
Compiler Construction

Lecture 8: Syntactic Analysis III (LL(k) Grammars)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Outline

1 Repetition: Nondeterministic Top-Down Parsing

2 Adding Lookahead

3 LL(k) Grammars

4 Follow Sets

5 LL(1) Grammars

6 Computing Lookahead Sets

Compiler Construction Winter semester 2010/11 2

Top-Down Parsing

Approach:
1 Given G ∈ CFGΣ, construct a nondeterministic pushdown

automaton (PDA) which accepts L(G) and which additionally
computes corresponding leftmost derivations (similar to the proof
of “L(CFGΣ) ⊆ L(PDAΣ)”)

input alphabet: Σ
pushdown alphabet: X
output alphabet: [p]
state set: omitted

2 Remove nondeterminism by allowing lookahead on the input:
G ∈ LL(k) iff L(G) recognizable by deterministic PDA with
lookahead of k symbols

Compiler Construction Winter semester 2010/11 3

The Nondeterministic Top-Down Automaton I

Definition (Nondeterministic top-down parsing automaton)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ. The nondeterministic top-down parsing
automaton of G, NTA(G), is defined by the following components.

Input alphabet: Σ

Pushdown alphabet: X

Output alphabet: [p]

Configurations: Σ∗ × X∗ × [p]∗ (top of pushdown to the left)

Transitions for w ∈ Σ∗, α ∈ X∗, and z ∈ [p]∗:

expansion steps: if πi = A → β, then (w,Aα, z) ` (w, βα, zi)
matching steps: for every a ∈ Σ, (aw, aα, z) ` (w,α, z)

Initial configuration for w ∈ Σ∗: (w,S, ε)

Final configurations: {ε} × {ε} × [p]∗

Remark: NTA(G) is nondeterministic iff G contains A → β | γ

Compiler Construction Winter semester 2010/11 4

The Nondeterministic Top-Down Automaton II

Theorem (Correctness of NTA(G))

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ and NTA(G) as before. Then, for every
w ∈ Σ∗ and z ∈ [p]∗,

(w,S, ε) `∗ (ε, ε, z) iff z is a leftmost analysis of w

Proof.

=⇒ (soundness): see exercises

⇐= (completeness): on the board

Compiler Construction Winter semester 2010/11 5

Outline

1 Repetition: Nondeterministic Top-Down Parsing

2 Adding Lookahead

3 LL(k) Grammars

4 Follow Sets

5 LL(1) Grammars

6 Computing Lookahead Sets

Compiler Construction Winter semester 2010/11 6

Adding Lookahead

Goal: resolve nondeterminism of NTA(G) by supporting lookahead of
k ∈ N symbols on the input
=⇒ determination of expanding A-production by next k symbols

Definition 8.1 (firstk set)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ, α ∈ X∗, and k ∈ N. Then the firstk set
of α, firstk(α) ⊆ Σ∗, is given by

firstk(α) := {v ∈ Σk | ex. w ∈ Σ∗ such that α ⇒∗ vw} ∪
{v ∈ Σ<k | α ⇒∗ v}

Remark: firstk(α) is effectively computable

Example 8.2 (firstk set)

Let G : S → aSb | ε.

1 first1(ab) = {a} = first2(a)

2 first3(S) = {ε, ab, aab, aaa}

3 first3(Sa) = {a, aba, aab, aaa}

Compiler Construction Winter semester 2010/11 7

Outline

1 Repetition: Nondeterministic Top-Down Parsing

2 Adding Lookahead

3 LL(k) Grammars

4 Follow Sets

5 LL(1) Grammars

6 Computing Lookahead Sets

Compiler Construction Winter semester 2010/11 8

LL(k) Grammars I

LL(k): reading of input from left to right with k-lookahead, computing
a leftmost analysis

Definition 8.3 (LL(k) grammar)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ and k ∈ N. Then G has the LL(k)
property (notation: G ∈ LL(k)) if for all leftmost derivations of the
form

S ⇒∗

l wAα

{

⇒l wβα ⇒∗

l wx
⇒l wγα ⇒∗

l wy

such that β 6= γ, it follows that firstk(x) 6= firstk(y)
(i.e., different productions must not yield the same lookahead).

