Compiler Construction

Lecture 9: Syntactic Analysis IV
(LL(1) Parsing)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

© Repetition: LL(1) Grammars

Rm Compiler Construction nter semester 2010/11

LL(k) Grammars

Lemma (Characterization of LL(k))
G € LL(k) iff for all leftmost derivations of the form

= wha

S =] wAa{ G

such that 3 # =, it follows that firstg(Ba) N firstg (ya) = 0.

omitted O

Remarks:
o If G € LL(k), then the A-production is determined by the
lookahead sets firsty(Ba) (for every A — 3 € P).
o Problem: still infinitely many rightmost contexts « to be
considered (if 3/~ “too short”, i.e., firsty(Ba) # firsti(53)).

m Compiler Construction Winter semester 2010/11 3

Lookahead Sets

Definition (Lookahead set)

GivenTt=A—> B € P,
la(7) := fi(5 - fo(A)) C 3.
is called the lookahead set of m (where fi(I') := U, fi(7))-

@ Foralla e X,
a€la(A— pB)iffacfi(B) or (B="¢ and a € fo(4))

Qccla(A— Q) iff 6="¢c and e € fo(A)

m Compiler Construction Winter semester 2010/11 4

Characterization of LL(1)

Theorem (Characterization of LL(1))
G € LL(1) iff for all pairs of rules A — (|~ € P (where 3 # v):

la(A — B)Nla(A — v) = 0.

on the board O

Remark: the above theorem generally does not hold if £ > 1
(cf. exercises)

m' Compiler Construction Winter semester 2010/11 5

Computing Lookahead Sets 11

Corollary

Q A—ane P = acfi(4b)

Q@ A— BaePacfiB) = acfi(d)
Q@ A—-ceP = ccfi(d)

Q fi(e) = {e}

Q acfi(d) = acfi(Aa)

Q A—aBePxcfo(d) = z€fo(B)

m Compiler Construction Winter semester 2010/11 6

Computing Lookahead Sets 11

Corollary

Q A—ane P = acfi(4b)

Q@ A— BaePacfiB) = acfi(d)
QO A—eceP = cefi(A)

Q fi(e) = {¢}

Q aefi(Ad) = acfi(da)

QO A—aBePuzxcfo(d) = zcfo(B)

Example

| A\

Grammar for
arithmetic
expressions
(cf. Example 7.3):
Gap: E— E+T|T
T — TxF | F
F — (E)|al|b

m Compiler Construction Winter semester 2010/11 6

Computing Lookahead Sets 11

Corollary

Q A—ane P = acfi(4l)

Q@ A— BaePacfiB) = acfi(d)
QO A—eceP = cefi(A)

Q fi(e) = {e}

Q aefi(Ad) = acfi(da)

QO A—aBePuzxcfo(d) = zcfo(B)

Example

| A\

Grammar for o F5aecP = acfi(F)
arithmetic
expressions
(cf. Example 7.3):
Gag: F — E+T | T
T — TxF | F
F — (E)|al|b

m Compiler Construction Winter semester 2010/11 6

Computing Lookahead Sets 11

Corollary

Q A—ane P = acfi(4b)

Q@ A— BaePacfiB) = acfi(d)
QO A—eceP = cefi(A)

Q fi(e) = {e}

Q aefi(Ad) = acfi(da)

QO A—aBePuzxcfo(d) = zcfo(B)

| A\

Example

Grammar for o F—waeP = acfi(F)
arithmetic o T - FePacfiF) = acfi(T)
expressions

(cf. Example 7.3):

Gap: E— E+T|T
T — T+F | F
F— (E)]|al|b

m Compiler Construction Winter semester 2010/11 6

Computing Lookahead Sets 11

Corollary

Q A—ane P = acfi(4b)

Q@ A— BaePacfiB) = acfi(d)
QO A—eceP = cefi(A)

Q fi(e) = {¢}

Q aefi(Ad) = acfi(da)

QO A—aBePuzxcfo(d) = zcfo(B)

| A\

Example
Grammar for o F—waeP = acfi(F)
arithmetic o T - FePacfiF) = acfi(T)
expressions e acfi(T)
(cf. Example 7.3): = la(T — T*F) = fi(T*F -fo(T)) > a
Gag: F — E+T | T
T — TxF ‘ F
F— (B)|al|b

m Compiler Construction Winter semester 2010/11 6

Computing Lookahead Sets 11

Corollary

Q A—ane P = acfi(4b)

Q@ A— BaePacfiB) = acfi(d)
QO A—eceP = cefi(A)

Q fi(e) = {¢}

Q aefi(Ad) = acfi(da)

QO A—aBePuzxcfo(d) = zcfo(B)

Example

| A\

Grammar for

©

F—-aceP = acfi(F)

arithmetic o T - FePacfi(F) = acfi(T)
expressions e acfi(T)
(cf. Example 7.3): = la(T — T*F) = fi(T*F -fo(T)) > a
Gag : E—>E+T|T anﬁ(F)
T — TxF | F = la(T' — F) =fi(F -fo(T)) > a

F— (E)|al|b

m Compiler Construction Winter semester 2010/11 6

Computing Lookahead Sets 11

Corollary

Q A—ane P = acfi(4b)

