Compiler Construction

Lecture 8: Syntactic Analysis III (LL(k) Grammars)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Q Repetition: Nondeterministic Top-Down Parsing

Rm Compiler Construction nter semester 2010/11

Top-Down Parsing

Approach:

@ Given G € CFGy, construct a nondeterministic pushdown
automaton (PDA) which accepts L(G) and which additionally
computes corresponding leftmost derivations (similar to the proof
of “L(CFGyx) C L(PDAy)”)

input alphabet: X

pushdown alphabet: X

output alphabet: [p]

state set: omitted

¢ © ¢ ¢

© Remove nondeterminism by allowing lookahead on the input:
G € LL(k) iff L(G) recognizable by deterministic PDA with
lookahead of k symbols

m' Compiler Construction Winter semester 2010/11 3

The Nondeterministic Top-Down Automaton 1

Definition (Nondeterministic top-down parsing automaton)

Let G = (N,X, P,S) € CFGyx. The nondeterministic top-down parsing
automaton of G, NTA(G), is defined by the following components.
o Input alphabet: X
o Pushdown alphabet: X
@ Output alphabet: [p]
e Configurations: ¥* x X* x [p]* (top of pushdown to the left)
e Transitions for w € ¥*, a € X*, and z € [p]*:
expansion steps: if 1; = A — (3, then (w, A, 2) - (w, Ba, z1)
matching steps: for every a € ¥, (aw, aa, 2) - (w, a, 2)

@ Initial configuration for w € ¥*: (w, S, ¢)

e Final configurations: {e} x {e} x [p]*

Remark: NTA(G) is nondeterministic iff G contains A — 3 | v

m Compiler Construction Winter semester 2010/11 4

The Nondeterministic Top-Down Automaton 11

Theorem (Correctness of NTA(G))

Let G = (N,X, P,S) € CFGyx, and NTA(G) as before. Then, for every
w € X* and z € [p*,

(w,S,e) F* (e,e,2) iff =z is a leftmost analysis of w

= (soundness): see exercises

<= (completeness): on the board

m Compiler Construction Winter semester 2010/11 5

© Adding Lookahead

Rm Compiler Construction ter semester 2010/11

Adding Lookahead

Goal: resolve nondeterminism of NTA(G) by supporting lookahead of
k € N symbols on the input
— determination of expanding A-production by next k symbols

Rm Compiler Construction Winter semester 2010/11 7

Adding Lookahead

Goal: resolve nondeterminism of NTA(G) by supporting lookahead of
k € N symbols on the input
— determination of expanding A-production by next k symbols

Definition 8.1 (firsty set)

Let G =(N,X,P,S) € CFGx, a € X*, and k € N. Then the first;, set
of a, firsty () C ¥*, is given by
first, (o) := {v € ¥ | ex. w € ¥* such that a =* vw} U
{vex<k|a=*v}

m' Compiler Construction Winter semester 2010/11 7

Adding Lookahead

Goal: resolve nondeterminism of NTA(G) by supporting lookahead of
k € N symbols on the input
— determination of expanding A-production by next k symbols

Definition 8.1 (firsty set)

Let G =(N,X,P,S) € CFGx, a € X*, and k € N. Then the first;, set
of a, firsty () C ¥*, is given by
first, (o) := {v € ¥ | ex. w € ¥* such that a =* vw} U
{vex<k|a=*v}

Remark: firsty(«) is effectively computable

m' Compiler Construction Winter semester 2010/11 7

Adding Lookahead

Goal: resolve nondeterminism of NTA(G) by supporting lookahead of
k € N symbols on the input
— determination of expanding A-production by next k symbols

Definition 8.1 (firsty set)

Let G=(N,X,P,S) € CFGx, a € X*, and k € N. Then the first; set
of a, firsty(a) C X*, is given by
first, (o) := {v € ¥ | ex. w € ¥* such that a =* vw} U
{vex<k|a=*v}

Remark: firsty(«) is effectively computable

Example 8.2 (firsty set)

Let G: S — aSh | e.
Q firsty(ab) = {a} = firsty(a)

m Compiler Construction Winter semester 2010/11 7

Adding Lookahead

Goal: resolve nondeterminism of NTA(G) by supporting lookahead of
k € N symbols on the input
— determination of expanding A-production by next k symbols