Compiler Construction Winter semester 2010/11 9

LL(k) Grammars II

Remarks:

If G ∈ LL(k), then the leftmost derivation step for wAα in

S ⇒∗

l wAα

{

⇒l wβα ⇒∗

l wx
⇒l wγα ⇒∗

l wy

is determined by the next k symbols following w.

Corresponding computations of NTA(G):

(wx, S, ε) `∗ (x,Aα, z)
(∗)

` (x, βα, zi) `∗ (ε, ε, ziz′)

(wy, S, ε) `∗ (y,Aα, z)
(∗)

` (y, γα, zj) `∗ (ε, ε, zjz′′)

where πi = A → β and πj = A → γ

Deterministic decision in (∗) possible if firstk(x) 6= firstk(y)

Problem: how to determine the A-production from the lookahead
(potentially infinitely many derivations βα ⇒∗

l x / γα ⇒∗

l y)?

Compiler Construction Winter semester 2010/11 10

LL(k) Grammars III

Lemma 8.4 (Characterization of LL(k))

G ∈ LL(k) iff for all leftmost derivations of the form

S ⇒∗

l wAα

{

⇒l wβα
⇒l wγα

such that β 6= γ, it follows that firstk(βα) ∩ firstk(γα) = ∅.

Proof.

omitted

Remarks:

If G ∈ LL(k), then the A-production is determined by the
lookahead sets firstk(βα) (for every A → β ∈ P).
Problem: still infinitely many right contexts α to be considered
(if β [or γ] “too short”, i.e., firstk(βα) 6= firstk(β)).
Idea: α derives to “everything that follows A”

Compiler Construction Winter semester 2010/11 11

Outline

1 Repetition: Nondeterministic Top-Down Parsing

2 Adding Lookahead

3 LL(k) Grammars

4 Follow Sets

5 LL(1) Grammars

6 Computing Lookahead Sets

Compiler Construction Winter semester 2010/11 12

The followk Sets

Goal: determine all possible lookaheads from production alone
(by combining all possible right contexts)

Definition 8.5 (followk set)

Let G = 〈N,Σ, P, S〉 ∈ CFGΣ, A ∈ N , and k ∈ N. Then the followk set
of A, followk(A) ⊆ Σ∗, is given by

followk(A) := {v ∈ firstk(α) | ex. w ∈ Σ∗, α ∈ X∗ such that S ⇒∗

l wAα}.

Compiler Construction Winter semester 2010/11 13

Outline

1 Repetition: Nondeterministic Top-Down Parsing

2 Adding Lookahead

3 LL(k) Grammars

4 Follow Sets

5 LL(1) Grammars

6 Computing Lookahead Sets

Compiler Construction Winter semester 2010/11 14

The Case k = 1

Motivation:

k = 1 sufficient to resolve nondeterminism in “most” practical
applications
Implementation of LL(k) parsers for k > 1 rather involved
(cf. ANTLR [ANother Tool for Language Recognition; formerly
PCCTS] at http://www.antlr.org/)

Abbreviations: fi := first1, fo := follow1, Σε := Σ ∪ {ε}

Corollary 8.6

1 For every α ∈ X∗,
fi(α) = {a ∈ Σ | ex. w ∈ Σ∗ : α ⇒∗ aw} ∪ {ε | α ⇒∗ ε} ⊆ Σε

2 For every A ∈ N ,
fo(A) = {x ∈ fi(α) | ex. w ∈ Σ∗, α ∈ X∗ : S ⇒∗

l wAα} ⊆ Σε.

Compiler Construction Winter semester 2010/11 15

http://www.antlr.org/

Lookahead Sets

Definition 8.7 (Lookahead set)

Given π = A → β ∈ P ,

la(π) := fi(β · fo(A)) ⊆ Σε

is called the lookahead set of π (where fi(Γ) :=
⋃

γ∈Γ fi(γ)).