Q@ A— BaePacfiB) = acfi(d)
QO A—eceP = cefi(A)

Q fi(e) = {¢}

Q aefi(Ad) = acfi(da)

QO A—aBePuzxcfo(d) = zcfo(B)

Example

| A\

Grammar for

©

F—-aceP = acfi(F)

arithmetic o T - FePacfi(F) = acfi(T)
expressions e acfi(T)
(cf. Example 7.3): = la(T — T*F) = fi(T*F -fo(T)) > a
Gag : E—>E+T|T anﬁ(F)
T — TxF | F = la(T — F) =fi(F -fo(T)) > a

F— (E)|alb o = acla(T - T*F)Nla(T — F) # 0

m Compiler Construction Winter semester 2010/11 6

Computing Lookahead Sets 11

Corollary

Q A—ane P = acfi(4b)

Q@ A— BaePacfiB) = acfi(d)
QO A—eceP = cefi(A)

Q fi(e) = {¢}

Q aefi(Ad) = acfi(da)

QO A—aBePuzxcfo(d) = zcfo(B)

Example

| A\

Grammar for

©

F—-aceP = acfi(F)

arithmetic o T - FePacfi(F) = acfi(T)
expressions e acfi(T)
(cf. Example 7.3): = la(T — T*F) = fi(T*F -fo(T)) > a
Gag : E—>E+T|T anﬁ(F)
T — TxF | F = la(T' — F) =fi(F -fo(T)) > a

F— (E)|alb o = acla(T - T*F)Nla(T — F) # 0
o = Gap ¢ LL(1)

m Compiler Construction Winter semester 2010/11 6

Fixing the Problem

(general methods later)

Example 9.1 (continuing Example 8.12)

Restructuring (such that L(G'y) = L(GaE)):
“g: E - TF
E' — +TE' | e
T — FT'
T' — «FT' | ¢
F - (E)|alb

m Compiler Construction Winter semester 2010/11

Fixing the Problem

(general methods later)

Example 9.1 (continuing Example 8.12)

Restructuring (such that L(G'y) = L(GaE)):
“g: E - TF
E' — +TE' | e
T — FT'
T' — «FT' | ¢
F - (E)|alb

Ae N| fi(4)
E [{(a,b}
E' | {+¢}
T [{(a,b}
T | {*¢}
F {(a,b}

m Compiler Construction Winter semester 2010/11

Fixing the Problem

(general methods later)

Example 9.1 (continuing Example 8.12)

Restructuring (such that L(G'y) = L(GaE)):
“g: E - TF
E' — +TE' | e
T — FT'
T' — «FT' | ¢
F - (E)|alb

Ae N| fi(A) fo(A)
E H{Gav}| {e)}
E’ {+,e} | {e)}
T [{Gab}| {+e)}
| ey | e
F {(7a7b} {*7+7€7)}

m Compiler Construction Winter semester 2010/11

Fixing the Problem

(general methods later)

Example 9.1 (continuing Example 8.12)

Restructuring (such that L(G'y) = L(GaE)):
“g: E - TF
E' — +TE' | e
T — FT'
T~ «FT'|c [A—= BEP[RA =B =H(B F(A)]
F — (E)]|al|b E - TFE {(Ga,b}
E' — +TFE' +
A€ N[(A | fo(A) B —e iz 0
E {(,a,b} {6,)} T —FT {(7avb}
B | {ne) | {e)) | [T 2T)
T [{Gab}| {+e)} | [T —¢ {+,e)}
v | D) | [T ® q
F_[{Gab}j{x+e)}] | F—a i
F —b {b}

m Compiler Construction

Fixing the Problem

(general methods later)

Example 9.1 (continuing Example 8.12)

Restructuring (such that L(G'y) = L(GaE)):
“g: E - TF
E' — +TE' | e
T — FT'
T~ «FT'|c [A—= BEP[RA =B =H(B F(A)]
F — (E)]|al|b E - TFE {(Ga,b}
E" — +TFE' +
A€ N[(A | fo(A) B —e iz 0
E {(,a,b} {6,)} T —FT {(7avb}
B | {ne) | {e)) | [T 2T)
T [{Gab}| {+e)} | [T —¢ {+,e)}
v | D) | [T ® q
F_[{Gab}j{x+e)}] | F—a i
F —b {b}
= GYp € LL(1)

m Compiler Construction

© Decterministic Top-Down Parsing

Rm Compiler Construction nter semester 2010/11

Deterministic Top-Down Parsing

Approach: given G € CFGy,
@ Verify that G € LL(1) by computing the lookahead sets and
checking alternatives for disjointness

Rm Compiler Construction Winter semester 2010/11 9

Deterministic Top-Down Parsing

Approach: given G € CFGy,
@ Verify that G € LL(1) by computing the lookahead sets and
checking alternatives for disjointness
© Start with nondeterministic top-down parsing automaton NTA ()

