... (id, p1)(gets,) (id, p2) (plus,) (int, 1) (sem,) ... =5 Var Const

m' Compiler Construction Winter semester 2010/11

© Context-Free Grammars and Languages

Rm Compiler Construction nter semester 2010/11

Context-Free Grammars I

Definition 6.2 (Syntax of context-free grammars)

A context-free grammar (CFG) (over X) is a quadruple
G = (N,%,P,S)
where
@ N is a finite set of nonterminal symbols,
@ X is a (finite) alphabet of terminal symbols (disjoint from N),
o P is a finite set of production rules of the form A — « where
AeN and a € X* for X := NUX, and
@ S € N is a start symbol.

The set of all context-free grammars over X is denoted by CFGyx.

Remarks: as denotations we generally use
o A, B,C,... € N for nonterminal symbols

® a,b,c,... € X for terminal symbols
® u,v,w,... € X* for terminal words
o «a,0,7,... € X* for sentences

m Compiler Construction Winter semester 2010/11 7

Context-Free Grammars I1

Context-free grammars generate context-free languages:

Definition 6.3 (Semantics of context-free grammars)

Let G = (N,X, P, S) be a context-free grammar.

@ The derivation relation = C X* x X* of GG is defined by
o = [iff there exist ay,a0 € X*, A — vy € P
such that a = a1 Aas and 8 = agyas.
o If in addition a; € X* or ag € X, then we write o = § or
a =, (3, respectively (leftmost/rightmost derivation).
o The language generated by G is given by
L(G) ={weX*|S="w}
o If a language L C X* is generated by some G € CFGy, then L is
called context free. The set of all context-free languages over ¥ is
denoted by CFLy.

Remark: obviously,

LG) = {we D | S =) wh={we x| S =Fw)

m Compiler Construction Winter semester 2010/11 8

Context-Free Languages

Example 6.4

The grammar G = (N, X, P, S) € CFGy, over X := {a, b}, given by the
productions

S — aSh | ¢,
generates the context-free (and non-regular) language
L ={a"b" |n € N}.
The example derivation
S = aSb = aaSbb = aabb
can be represented by the following syntax tree for aabb:

Compiler Construction Winter semester 2010/11

Syntax Trees, Derivations, and Words

Remark: the connection between derivations, syntax trees, and
generated words is not unique

@ A syntax tree generally represents several derivations.

© A derivation can generally be represented by several syntax trees.
© A word can generally be produced by several derivations.

© A word can have several syntax trees.

on the board l

However:

@ Every syntax tree yields exactly one word
(= concatenation of leafs).

© Every syntax tree corresponds to exactly one leftmost derivation,
and vice versa.

@ Every syntax tree corresponds to exactly one rightmost derivation,
and vice versa.

m' Compiler Construction Winter semester 2010/11 10

(Un-) Ambiguity of CFGs and CFLs

Definition 6.6 (Ambiguity)

o A context-free grammar G € CFGy is called unambiguous if every
word w € L(G) has exactly one syntax tree. Otherwise it is called
ambiguous.

o A context-free language L € CFLy is called inherently ambiguous
if every grammar G € CFGy with L(G) = L is ambiguous.

on the board

A grammar G € CFGyx is unambiguous
iff every word w € L(G) has exactly one leftmost derivation
iff every word w € L(G) has exactly one rightmost derivation.

m Compiler Construction Winter semester 2010/11 11

	Problem Statement
	Context-Free Grammars and Languages