Definition 8.1 (firsty set)

Let G=(N,X,P,S) € CFGx, a € X*, and k € N. Then the first; set
of a, firsty(a) C X*, is given by
first, (o) := {v € ¥ | ex. w € ¥* such that a =* vw} U
{vex<k|a=*v}

Remark: firsty(«) is effectively computable

Example 8.2 (first, set)

Let G: S — aSh | e.
Q firsty(ab) = {a} = firsty(a)
Q first3(S) = {e, ab, aab, aaa}

m Compiler Construction Winter semester 2010/11 7

Adding Lookahead

Goal: resolve nondeterminism of NTA(G) by supporting lookahead of
k € N symbols on the input
— determination of expanding A-production by next k symbols

Definition 8.1 (firsty set)

Let G=(N,X,P,S) € CFGx, a € X*, and k € N. Then the first; set
of a, firsty(a) C X*, is given by
first, (o) := {v € ¥ | ex. w € ¥* such that a =* vw} U
{vex<k|a=*v}

Remark: firsty(«) is effectively computable

Example 8.2 (first, set)

Let G: S — aSh | e.
Q firsty(ab) = {a} = firsty(a)
Q first3(S) = {e, ab, aab, aaa}
Q firsts(Sa) = {a,aba,aad,aaa}

m Compiler Construction Winter semester 2010/11 7

© LL(k) Grammars

Rm Compiler Construction ter semester 2010/11

LL(k) Grammars I

LL(k): reading of input from left to right with k-lookahead, computing
a leftmost analysis

Rm Compiler Construction Winter semester 2010/11 9

LL(k) Grammars I

LL(k): reading of input from left to right with k-lookahead, computing
a leftmost analysis

Definition 8.3 (LL(k) grammar)

Let G = (N,X%,P,S) € CFGyx, and k € N. Then G has the LL(k)
property (notation: G € LL(k)) if for all leftmost derivations of the

form
= wha =] wx

*
S =] wAa {:>l wya =] wy

such that [# v, it follows that firsty(z) # firstx(y)
(i.e., different productions must not yield the same lookahead).

m Compiler Construction Winter semester 2010/11 9

LL(k) Grammars II

Remarks:
o If G € LL(k), then the leftmost derivation step for wA« in

= wha =] wx

§ =i wda {=>l wyo =7 wy

is determined by the next k£ symbols following w.

Rm Compiler Construction Winter semester 2010/11

LL(k) Grammars II

Remarks:
o If G € LL(k), then the leftmost derivation step for wA« in

= wha =] wx

§ =i wda {=>l wyo =7 wy

is determined by the next k£ symbols following w.
o Corresponding computations of NTA(G):
(*)
(wz, S,e) H* (z,Aq,2) F (z,Ba,zi) F* (e,,2i2)
(%)
(wy,S,e) H* (y,Aa,2) F (y,va,zj) F* (g,6,252")
where 7, = A — fand m; = A — v

@ Deterministic decision in (x) possible if firsty(z) # firstg(y)

Rm Compiler Construction Winter semester 2010/11

LL(k) Grammars II

Remarks:
o If G € LL(k), then the leftmost derivation step for wA« in

= wha =] wx

§ =i wda {=>l wyo =7 wy

is determined by the next k£ symbols following w.
o Corresponding computations of NTA(G):
(%)
(wz, S,e) H* (z,Aq,2) F (z,Ba,zi) F* (e,,2i2)
(%)
(wy,S,e) H* (y,Aa,2) F (y,va,zj) F* (g,6,252")
where 7, = A — fand m; = A — v
@ Deterministic decision in (x) possible if firsty(z) # firstg(y)

o Problem: how to determine the A-production from the lookahead
(potentially infinitely many derivations fa =] = / ya =] y)?