Rm Compiler Construction Winter semester 2010/11 9

Deterministic Top-Down Parsing

Approach: given G € CFGy,
@ Verify that G € LL(1) by computing the lookahead sets and
checking alternatives for disjointness
© Start with nondeterministic top-down parsing automaton NTA ()
© Use l-symbol lookahead to control the choice of expanding
productions:
o (aw, Aa, 2) F (aw, Ba, 2i)
ifm; =A— fand a € la(m)
o (6,Aw, 2) F (g, Ba, 2i)
if m; =A— fande €la(m)
o [matching steps as before: (aw,acq, z) F (w, , z)]
= deterministic top-down parsing automaton DTA(G)

Rm Compiler Construction Winter semester 2010/11

Deterministic Top-Down Parsing

Approach: given G € CFGy,
@ Verify that G € LL(1) by computing the lookahead sets and
checking alternatives for disjointness
© Start with nondeterministic top-down parsing automaton NTA ()
© Use l-symbol lookahead to control the choice of expanding
productions:
o (aw, Aa, 2) F (aw, Ba, 2i)
ifm; =A— fand a € la(m)
o (6,Aw, 2) F (g, Ba, 2i)
if m; =A— fande €la(m)
o [matching steps as before: (aw,acq, z) F (w, , z)]
= deterministic top-down parsing automaton DTA(G)

Remarks:
@ DTA(G) is actually not a pushdown automaton (a is read but not
consumed). But: can be simulated using the finite control.
@ Advantage of using lookahead is twofold:
o Removal of nondeterminism
o Earlier detection of syntax errors
(in configurations (aw, A, z) where a & U, 5o pla(4 — B))

m' Compiler Construction Winter semester 2010/11

The Deterministic Top-Down Automaton I

Definition 9.2 (Deterministic top-down parsing automaton)

Let G = (N,X, P,S) € LL(1). The deterministic top-down parsing
automaton of G, DTA(G), is defined by the following components.
@ Input alphabet ¥, pushdown alphabet X, output alphabet [p]

o Configurations ¥* x X* X [p]*, initial configuration (w, S,€),
final configurations {e} x {e} x [p]* (as NTA(QG))

@ Action function
act : Xo X X — {(oy i) | m; = A — a} U {pop, accept, error }
with act(z, A) := («,i) if ;; = A — « and z € la(m;)
act(a,a) := pop
act(e,) := accept
act(z,y) := error otherwise
@ Transitions for z € ¥, w € ¥*, Y € X, f € X*, and z € [p|*:
(zw,af,zi) ifact(z,Y) = (a,i)
) {<w,ﬁ, 2 ifact(z,Y) = pop

m Compiler Construction Winter semester 2010/11

The Deterministic Top-Down Automaton II

Example 9.3 (cf. Example 9.1)

[A SBeP[R{A=pA]

E - TE {Ga,b}
Gup: E —TE (L) v {?3}
FE — +T.IE |E (2v3) T — FT’ {(’ab}
T — FT (4) 7 T)
T/ . *FT/ | c (5,6) , — X {*}
F — (B)|a|b (7,8,9) 5 : iE) {J}?})}
F —a {a}
F —b {p}

m Compiler Construction Winter semester 2010/11 11

The Deterministic Top-Down Automaton II

Example 9.3 (cf. Example 9.1)

[A SBcPRA—=7]

E —TF | {Gab}
U U
Guap: E —TE (1) E —+TE {+}
E' —+TE |e (2,3) E—e {e,)}
T — FT’ (4) T — FT {Ca,b}
T — +FT'|e (5,6) T" — *FT’ {x}
F —(B)|alb (7,8,9) T —e {+e)}
F = (F) {(}
EHlE
— b b
act : Xe X X — {(a, %) | m = A — a} U {pop, accept, error} (empty = error)
act| FE E’ T T’ F a b () * + g
a [(TE,1) (FT',4) (a,8) pop
b |(TE',1) (FT',4) (b,9) pop
C|(TE',1) (FT',4) ((E),7) pop
) (¢,3) (¢,6) pop
* (*FT’, 5) pop
+ (+TE',2) (,6) pop
€ (e,3) (,6) accept

m Compiler Construction Winter semester 2010/11 11

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act] E E’ T T’ F a b () x + €
a [(TE',1) (FT7,4) (2,8) pop
b |(TE',1) (FT',4) (b,9) pop
(|(TE'",1) (FT',4) ((ED,7) pop
) (e,3) (¢,6) pop
* (*FT’,5) pop
+ (+TE',2) (¢,6) pop
€ (e,3) (e,6) accept

Compiler Construction

Winter semester 2010/11

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act] E E’ T T’ F a b () * + €

a [(TE,1) (FT7,4) (a,8) pop

b |(TE',1) (FT',4) (b,9) pop

(|(TE'",1) (FT',4) ((ED,7) pop

) (¢,3) (¢,6) pop

* (*FT’,5) pop

+ (+TE',2) (¢,6) pop

€ (e,3) (e,6) accept
Leftmost analysis of (a)*b:

((@)*b, E , €)

Compiler Construction

Winter semester 2010/11

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act] E E’ T T’ F a b () * + €

a [(TE',1) (FT7,4) (2,8) pop

b |(TE',1) (FT',4) (b,9) pop

(|(TE'",1) (FT',4) ((E),7) pop

) (¢,3) (¢,6) pop

* (*FT’,5) pop

+ (+TE',2) (¢,6) pop

€ (e,3) (e,6) accept
Leftmost analysis of (a)*b:

((@)*b, E , €)
 ((a)*b, TE' 1)

Compiler Construction

Winter semester 2010/11

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act] E E’ T T’ F a b () * + €

a [(TE',1) (FT7,4) (2,8) pop

b |(TE',1) (FT',4) (b,9) pop

(|(TE'",1) (FT',4) ((E),7) pop

) (¢,3) (¢,6) pop

* (*FT’,5) pop

+ (+TE',2) (¢,6) pop

€ (e,3) (e,6) accept
Leftmost analysis of (a)*b:

((@)*b, E , €)
 ((a)*b, TE' 1)
 ((a)*b, FT'E' L1400

Compiler Construction

Winter semester 2010/11

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act] E E’ T T’ F a b () * + €
a [(TE',1) (FT7,4) (2,8) pop

b |(TE',1) (FT',4) (b,9) pop

(|(TE',1) (FT',4) (CE),T) pop

) (¢,3) (¢,6) pop

* (*FT’,5) pop

+ (+TE',2) (¢,6) pop

€ (e,3) (e,6) accept
Leftmost analysis of (a) *b:

((@)*b, E , €)

 ((a)*b, TE' 1)

 ((a)*b, FT'E' L1400

F ()b, (EYT'E’ 147)

Compiler Construction

Winter semester 2010/11

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act] E E’ T T’ F a b () x + €
a [(TE’,1) (FT7,4) (2,8) pop
b |(TE',1) (FT',4) (b,9) pop
(|(TE'",1) (FT',4) ((ED,7) pop
) (¢,3) (¢,6) pop
* (*FT’,5) pop
+ (+TE',2) (¢,6) pop
€ (e,3) (e,6) accept

Leftmost analysis of (a) *b:

((a)%b, E e)
F ((a)*b, TE' 1)
F ((2)*b, FT'E’ L1400
F ()b, (E)T'E’ 147)
F(a)*b, EYT'E’ 147)

Winter semester 2010/11

Compiler Construction

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act] E E’ T T’ F a b () x + €
a [(TE',1) (FT7,4) (2,8) pop
b |(TE',1) (FT',4) (b,9) pop
(|(TE'",1) (FT',4) ((ED,7) pop
) (¢,3) (¢,6) pop
* (*FT’,5) pop
+ (+TE',2) (¢,6) pop
€ (e,3) (e,6) accept

Leftmost analysis of (a) *b:

((a)%b, E e)
F ((a)*b, TE' 1)
F ((2)*b, FT'E’ L1400
F ()b, (E)T'E’ 147)
F(a)*b, EYT'E’ 147)
F(a)*b, TENT'E' 1471)

Winter semester 2010/11

Compiler Construction

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act] E E’ T T’ F a b () x + €
a [(TE',1) (FT7,4) (2,8) pop
b |(TE',1) (FT',4) (b,9) pop
(|(TE'",1) (FT',4) ((ED,7) pop
) (¢,3) (¢,6) pop
* (*FT’,5) pop
+ (+TE',2) (¢,6) pop
€ (e,3) (e,6) accept

Leftmost analysis of (a) *b:

((a)%b, E e)
F ((a)xb, TE' ,1)
F ((a)xb, FT'E’ J14)
F ()b, (E)T'E’ 147)
F(a)sb, EYT'E' , 147)
F(a)*b, TENT'E’ , 1471)
F(a)*b, FT'ENT'E’, 14714)

Winter semester 2010/11

Compiler Construction

12

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act] E E’ T T’ F a b () x + €

a [(TE',1) (FT7,4) (2,8) pop

b |(TE',1) (FT',4) (b,9) pop

(|(TE'",1) (FT',4) ((ED,7) pop

) (¢,3) (¢,6) pop

* (*FT’,5) pop

+ (+TE',2) (¢,6) pop

€ (e,3) (e,6) accept

Leftmost analysis of (a) *b:

((a)%b, E e)
F ((a)xb, TE' ,1)
F ((a)xb, FT'E’ J14)
F ()b, (E)T'E’ 147)
F(a)xb, EYT'E. 147)
F(a)xb, TENT'E' 1471)
F(a)*b, FT'ENT'E’, 14714)
F(a)*b, aT'ENT'E’ , 147148)

Winter semester 2010/11

Compiler Construction

12

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act] E E’ T T’ F a b () * + €
a [(TE',1) (FT7,4) (2,8) pop

b |(TE',1) (FT',4) (b,9) pop

(|(TE'",1) (FT',4) ((ED,7) pop

) (e,3) (¢,6) pop

* (*FT',5) pop

+ (+TE',2) (¢,6) pop

€ (e,3) (e,6) accept
Leftmost analysis of (a)*b:

(@)*b, E , €)

 ((a)*b, TE' 1)

 ((a)*b, FT'E' L1400

F ((@)*b, (EYT'E’ 147)

F(a)sb, EYT'E’ 147)

F(a)sb, TENT'E' 1471)

F (a)*b, FT'ENT'E’, 14714)

F (a)*b, 2T'ENT'E’ , 147148)

F()b, T'ENT'E’ , 147148)

