Compiler Construction

Lecture 7: Syntactic Analysis II (Top-Down Parsing)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11


noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

@ Repetition: Context-Free Grammars and Languages

Rm Compiler Construction ter semester 2010/11



Syntactic Analysis

The goal of syntactic analysis is to determine the syntactic structure of
a program, given by a token sequence, according to a context-free
grammar.

The corresponding program is called a parser:

(token[,attribute])

4 syntax tree -
Scanner ) i Pars_er>y—><8emantlc analyzea

et next token &

Y
Symbol table

Assgn
Example: ... x1,:=y2+,1;4,... Va%f \Eg:p
| Scanner Sz;m
. . . Pars
... (id, p1)(gets, ) (id, p2) (plus, ) (int, 1) (sem, ) ... =5 Var  Const

m' Compiler Construction Winter semester 2010/11



Context-Free Grammars I

Definition (Syntax of context-free grammars)

A context-free grammar (CFG) (over X) is a quadruple
G = (N,%,P,S)
where
@ N is a finite set of nonterminal symbols,
@ X is a (finite) alphabet of terminal symbols (disjoint from N),
o P is a finite set of production rules of the form A — « where
AeN and a € X* for X := NUX, and
@ S € N is a start symbol.

The set of all context-free grammars over X is denoted by CFGyx.

Remarks: as denotations we generally use
o A, B,C,... € N for nonterminal symbols

® a,b,c,... € X for terminal symbols
® u,v,w,... € X* for terminal words
o «a,0,7,... € X* for sentences

m Compiler Construction Winter semester 2010/11



Context-Free Grammars I1

Context-free grammars generate context-free languages:

Definition (Semantics of context-free grammars)

Let G = (N,X, P, S) be a context-free grammar.

@ The derivation relation = C X* x X* of GG is defined by
o = [ iff there exist ay,a0 € X*, A — vy € P
such that a = a1 Aas and 8 = agyas.
o If in addition a; € X* or ag € X, then we write o = § or
a =, (3, respectively (leftmost/rightmost derivation).
o The language generated by G is given by
L(G) ={weX*|S="w}
o If a language L C X* is generated by some G € CFGy, then L is
called context free. The set of all context-free languages over ¥ is
denoted by CFLy.

Remark: obviously,

LG) = {we D | S =) wh={we x| S =Fw)

m Compiler Construction Winter semester 2010/11 5




© Parsing Context-Free Languages

Rm Compiler Construction nter semester 2010/11



The Word Problem for Context-Free Languages

Problem 7.1 (Word problem for context-free languages)

Given G € CFGy, and w € ¥*, decide whether w € L(G)
(and determine a corresponding syntax tree).

This problem is decidable for arbitrary CFGs:

o (for CFGs in Chomsky Normal Form)
Using the tabular method by Cocke, Younger, and Kasami
(“CYK Algorithm”; time complexity O(|w|?) (O(Jw|?)))

@ Using the predecessor method:
w e L(G) < S e pre*({w})

where pre*(M) := {a € X* | a =* (8 for some 3 € M}
(polynomial [non-linear] time complexity)

m' Compiler Construction Winter semester 2010/11 7



Parsing Context-Free Languages

Goal: exploit the special syntactic structures as present in
programming languages (usually: no ambiguities) to devise parsing
methods which are based on deterministic pushdown automata with
linear space and time complexity

Two approaches:

Top-down parsing: construction of syntax tree from the root towards
the leafs, representation as leftmost derivation

Bottom-up parsing: construction of syntax tree from the leafs towards
the root, representation as (reversed) rightmost derivation

Rm Compiler Construction Winter semester 2010/11 8



Leftmost /Rightmost Analysis I

Goal: compact representation of left-/rightmost derivations by index
sequences

Definition 7.2 (Leftmost /rightmost analysis)
Let G = (N,X, P,S) € CFGx, where P = {my,...,mp}.
olficp, m=A4A—~v weX* and a € X*, then we write

wAa =, wya  and  cAw =, ayw.
o If z =14y ...i, € [p]*, we write a = 3 if there exist
ag, ..., € X* such that ag = o, a, = 3, and a1 gl a; for
every j € [n] (analogously for = ).
@ An index sequence z € [p]* is called a leftmost analysis (rightmost
analysis) of a if S 2 a (S 2, a), respectively.