Corollary 8.8
1 For all a ∈ Σ,

a ∈ la(A → β) iff a ∈ fi(β) or (β ⇒∗ ε and a ∈ fo(A))

2 ε ∈ la(A → β) iff β ⇒∗ ε and ε ∈ fo(A)

Compiler Construction Winter semester 2010/11 16

Characterization of LL(1)

Theorem 8.9 (Characterization of LL(1))

G ∈ LL(1) iff for all pairs of rules A → β | γ ∈ P (where β 6= γ):

la(A → β) ∩ la(A → γ) = ∅.

Proof.

on the board

Remark: the above theorem generally does not hold if k > 1
(cf. exercises)

Compiler Construction Winter semester 2010/11 17

Outline

1 Repetition: Nondeterministic Top-Down Parsing

2 Adding Lookahead

3 LL(k) Grammars

4 Follow Sets

5 LL(1) Grammars

6 Computing Lookahead Sets

Compiler Construction Winter semester 2010/11 18

Computing Lookahead Sets I

(see Waite/Goos: Compiler Construction, p. 164f)

Lemma 8.10 (Computation of fi/fo)

The sets fi(α) ⊆ Σε (for α ∈ X∗) and fo(A) ⊆ Σε (for A ∈ N) are the
least sets such that:

1 fi(Y) for Y ∈ X:

Y ∈ Σ =⇒ fi(Y) = {Y }
Y → A1 . . . AkZα ∈ P, k ∈ N, Z ∈ X, ε ∈ fi(A1) ∩ . . . ∩ fi(Ak),
a ∈ fi(Z) =⇒ a ∈ fi(Y)
Y → A1 . . . Ak ∈ P, k ∈ N, ε ∈ fi(A1) ∩ . . . ∩ fi(Ak) =⇒ ε ∈ fi(Y)

2 fi(Y1 . . . Yn) for n ∈ N, Yi ∈ X:

ε ∈ fi(Y1 . . . Yk−1), a ∈ fi(Yk), k ∈ [n] =⇒ a ∈ fi(Y1 . . . Yn)
ε ∈ fi(Y1) ∩ . . . ∩ fi(Yn) =⇒ ε ∈ fi(Y1 . . . Yn)

3 fo(A) for A ∈ N :

ε ∈ fo(S)
A → αBβ ∈ P, a ∈ fi(β) =⇒ a ∈ fo(B)
A → αBβ ∈ P, ε ∈ fi(β), x ∈ fo(A) =⇒ x ∈ fo(B)

Compiler Construction Winter semester 2010/11 19

Computing Lookahead Sets II

Corollary 8.11

1 A → aα ∈ P =⇒ a ∈ fi(A)
2 A → Bα ∈ P, a ∈ fi(B) =⇒ a ∈ fi(A)
3 A → ε ∈ P =⇒ ε ∈ fi(A)
4 fi(ε) = {ε}
5 a ∈ fi(A) =⇒ a ∈ fi(Aα)
6 A → αB ∈ P, x ∈ fo(A) =⇒ x ∈ fo(B)

Example 8.12

Grammar for
arithmetic
expressions
(cf. Example 7.3):

GAE : E → E+T | T
T → T*F | F
F → (E) | a | b

F → a ∈ P =⇒ a ∈ fi(F)
T → F ∈ P, a ∈ fi(F) =⇒ a ∈ fi(T)
a ∈ fi(T)
=⇒ la(T → T*F) = fi(T*F · fo(T)) 3 a

a ∈ fi(F)
=⇒ la(T → F) = fi(F · fo(T)) 3 a

=⇒ a ∈ la(T → T*F) ∩ la(T → F) 6= ∅
=⇒ GAE /∈ LL(1)

Compiler Construction Winter semester 2010/11 20

	Repetition: Nondeterministic Top-Down Parsing
	Adding Lookahead
	LL(k) Grammars
	Follow Sets
	LL(1) Grammars
	Computing Lookahead Sets