Winter semester 2010/11

Compiler Construction

12

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act] E E’ T T’ F a b () * + €
a [(TE',1) (FT7,4) (2,8) pop

b |(TE',1) (FT',4) (b,9) pop

(|(TE'",1) (FT',4) ((ED,7) pop

) (¢,3) (¢,6) pop

* (*FT’,5) pop

+ (+TE',2) (¢,6) pop

€ (e,3) (e,6) accept
Leftmost analysis of (a)*b:

((a)*b, E e) - O*b, E)T'E’, 1471486)

 ((a)*b, TE' 1)

 ((a)*b, FT'E' L1400

F ((@)*b, (EYT'E’ 147)

F(a)sb, EYT'E’ 147)

F(a)sb, TENT'E' 1471)

F (a)*b, FT'ENT'E’, 14714)

F (a)*b, 2T'ENT'E’ , 147148)

F()b, T'ENT'E’ , 147148)

Compiler Construction

Winter semester 2010/11

12

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act] E E’ T T’ F a b () * + €
a [(TE,1) (FT7,4) (a,8) pop

b |(TE',1) (FT',4) (b,9) pop

(|(TE'",1) (FT',4) ((ED,7) pop

) (e,3) (¢,6) pop

* (*FT’,5) pop

+ (+TE',2) (¢,6) pop

€ (e,3) (e,6) accept
Leftmost analysis of (a)*b:

((a)*b, E e) - (O*b, ENT'E', 1471486)

F ((a)#b, TE' 1) F O%b,)T'E' |, 14714863)

 ((a)*b, FT'E' L4)

F ((@#*b, (E)T'E’ ,147)

F ()b, EYT'E’ 147)

F (a)*b, TENT'E’ , 1471)

 (a)*b, FT'ENT'E', 14714)

()b, aT"ENT'E' , 147148)

F()b, T'ENT'E' | 147148)

Winter semester 2010/11

Compiler Construction

12

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act] E E’ T T’ F a b () x + €
a [(TE',1) (FT7,4) (2,8) pop
b |(TE',1) (FT',4) (b,9) pop
(|(TE'",1) (FT',4) ((ED,7) pop
) (¢,3) (€,6) pop
* (xFT",5) pop
+ (+TE',2) (¢,6) pop
€ (e,3) (e,6) accept

Leftmost analysis of (a) *b:

((a)*b, E €) - O%b, ENT'E’, 1471486
F ((a)xb, TE' 1) FOxb,)T'E’ , 14714863)
F ((a)xb, FT'E’ L1400) F(*b, T'E’ 14714863)
F ()b, (E)T'E’ 147)
F(a)xb, EYT'E. 147)
F(a)xb, TENT'E' 1471)
F(a)*b, FT'ENT'E’, 14714)
F(a)*b, aT'ENT'E’ , 147148)
F()b, T'ENT'E’ |, 147148)

Compiler Construction

Winter semester 2010/11

12

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act] E E’ T T’ F a b () x + €
a [(TE',1) (FT7,4) (2,8) pop
b |(TE',1) (FT',4) (b,9) pop
(|(TE'",1) (FT',4) ((ED,7) pop
) (¢,3) (¢,6) pop
" (+*FT",5) pop
+ (+TE',2) (¢,6) pop
€ (e,3) (e,6) accept

Leftmost analysis of (a) *b:

((@)*b, E , €) F(
F ((@)*b, TE' , 1) F O*b, YT'E'
F ((@)*b, FT'E’ ,14) F(*b, T'E’
F (@%b, (EYT'E" 147) F(
F (a)*b, E)T'E' , 147)
F(a)*b, TENT'E’ 1471)
F (a)*b, FT'E')T'E’, 14714)
F (a)*b, al’E)T'E’ , 147148)
F()*b, T"E)T'E’ , 147148)

Y*b, ET'E’, 1471486

)
, 14714863)
, 14714863)

)

*b, xFT'E’ | 147148635

Compiler Construction

Winter semester 2010/11

12

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act] E E’ T T’ F a b () x + €
a [(TE',1) (FT7,4) (2,8) pop
b |(TE',1) (FT',4) (b,9) pop
(|(TE'",1) (FT',4) ((ED,7) pop
) (¢,3) (¢,6) pop
* (*FT’,5) pop
+ (+TE',2) (¢,6) pop
€ (e,3) (e,6) accept

Leftmost analysis of (a) *b:
((@)*b, E) €
((@)*b, TE' 1
((a)*b, FT'E’ .14
((2)*b, (E)T'E 147
(a)*b, EYT'E' 147
(a)*b, TENT'E’ , 1471
(
(
(

F O*b, E'YT'E’, 1471486)
F O¥b,)T'E' 14714863)
F(b, T'E' 14714863)
F (b, xFT'E’ |, 147148635)
F(b, FT'E' , 147148635)

a)*b, FT'ENT'E’, 14714
a)*b, al’ENT'E’ , 147148
)b, T'"ENT'E’ , 147148

TTTTTTTT
NN N NI NI NI NN

Compiler Construction

Winter semester 2010/11

12

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act] E E’ T T’ F a b () * + €
a [(TE',1) (FT7,4) (2,8) pop
b |(TE'1) (FT',4) (b,9) pop
(|(TE'",1) (FT',4) ((ED,7) pop
) (¢,3) (¢,6) pop
* (*FT’,5) pop
+ (+TE',2) (¢,6) pop
€ (e,3) (e,6) accept

