
Compiler Construction

Lecture 9: Syntactic Analysis IV
(LL(1) Parsing)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Winter semester 2010/11

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc10/

Outline

1 Repetition: LL(1) Grammars

2 Deterministic Top-Down Parsing

3 Transformation to LL(1)

4 The Complexity of LL(1) Parsing

Compiler Construction Winter semester 2010/11 2

LL(k) Grammars

Lemma (Characterization of LL(k))

G ∈ LL(k) iff for all leftmost derivations of the form

S ⇒∗

l wAα

{

⇒l wβα
⇒l wγα

such that β 6= γ, it follows that firstk(βα) ∩ firstk(γα) = ∅.

Proof.

omitted

Remarks:

If G ∈ LL(k), then the A-production is determined by the
lookahead sets firstk(βα) (for every A → β ∈ P).

Problem: still infinitely many rightmost contexts α to be
considered (if β/γ “too short”, i.e., firstk(βα) 6= firstk(β)).

Compiler Construction Winter semester 2010/11 3

Lookahead Sets

Definition (Lookahead set)

Given π = A → β ∈ P ,
la(π) := fi(β · fo(A)) ⊆ Σε

is called the lookahead set of π (where fi(Γ) :=
⋃

γ∈Γ fi(γ)).

Corollary

1 For all a ∈ Σ,
a ∈ la(A → β) iff a ∈ fi(β) or (β ⇒∗ ε and a ∈ fo(A))

2 ε ∈ la(A → β) iff β ⇒∗ ε and ε ∈ fo(A)

Compiler Construction Winter semester 2010/11 4

Characterization of LL(1)

Theorem (Characterization of LL(1))

G ∈ LL(1) iff for all pairs of rules A → β | γ ∈ P (where β 6= γ):

la(A → β) ∩ la(A → γ) = ∅.

Proof.

on the board

Remark: the above theorem generally does not hold if k > 1
(cf. exercises)

Compiler Construction Winter semester 2010/11 5

Computing Lookahead Sets II

Corollary

1 A → aα ∈ P =⇒ a ∈ fi(A)
2 A → Bα ∈ P, a ∈ fi(B) =⇒ a ∈ fi(A)
3 A → ε ∈ P =⇒ ε ∈ fi(A)
4 fi(ε) = {ε}
5 a ∈ fi(A) =⇒ a ∈ fi(Aα)
6 A → αB ∈ P, x ∈ fo(A) =⇒ x ∈ fo(B)

Example

Grammar for
arithmetic
expressions
(cf. Example 7.3):

GAE : E → E+T | T
T → T*F | F
F → (E) | a | b

F → a ∈ P =⇒ a ∈ fi(F)
T → F ∈ P, a ∈ fi(F) =⇒ a ∈ fi(T)
a ∈ fi(T)
=⇒ la(T → T*F) = fi(T*F · fo(T)) 3 a

a ∈ fi(F)
=⇒ la(T → F) = fi(F · fo(T)) 3 a

=⇒ a ∈ la(T → T*F) ∩ la(T → F) 6= ∅
=⇒ GAE /∈ LL(1)

Compiler Construction Winter semester 2010/11 6

Fixing the Problem

(general methods later)

Example 9.1 (continuing Example 8.12)

Restructuring (such that L(G′

AE) = L(GAE)):
G′

AE : E → TE′

E′ → +TE′ | ε
T → FT ′

T ′ → *FT ′ | ε
F → (E) | a | b

A ∈ N fi(A)
E {(, a, b}
E′ {+, ε}
T {(, a, b}
T ′ {*, ε}
F {(, a, b}

fo(A)
{ε,)}
{ε,)}
{+, ε,)}
{+, ε,)}
{*, +, ε,)}

A → β ∈ P la(A → β) = fi(β · fo(A))

E → TE′ {(, a, b}
E′ → +TE′ {+}
E′ → ε {ε,)}
T → FT ′ {(, a, b}
T ′ → *FT ′ {*}
T ′ → ε {+, ε,)}
F → (E) {(}
F → a {a}
F → b {b}

=⇒ G′

AE ∈ LL(1)

Compiler Construction Winter semester 2010/11 7

Outline

1 Repetition: LL(1) Grammars

2 Deterministic Top-Down Parsing

3 Transformation to LL(1)

4 The Complexity of LL(1) Parsing

Compiler Construction Winter semester 2010/11 8

Deterministic Top-Down Parsing

Approach: given G ∈ CFGΣ,
1 Verify that G ∈ LL(1) by computing the lookahead sets and

checking alternatives for disjointness
2 Start with nondeterministic top-down parsing automaton NTA(G)
3 Use 1-symbol lookahead to control the choice of expanding

productions:
(aw, Aα, z) ` (aw, βα, zi)
if πi = A → β and a ∈ la(πi)
(ε, Aα, z) ` (ε, βα, zi)
if πi = A → β and ε ∈ la(πi)
[matching steps as before: (aw, aα, z) ` (w, α, z)]