m Compiler Construction Winter semester 2010/11 9



Leftmost /Rightmost Analysis

Example 7.3

Grammar for arithmetic expressions:
Gag: E— E+T|T (1,2)
T —TxF | F (3,4)
F— (E)|a|b (5,6,
Leftmost derivation of (a)*b:
E 2, T & TxF 2, FxF
2, (D*F 2, (PxF 2
—> leftmost analysis: 23452467

Rightmost derivation of (a)*b:
E 2, T £ T«F

2, (B 2, (T)sb
—> rightmost analysis: 23745246

Compiler Construction Winter semester 2010/11 10



Reducedness of Context-Free Grammars

General assumption in the following: every grammar is reduced

Definition 7.4 (Reduced CFG)

A grammar G = (N, X, P,S) € CFGy is called reduced if for every
A € N there exist o, 8 € X* and w € ¥* such that

S =*aApB (A reachable) and
A=>*w (A productive).

m' Compiler Construction Winter semester 2010/11 11



© Nondeterministic Top-Down Parsing

Rm Compiler Construction nter semester 2010/11 12



Top-Down Parsing

Approach:

@ Given G € CFGy, construct a nondeterministic pushdown
automaton (PDA) which accepts L(G) and which additionally
computes corresponding leftmost derivations (similar to the proof
of “L(CFGyx) C L(PDAy)”)

input alphabet: X

pushdown alphabet: X

output alphabet: [p]

state set: omitted

¢ © ¢ ¢

© Remove nondeterminism by allowing lookahead on the input:
G € LL(k) iff L(G) recognizable by deterministic PDA with
lookahead of k symbols

m' Compiler Construction Winter semester 2010/11 13



The Nondeterministic Top-Down Automaton 1

Definition 7.5 (Nondeterministic top-down parsing automaton)

Let G = (N,X, P,S) € CFGyx. The nondeterministic top-down parsing
automaton of G, NTA(G), is defined by the following components.
o Input alphabet: X
o Pushdown alphabet: X
@ Output alphabet: [p]
e Configurations: ¥* x X* x [p]* (top of pushdown to the left)
e Transitions for w € ¥*, a € X*, and z € [p]*:
expansion steps: if 1; = A — (3, then (w, A, 2) - (w, Ba, z1)
matching steps: for every a € ¥, (aw, aa, 2) - (w, a, 2)

@ Initial configuration for w € ¥*: (w, S, ¢)

e Final configurations: {e} x {e} x [p]*

Remark: NTA(G) is nondeterministic iff G contains A — 3 | v

m Compiler Construction Winter semester 2010/11 14




The Nondeterministic Top-Down Automaton 11

Example 7.6

S
N

Grammar for Leftmost analysis of (a)*b:
arithmetic expressions ((@)*b, F , €
(cf. Example 7.3): (a)*b, T , 2

< |
Gap:E — E+T|T  (1,2) ((@)*b, T*F | 23 )
T — T*F | F (3,4) ((@)*b, FxF | 234 )

F— (E)|a|b (56,7) ((2)#b, (E)+F, 2345 )
(a)*b, E)*F , 2345 )

((a)*b, T)*F , 23452 )
((a)xb, F)*F , 234524 )
((2)*b, a)*F |, 2345246 )
()b, )xF 2345246 )
( *b,xF 2345246 )
( b F 2345246 )
( bbb , 23452467)
e , 23452467)

T T T T T T T T T T T T T

4

Compiler Construction Winter semester 2010/11 15



The Nondeterministic Top-Down Automaton III

Theorem 7.7 (Correctness of NTA(G))

Let G = (N,X, P,S) € CFGyx, and NTA(G) as before. Then, for every
w € X* and z € [p*,

(w,S,e) F* (e,6,2) iff =z is a leftmost analysis of w

— (soundness): see exercises

<= (completeness): on the board

m Compiler Construction Winter semester 2010/11 16



	Repetition: Context-Free Grammars and Languages
	Parsing Context-Free Languages
	Nondeterministic Top-Down Parsing