Leftmost analysis of (a) *b:

a)*b, FT'ENT'E’, 14714
a)*b, al’ENT'E’ , 147148
)b, T'"ENT'E’ , 147148

((@)*b, E €) F Oxb, ENT'E’, 1471486)
F ((a)*b, TE' ,1) FOxb,)T'E’ , 14714863)
F ((a)*b, FT'E’ L1400) F(*b, T'E’ 14714863)
F (()*b, (E)T'E' , 147) b (*b, *FT'E’ |, 147148635)
F(a)sb, EYT'E' , 147) F(b, FT'E’ , 147148635)
F(a)*b, TENT'E’ , 1471) F(b, bI"E 1471486359)
F()

F()
F()

Compiler Construction

Winter semester 2010/11

12

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act] F E’ T T’ F a b () x + ¢

a [(TE',1) (FT7,4) (2,8) pop

b |(TE',1) (FT',4) (b,9) pop

(|(TE'",1) (FT',4) ((ED,7) pop

) (e,3) (¢,6) pop

* (xFT',5) pop

+ (+TE',2) (,6) pop

€ (¢,3) (e,6) accept
Leftmost analysis of (a)*b:

((2)*b, E e) - (Oxb, ENT'E’, 1471486)
 ((a)*b, TE' 1) F O*b,)T'E’ 14714863)
 ((a)*b, FT'E' J14) F(*b, T'E’ 14714863)

F ()b, (E)T'E’ 147) F (*b, xFT'E' , 147148635)
F(a)sb, EYT'E 147) F(b, FT'E 147148635)
F (a)xb, TENT'E’ 1471) F(b bI'E 1471486359)
F(a)xb, FT'E')T'E’, 14714) F(e T'E" 1471486359)
F (a)*b, 2T'ENT'E’ , 147148)
F()b, T'ENT'E’ , 147148)

Compiler Construction

Winter semester 2010/11

12

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act] E E’ T T’ F a b () x + €

a [(TE',1) (FT7,4) (2,8) pop

b [(TE'. 1) (FT',4) (b, 9) pop

(|(TE'",1) (FT',4) ((ED,7) pop

) (¢,3) (¢,6) pop

* (*FT’,5) pop

+ (+TE',2) (¢,6) pop

€ (e,3) (e,6) accept

Leftmost analysis of (a) *b:

((@)*b, E €) F Oxb, ENT'E’, 1471486)
F ((a)xb, TE' 1) FOxb,)T'E’ , 14714863)
F ((a)*b, FT'E’ L1400) F(*b, T'E’ 14714863)
F (()*b, (E)T'E' , 147) b (*b, *FT'E’ |, 147148635)
F(a)sb, EYT'E' , 147) F(b, FT'E’ , 147148635)
F(a)*b, TENT'E’ , 1471) F(b, bI"E 1471486359)
F(a)*b, FT'E)T'E', 14714) F(e T'E' 1471486359)
F (a)*b, aT'E)T'E’ , 147148) F(e E , 14714863596)
F()#b, T'ENT'E’ , 147148)

Compiler Construction

Winter semester 2010/11

12

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act] E E’ T T’ F a b () x + €
a [(TE',1) (FT7,4) (2,8) pop
b |(TE',1) (FT',4) (b,9) pop
(|(TE'",1) (FT',4) ((ED,7) pop
) (¢,3) (¢,6) pop
* (*FT’,5) pop
+ (+TE',2) (¢,6) pop
€ (e,3) (e,6) accept

Leftmost analysis of (a) *b:

((@)*b, E €) F Oxb, ENT'E’, 1471486)
F ((a)*b, TE' ,1) FOxb,)T'E’ , 14714863)
F ((a)*b, FT'E’ L1400) F(*b, T'E’ 14714863)
F (()*b, (E)T'E' , 147) b (*b, *FT'E’ |, 147148635)
F(a)sb, EYT'E' , 147) F(b, FT'E’ , 147148635)
F(a)*b, TENT'E’ , 1471) F(b, bI"E 1471486359)
F(a)*b, FT'E)T'E', 14714) F(e T'E' 1471486359)
F (a)*b, aT'E)T'E’ , 147148) F(e E , 14714863596)
F()#b, T'ENT'E’ , 147148) F(e e , 147148635963)

Compiler Construction

Winter semester 2010/11

12

© Transformation to LL(1)

Rm Compiler Construction nter semester 2010/11 13

Transformation to LL(1)

Assume that G = (N, X, P, S) € CFGyx \ LL(1)
(i.e., there exist A — [| v € P such that la(A —) Nla(4 — v) # 0)

Rm Compiler Construction Winter semester 2010/11 14

Transformation to LL(1)

Assume that G = (N, X, P, S) € CFGyx \ LL(1)
(i.e., there exist A — [| v € P such that la(A —) Nla(4 — v) # 0)

Two heuristics for transforming G into G’ € LL(1):
@ Removal of left recursion
© Left factorization