Rm Compiler Construction Winter semester 2010/11 10

LL(k) Grammars III

Lemma 8.4 (Characterization of LL(k))

G € LL(k) iff for all leftmost derivations of the form

= wha

*
S =] wAa{ Dt

such that 3 # =, it follows that firsty(Ba) N firstg (ya) = 0.

m' Compiler Construction Winter semester 2010/11

LL(k) Grammars III

Lemma 8.4 (Characterization of LL(k))

G € LL(k) iff for all leftmost derivations of the form

= wha

*
S =] fwAa{ Gt

such that 3 # =, it follows that firsty(Ba) N firstg (ya) = 0.

omitted

m Compiler Construction Winter semester 2010/11 11

LL(k) Grammars III

Lemma 8.4 (Characterization of LL(k))
G € LL(k) iff for all leftmost derivations of the form

= wha

*
S =] fwAa{ Gt

such that 3 # =, it follows that firsty(Ba) N firstg (ya) = 0.

omitted

Remarks:
o If G € LL(k), then the A-production is determined by the
lookahead sets firsty(Ba) (for every A — B € P).
o Problem: still infinitely many right contexts a to be considered
(if B8 [or 7] “too short”, i.e., firsty(Ba) # firsti(3)).

o Idea: « derives to “everything that follows A”
m Compiler Construction Winter semester 2010/11 11

© Follow Sets

Rm Compiler Construction nter semester 2010/11 12

The follow, Sets

Goal: determine all possible lookaheads from production alone
(by combining all possible right contexts)

Rm Compiler Construction Winter semester 2010/11 13

The follow; Sets

Goal: determine all possible lookaheads from production alone
(by combining all possible right contexts)

Definition 8.5 (followy, set)

Let G=(N,X,P,S) € CFGx, A€ N, and k € N. Then the follow, set
of A, followy(A) C ¥*, is given by

followy, (A) := {v € firsty(a) | ex. w € £*,a € X* such that S = wAa}.

m' Compiler Construction Winter semester 2010/11 13

© LL(1) Grammars

Rm Compiler Construction ter semester 2010/11 14

The Case k=1

Motivation:

o k = 1 sufficient to resolve nondeterminism in “most” practical
applications

o Implementation of LL(k) parsers for k > 1 rather involved
(cf. ANTLR [ANother Tool for Language Recognition; formerly
PCCTS] at http://www.antlr.org/)

m' Compiler Construction Winter semester 2010/11 15

http://www.antlr.org/

The Case k=1

Motivation:
o k = 1 sufficient to resolve nondeterminism in “most” practical
applications
o Implementation of LL(k) parsers for k > 1 rather involved
(cf. ANTLR [ANother Tool for Language Recognition; formerly
PCCTS] at http://www.antlr.org/)

Abbreviations: fi := firsty, fo := followy, X, := X U {¢}

Q@ For every a € X*,
fila)={aeX|ex.weXl:a=aw}U{e|a=>"ec} C X,

@ For every A€ N,
fo(A) ={zr efi(a) | ex. w € ¥*,a0 € X*: § =] wAa} C Z..

m Compiler Construction Winter semester 2010/11 15

http://www.antlr.org/

Lookahead Sets

Definition 8.7 (Lookahead set)

GivenTt=A—> g€ P,
la(7) :=fi(5 - fo(A)) C 3

is called the lookahead set of m (where fi(I') := U, fi(7))-

m' Compiler Construction Winter semester 2010/11 16

Lookahead Sets

Definition 8.7 (Lookahead set)

GivenTt=A—> g€ P,
la(m) :=fi(8 - fo(A4)) C X,

is called the lookahead set of m (where fi(I') := U, fi(7))-

Corollary 8.8

Q Forallack,
a€la(A— pB) iffaefi(B) or (B="¢ and a € fo(A))

Qccla(A—0) iff 6="¢c and e € fo(A)

m Compiler Construction Winter semester 2010/11 16

Characterization of LL(1)

Theorem 8.9 (Characterization of LL(1))

G € LL(1) iff for all pairs of rules A — (|~ € P (where 3 # v):

la(A — B)Nla(A — v) = 0.

m' Compiler Construction Winter semester 2010/11 17

Characterization of LL(1)

Theorem 8.9 (Characterization of LL(1))

G € LL(1) iff for all pairs of rules A — (|~ € P (where 3 # v):

la(A — B)Nla(A — v) = 0.

on the board O

m' Compiler Construction Winter semester 2010/11 17

Characterization of LL(1)

Theorem 8.9 (Characterization of LL(1))
G € LL(1) iff for all pairs of rules A — (|~ € P (where 3 # v):

la(A — B)Nla(A — v) = 0.