=⇒ deterministic top-down parsing automaton DTA(G)

Remarks:
DTA(G) is actually not a pushdown automaton (a is read but not
consumed). But: can be simulated using the finite control.
Advantage of using lookahead is twofold:

Removal of nondeterminism
Earlier detection of syntax errors
(in configurations (aw, Aα, z) where a /∈

⋃

A→β∈P la(A → β))

Compiler Construction Winter semester 2010/11 9

The Deterministic Top-Down Automaton I

Definition 9.2 (Deterministic top-down parsing automaton)

Let G = 〈N,Σ, P, S〉 ∈ LL(1). The deterministic top-down parsing
automaton of G, DTA(G), is defined by the following components.

Input alphabet Σ, pushdown alphabet X, output alphabet [p]

Configurations Σ∗ × X∗ × [p]∗, initial configuration (w,S, ε),
final configurations {ε} × {ε} × [p]∗ (as NTA(G))

Action function
act : Σε × Xε → {(α, i) | πi = A → α} ∪ {pop, accept, error}

with act(x,A) := (α, i) if πi = A → α and x ∈ la(πi)
act(a, a) := pop
act(ε, ε) := accept
act(x, y) := error otherwise

Transitions for x ∈ Σε, w ∈ Σ∗, Y ∈ X, β ∈ X∗, and z ∈ [p]∗:

(xw, Y β, z) `

{

(xw,αβ, zi) if act(x, Y) = (α, i)
(w, β, z) if act(x, Y) = pop

Compiler Construction Winter semester 2010/11 10

The Deterministic Top-Down Automaton II

Example 9.3 (cf. Example 9.1)

G′

AE : E → TE′ (1)
E′ → +TE′ | ε (2, 3)
T → FT ′ (4)
T ′ → *FT ′ | ε (5, 6)
F → (E) | a | b (7, 8, 9)

A → β ∈ P la(A → β)

E → TE′ {(, a, b}
E′ → +TE′ {+}
E′ → ε {ε,)}
T → FT ′ {(, a, b}
T ′ → *FT ′ {*}
T ′ → ε {+, ε,)}
F → (E) {(}
F → a {a}
F → b {b}

act : Σε × Xε → {(α, i) | πi = A → α} ∪ {pop, accept, error} (empty = error)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop

b (TE′, 1) (FT ′, 4) (b, 9) pop

((TE′, 1) (FT ′, 4) ((E), 7) pop

) (ε, 3) (ε, 6) pop

* (*FT ′, 5) pop

+ (+TE′, 2) (ε, 6) pop

ε (ε, 3) (ε, 6) accept

Compiler Construction Winter semester 2010/11 11

The Deterministic Top-Down Automaton III

Example 9.3 (continued)

act E E′ T T ′ F a b () * + ε

a (TE′, 1) (FT ′, 4) (a, 8) pop

b (TE′, 1) (FT ′, 4) (b, 9) pop

((TE′, 1) (FT ′, 4) ((E), 7) pop

) (ε, 3) (ε, 6) pop

* (*FT ′, 5) pop

+ (+TE′, 2) (ε, 6) pop

ε (ε, 3) (ε, 6) accept

Leftmost analysis of (a)*b:

((a)*b, E , ε)
` ((a)*b, TE′ , 1)
` ((a)*b, FT ′E′ , 14)
` ((a)*b, (E)T ′E′ , 147)
` (a)*b, E)T ′E′ , 147)
` (a)*b, TE′

)T ′E′ , 1471)
` (a)*b, FT ′E′

)T ′E′, 14714)
` (a)*b, aT ′E′

)T ′E′ , 147148)
` ()*b, T ′E′

)T ′E′ , 147148)

` ()*b, E′
)T ′E′, 1471486)

` ()*b,)T ′E′ , 14714863)
` (*b, T ′E′ , 14714863)
` (*b, *FT ′E′ , 147148635)
` (b, FT ′E′ , 147148635)
` (b, bT ′E′ , 1471486359)
` (ε, T ′E′ , 1471486359)
` (ε, E′ , 14714863596)
` (ε, ε , 147148635963)

Compiler Construction Winter semester 2010/11 12

Outline

1 Repetition: LL(1) Grammars

2 Deterministic Top-Down Parsing

3 Transformation to LL(1)

4 The Complexity of LL(1) Parsing

Compiler Construction Winter semester 2010/11 13

Transformation to LL(1)

Assume that G = 〈N,Σ, P, S〉 ∈ CFGΣ \ LL(1)
(i.e., there exist A → β | γ ∈ P such that la(A → β) ∩ la(A → γ) 6= ∅)

Two heuristics for transforming G into G′ ∈ LL(1):

1 Removal of left recursion

2 Left factorization

(used in parser-generating systems such as ANTLR)

Remarks:

Transformations generally preserve the semantics (= generated
language) of CFGs but not the syntactic structure of words
(different syntax trees).