(used in parser-generating systems such as ANTLR)

m' Compiler Construction Winter semester 2010/11 14

Transformation to LL(1)

Assume that G = (N, X, P, S) € CFGyx \ LL(1)
(i.e., there exist A — [| v € P such that la(A —) Nla(4 — v) # 0)

Two heuristics for transforming G into G’ € LL(1):
@ Removal of left recursion
© Left factorization

(used in parser-generating systems such as ANTLR)

Remarks:

e Transformations generally preserve the semantics (= generated
language) of CFGs but not the syntactic structure of words
(different syntax trees).

o Transformations cannot always yield an LL(1) grammar (since not
every context-free language is generated by an LL grammar;
details later).

m' Compiler Construction Winter semester 2010/11 14

Left Recursion I

Definition 9.4 (Left recursion)

A grammar G = (N, X, P, S) € CFGy is called left recursive if there
exist A € N and o € X* such that A =1 Aa.

m' Compiler Construction Winter semester 2010/11 15

Left Recursion I

Definition 9.4 (Left recursion)

A grammar G = (N, X, P, S) € CFGy is called left recursive if there
exist A € N and o € X* such that A =1 Aa.

If G € CFGy; is left recursive with A =71 Aa, then there exists 3 € X*
such that A :>l+ AQ.

m' Compiler Construction Winter semester 2010/11 15

Left Recursion I

Definition 9.4 (Left recursion)

A grammar G = (N, X, P, S) € CFGy is called left recursive if there
exist A € N and o € X* such that A =1 Aa.

If G € CFGy; is left recursive with A =71 Aa, then there exists 3 € X*
such that A :>l+ AQ.

The grammar (cf. Example 7.3)
Gup: E — E+T|T
T - T+F|F
F— (E)|alb
is left recursive, and in Example 8.12 it was shown that Gag ¢ LL(1)

m Compiler Construction Winter semester 2010/11 15

Left Recursion I1

If G € CFGy is left recursive, then G & |pcn LL(K).

m' Compiler Construction Winter semester 2010/11 16

Left Recursion I1

If G € CFGy is left recursive, then G & |pcn LL(K).

Proof.

(for k = 1) Assume that G € LL(1) is left recursive with 4 =;" Af3.
Together with the reducedness of G this implies that
S =7 vAa :>l+ vAL :>l+ vw for some v, w € ¥* and a € X*.

m Compiler Construction Winter semester 2010/11 16

Left Recursion I1

If G € CFGy is left recursive, then G & |pcn LL(K).

Proof.

(for k = 1) Assume that G € LL(1) is left recursive with 4 =;" Af3.
Together with the reducedness of G this implies that

S =7 vAa :>l+ vAL :>l+ vw for some v, w € ¥* and a € X*.

The corresponding computation of DTA(G) (Def. 9.2) starts with
(vw, S, e) F* (w, Aa,...) FT (w, ABq, . ..).

m Compiler Construction Winter semester 2010/11 16

Left Recursion I1

If G € CFGy is left recursive, then G & |pcn LL(K).

Proof.

(for k = 1) Assume that G € LL(1) is left recursive with 4 =;" Af3.
Together with the reducedness of G this implies that

S =7 vAa :>l+ vAL :>l+ vw for some v, w € ¥* and a € X*.

The corresponding computation of DTA(G) (Def. 9.2) starts with
(vw, S, e) F* (w, Aa,...) FT (w, ABq, . ..).

But in the last state the behaviour of DTA(G) is determined by the
same input (fi(w)) and stack symbol (A). Thus it enters a loop of the
form (w, Aa,...) Ft (w, ABa,...) T (w, ABBa,...) Ft ... and will
never recognize w. Contradiction O

v

m Compiler Construction Winter semester 2010/11

Removing Direct Left Recursion

Direct left recursion occurs in productions of the form

A—Aoq | ... | Aap [Bi| ... | Bn where o; e and 3; # A. ..

Rm Compiler Construction Winter semester 2010/11 17

Removing Direct Left Recursion

Direct left recursion occurs in productions of the form

A—Aoq | ... | Aap [Bi| ... | Bn where o; e and 3; # A. ..
Transformation: replacement by right recursion
A — G1A .| BLA
A — oA anA e

(with a new A’ € N) which preserves L(G).

Rm Compiler Construction Winter semester 2010/11

Removing Direct Left Recursion

Direct left recursion occurs in productions of the form

A—Aoq | ... | Aap [Bi| ... | Bn where o; e and 3; # A. ..
Transformation: replacement by right recursion
A — BA ... | BRA
A — oA anA e

(with a new A’ € N) which preserves L(G).

Example 9.8

Gag: E— E+T|T
T — T*F | F is transformed into
F — (F) | a ‘ b

“g: E —TFE
E' — +TE | ¢
T — FT' with G’y € LL(1) (see Example 9.1).
T' — «FT' | ¢
F - (E)|alb

Compiler Construction Winter semester 2010/11 17

Removing Indirect Left Recursion

Indirect left recursion occurs in productions of the form (n > 1)

A —>A10(1‘...
Al —>A20&2‘...

An—l —>Anan |
A, — AB]...

Rm Compiler Construction Winter semester 2010/11

Removing Indirect Left Recursion

Indirect left recursion occurs in productions of the form (n > 1)

A —>A10(1‘...
Al —>A20&2‘...