on the board O

Remark: the above theorem generally does not hold if £ > 1
(cf. exercises)

m' Compiler Construction Winter semester 2010/11 17

© Computing Lookahead Sets

Rm Compiler Construction ter semester 2010/11 18

Computing Lookahead Sets I

(see Waite/Goos: Compiler Construction, p. 164f)

Lemma 8.10 (Computation of fi/fo)

The sets fi(a) C 3¢ (for a € X*) and fo(A) C X, (for A € N) are the
least sets such that:
Q fi(Y) forY € X:
2 Ye¥ = fi(Y)={Y}
oY - A ... AyZae PkeN, Z e X,e efi(Ar)N...Nfi(Ag),
a€fi(Z) = acfi(Y)
oY -5 A ... Ay e PkeNeefi(A)N...Nnfi(4dy) = e €fi(Y)

m Compiler Construction Winter semester 2010/11 19

Computing Lookahead Sets I

(see Waite/Goos: Compiler Construction, p. 164f)

Lemma 8.10 (Computation of fi/fo)

The sets fi(a) C 3¢ (for a € X*) and fo(A) C X, (for A € N) are the
least sets such that:
Q fi(Y) forY € X:

2 Ye¥ = fi(Y)={Y}

oY - A ... AyZae PkeN, Z e X,e efi(Ar)N...Nfi(Ag),

a€fi(Z) = acfi(Y)

oY -5 A ... Ay e PkeNeefi(A)N...Nnfi(4dy) = e €fi(Y)
Q fi(y1...Y,) forneNY, € X:

o ecfiVy...Yi1),a€fiY),k€n] = acfiyr...Y,)

9 EEﬁ(Yl)ﬁ...mﬁ(Yn) — EEﬁ(Ylyn)

m Compiler Construction Winter semester 2010/11 19

Computing Lookahead Sets I

(see Waite/Goos: Compiler Construction, p. 164f)

Lemma 8.10 (Computation of fi/fo)

The sets fi(a) C 3¢ (for a € X*) and fo(A) C X, (for A € N) are the
least sets such that:
Q fi(Y) forY € X:

2 Ye¥ = fi(Y)={Y}

oY - A ... AyZae PkeN, Z e X,e efi(Ar)N...Nfi(Ag),

a€fi(Z) = acfi(Y)

oY -5 A ... Ay e PkeNeefi(A)N...Nnfi(4dy) = e €fi(Y)
Q fi(y1...Y,) forneNY, € X:

o ecfiVy...Yi1),a€fiY),k€n] = acfiyr...Y,)

9 EEﬁ(Yl)ﬁ...mﬁ(Yn) — EEﬁ(Ylyn)
Q fo(A) for Ae N:

2 ¢ € fo(9)

o A—aBf e Pacfi(f) = acfo(B)

o A— aBf € Pecfi(ff),z € fo(Ad) = z € fo(B)

m Compiler Construction Winter semester 2010/11 19

Computing Lookahead Sets 11

Corollary 8.11

Q A—ane P = acfi(4b)

Q@ A— BaePacfiB) = acfi(d)
Q@ A—-ceP = ccfi(d)

Q fi(e) = {e}

Q acfi(d) = acfi(Aa)

Q A—aBePxcfo(d) = z€fo(B)

m Compiler Construction Winter semester 2010/11 20

Computing Lookahead Sets 11

Corollary 8.11

Q A—ane P = acfi(4b)

Q@ A— BaePacfiB) = acfi(d)
QO A—eceP = cefi(A)

Q fi(e) = {e}

Q aefi(Ad) = acfi(da)

Q A—aBePxcfo(d) = z€fo(B)

Example 8.12

Grammar for
arithmetic
expressions
(cf. Example 7.3):
Gap: E— E+T|T
T — TxF | F
F — (E)|al|b

| A\

m Compiler Construction Winter semester 2010/11 20

Computing Lookahead Sets 11

Corollary 8.11

Q A—ane P = acfi(4l)

Q@ A— BaePacfiB) = acfi(d)
QO A—eceP = cefi(A)

Q fi(e) = {e}

Q aefi(Ad) = acfi(da)

QO A—aBePuzxcfo(d) = zcfo(B)