An—l —>Anan |
A, — AB]...

Transformation: into Greibach Normal Form with productions of the
form

A —aBi...B, (where n € N and each B; # S) or
S — ¢

(cf. Formale Systeme, Automaten, Prozesse)

Rm Compiler Construction Winter semester 2010/11 18

Left Factorization

Applies to productions of the form
A—af|ay

which are problematic if o “at least as long as lookahead”.

Rm Compiler Construction Winter semester 2010/11 19

Left Factorization

Applies to productions of the form
A—oaf|ay

which are problematic if o “at least as long as lookahead”.
Transformation: delaying the decision by left factorization

A — oA
A — By

(with a new A’ € N) which preserves L(G).

m' Compiler Construction Winter semester 2010/11

Left Factorization

Applies to productions of the form
A—oaf|ay

which are problematic if o “at least as long as lookahead”.
Transformation: delaying the decision by left factorization

A — oA
A — By

(with a new A’ € N) which preserves L(G).

Statement — if Condition then Statement else Statement fi
| if Condition then Statement fi
is transformed into

Statement — if Condition then Statement S’
S’ — else Statement fi | fi

m' Compiler Construction Winter semester 2010/11

@ The Complexity of LL(1) Parsing

Rm Compiler Construction Winter semester 2010/11 20

The Complexity of LL(1) Parsing I

e LL(1) parsing has time (and hence space) complexity O(|w|)
(where w € ¥* is the input word)

Rm Compiler Construction Winter semester 2010/11 21

The Complexity of LL(1) Parsing I

e LL(1) parsing has time (and hence space) complexity O(|w|)
(where w € ¥* is the input word)

@ Here: proof for e-free grammars (i.e., A > a € P — a #¢)

Rm Compiler Construction Winter semester 2010/11 21

The Complexity of LL(1) Parsing I

e LL(1) parsing has time (and hence space) complexity O(|w|)
(where w € ¥* is the input word)

@ Here: proof for e-free grammars (i.e., A > a € P — a #¢)

@ General case: see O. Mayer: Syntaxanalyse, p. 211ff

Rm Compiler Construction Winter semester 2010/11 21

The Complexity of LL(1) Parsing I

e LL(1) parsing has time (and hence space) complexity O(|w|)
(where w € ¥* is the input word)

@ Here: proof for e-free grammars (i.e., A > a € P — a #¢)

@ General case: see O. Mayer: Syntaxanalyse, p. 211ff

Lemma 9.10
Let G = (N,X,P,S) € LL(1) be e-free. If

(w,S,e) F" (e,¢, 2)

in DTA(G), then
n < (jul +1) - (N] + 1),

Compiler Construction Winter semester 2010/11 21

The Complexity of LL(1) Parsing II

Let (w, S,e) F" (g,¢, z) in DTA(G). To show: n < (Jlw|+1) - (|N|+1)

@ Clear: the computation involves |w| matching steps.

Compiler Construction Winter semester 2010/11

The Complexity of LL(1) Parsing II

Let (w, S,e) F" (g,¢, z) in DTA(G). To show: n < (Jlw|+1) - (|N|+1)

@ Clear: the computation involves |w| matching steps.

© Since G is e-free, every matching step is preceded (and followed)

by k expansion steps of the form
(av, Ay, ...) F (av, Asasay, . . .)

F (av, Agag ... aq,...)
F (av,a0p4q ... a1,...)
where A; — A; 11,41 for each i € [k — 1] and Ay — acg41.

Compiler Construction Winter semester 2010/11

The Complexity of LL(1) Parsing II

Let (w, S,e) F" (g,¢, z) in DTA(G). To show: n < (Jlw|+1) - (|N|+1)

@ Clear: the computation involves |w| matching steps.

© Since G is e-free, every matching step is preceded (and followed)

by k expansion steps of the form
(av, Ay, ...) F (av, Asasay, . . .)

F (av, Agag ... aq,...)
F (av,a0p4q ... a1,...)
where A; — A; 11,41 for each i € [k — 1] and Ay — acg41.
@ This implies that A; # A; for ¢ # j (by Lemma 9.7, G is not left
recursive), and hence k < |N|.

Compiler Construction Winter semester 2010/11

The Complexity of LL(1) Parsing II

Let (w, S,e) F" (g,¢, z) in DTA(G). To show: n < (Jlw|+1) - (|N|+1)

@ Clear: the computation involves |w| matching steps.

© Since G is e-free, every matching step is preceded (and followed)

by k expansion steps of the form
(av, Ay, ...) F (av, Asasay, . . .)

F (av, Agag ... aq,...)
F (av,a0p4q ... a1,...)
where A; — A; 11,41 for each i € [k — 1] and Ay — acg41.
@ This implies that A; # A; for ¢ # j (by Lemma 9.7, G is not left
recursive), and hence k < |N|.

Q Altogether: n < (|w|+1) - (IN]+ 1).

Compiler Construction Winter semester 2010/11

	Repetition: LL(1) Grammars
	Deterministic Top-Down Parsing
	Transformation to LL(1)
	The Complexity of LL(1) Parsing