Example 8.12

Grammar for o F5aecP = acfi(F)
arithmetic
expressions
(cf. Example 7.3):
Gag: F — E+T | T
T — TxF | F
F — (E)|al|b

| A\

m Compiler Construction Winter semester 2010/11 20

Computing Lookahead Sets 11

Corollary 8.11

Q A—ane P = acfi(4b)

Q@ A— BaePacfiB) = acfi(d)
QO A—eceP = cefi(A)

Q fi(e) = {e}

Q aefi(Ad) = acfi(da)

Q A—aBePxcfo(d) = z€fo(B)

Example 8.12

| A\

Grammar for o F—waeP = acfi(F)
arithmetic o T - FePacfiF) = acfi(T)
expressions

(cf. Example 7.3):

Gap: E— E+T|T
T — T+F | F
F— (E)]|al|b

m Compiler Construction Winter semester 2010/11 20

Computing Lookahead Sets 11

Corollary 8.11

Q A—ane P = acfi(4b)

Q@ A— BaePacfiB) = acfi(d)
QO A—eceP = cefi(A)

Q fi(e) = {e}

Q aefi(Ad) = acfi(da)

Q A—aBePxcfo(d) = z€fo(B)

Example 8.12

| A\

Grammar for o F5aecP = acfi(F)
arithmetic o T - FePacfiF) = acfi(T)
expressions e acfi(T)
(cf. Example 7.3): = la(T — T*F) = fi(T*F -fo(T)) > a
Gag: F — E+T | T
T — TxF ‘ F
F— (E)|a|b

m Compiler Construction Winter semester 2010/11 20

Computing Lookahead Sets 11

Corollary 8.11

Q A—ane P = acfi(4b)

Q@ A— BaePacfiB) = acfi(d)
QO A—eceP = cefi(A)

Q fi(e) = {e}

Q aefi(Ad) = acfi(da)

Q A—aBePxcfo(d) = z€fo(B)

| A\

Example 8.12

Grammar for

©

F—-aceP = acfi(F)

arithmetic o T - FePacfi(F) = acfi(T)
expressions e acfi(T)
(cf. Example 7.3): = la(T — T*F) = fi(T*F -fo(T)) > a
Gag : E—>E+T|T anﬁ(F)
T — TxF | F = la(T' — F) =fi(F -fo(T)) > a

F— (E)|al|b

m Compiler Construction Winter semester 2010/11 20

Computing Lookahead Sets 11

Corollary 8.11

Q A—ane P = acfi(4b)

Q@ A— BaePacfiB) = acfi(d)
QO A—eceP = cefi(A)

Q fi(e) = {e}

Q aefi(Ad) = acfi(da)

Q A—aBePxcfo(d) = z€fo(B)

| A\

Example 8.12

Grammar for

©

F—-aceP = acfi(F)

arithmetic o T - FePacfi(F) = acfi(T)
expressions e acfi(T)
(cf. Example 7.3): = la(T — T*F) = fi(T*F -fo(T)) > a
Gag : E—>E+T|T anﬁ(F)
T — TxF | F = la(T — F) =fi(F -fo(T)) > a

F— (E)|alb o = acla(T - T*F)Nla(T — F) # 0

m Compiler Construction Winter semester 2010/11 20

Computing Lookahead Sets 11

Corollary 8.11

Q A—ane P = acfi(4b)

Q@ A— BaePacfiB) = acfi(d)
QO A—eceP = cefi(A)

Q fi(e) = {e}

Q aefi(Ad) = acfi(da)

Q A—aBePxcfo(d) = z€fo(B)

| A\

Example 8.12

Grammar for

©

F—-aceP = acfi(F)

arithmetic o T - FePacfi(F) = acfi(T)
expressions e acfi(T)
(cf. Example 7.3): = la(T — T*F) = fi(T*F -fo(T)) > a
Gag : E—>E+T|T anﬁ(F)
T — TxF | F = la(T' — F) =fi(F -fo(T)) > a

F— (E)|alb o = acla(T - T*F)Nla(T — F) # 0
o = Gap ¢ LL(1)

m Compiler Construction Winter semester 2010/11 20

	Repetition: Nondeterministic Top-Down Parsing
	Adding Lookahead
	LL(k) Grammars
	Follow Sets
	LL(1) Grammars
	Computing Lookahead Sets