Transformations cannot always yield an LL(1) grammar (since not
every context-free language is generated by an LL grammar;
details later).

Compiler Construction Winter semester 2010/11 14

Left Recursion I

Definition 9.4 (Left recursion)

A grammar G = 〈N,Σ, P, S〉 ∈ CFGΣ is called left recursive if there
exist A ∈ N and α ∈ X∗ such that A ⇒+ Aα.

Corollary 9.5

If G ∈ CFGΣ is left recursive with A ⇒+ Aα, then there exists β ∈ X∗

such that A ⇒+
l Aβ.

Example 9.6

The grammar (cf. Example 7.3)
GAE : E → E+T | T

T → T*F | F
F → (E) | a | b

is left recursive, and in Example 8.12 it was shown that GAE /∈ LL(1)

Compiler Construction Winter semester 2010/11 15

Left Recursion II

Lemma 9.7

If G ∈ CFGΣ is left recursive, then G /∈
⋃

k∈N
LL(k).

Proof.

(for k = 1) Assume that G ∈ LL(1) is left recursive with A ⇒+
l Aβ.

Together with the reducedness of G this implies that
S ⇒∗

l vAα ⇒+
l vAβα ⇒+

l vw for some v,w ∈ Σ∗ and α ∈ X∗.
The corresponding computation of DTA(G) (Def. 9.2) starts with
(vw, S, ε) `∗ (w,Aα, . . .) `+ (w,Aβα, . . .).
But in the last state the behaviour of DTA(G) is determined by the
same input (fi(w)) and stack symbol (A). Thus it enters a loop of the
form (w,Aα, . . .) `+ (w,Aβα, . . .) `+ (w,Aββα, . . .) `+ . . . and will
never recognize w. Contradiction

Compiler Construction Winter semester 2010/11 16

Removing Direct Left Recursion

Direct left recursion occurs in productions of the form

A → Aα1 | . . . | Aαm | β1 | . . . | βn where αi 6= ε and βj 6= A . . .

Transformation: replacement by right recursion

A → β1A
′ | . . . | βnA′

A′ → α1A
′ | . . . | αmA′ | ε

(with a new A′ ∈ N) which preserves L(G).

Example 9.8

GAE : E → E+T | T
T → T*F | F
F → (E) | a | b

is transformed into

G′

AE : E → TE′

E′ → +TE′ | ε
T → FT ′

T ′ → *FT ′ | ε
F → (E) | a | b

with G′

AE ∈ LL(1) (see Example 9.1).

Compiler Construction Winter semester 2010/11 17

Removing Indirect Left Recursion

Indirect left recursion occurs in productions of the form (n ≥ 1)

A → A1α1 | . . .
A1 → A2α2 | . . .

...
An−1 → Anαn | . . .
An → Aβ | . . .

Transformation: into Greibach Normal Form with productions of the
form

A → aB1 . . . Bn (where n ∈ N and each Bi 6= S) or
S → ε

(cf. Formale Systeme, Automaten, Prozesse)

Compiler Construction Winter semester 2010/11 18

Left Factorization

Applies to productions of the form

A → αβ | αγ

which are problematic if α “at least as long as lookahead”.

Transformation: delaying the decision by left factorization

A → αA′

A′ → β | γ

(with a new A′ ∈ N) which preserves L(G).

Example 9.9

Statement → if Condition then Statement else Statement fi
| if Condition then Statement fi

is transformed into

Statement → if Condition then Statement S′

S′ → else Statement fi | fi

Compiler Construction Winter semester 2010/11 19

Outline

1 Repetition: LL(1) Grammars

2 Deterministic Top-Down Parsing

3 Transformation to LL(1)

4 The Complexity of LL(1) Parsing

Compiler Construction Winter semester 2010/11 20

The Complexity of LL(1) Parsing I

LL(1) parsing has time (and hence space) complexity O(|w|)
(where w ∈ Σ∗ is the input word)

Here: proof for ε-free grammars (i.e., A → α ∈ P =⇒ α 6= ε)

General case: see O. Mayer: Syntaxanalyse, p. 211ff

Lemma 9.10

Let G = 〈N,Σ, P, S〉 ∈ LL(1) be ε-free. If

(w,S, ε) `n (ε, ε, z)

in DTA(G), then
n ≤ (|w| + 1) · (|N | + 1).

Compiler Construction Winter semester 2010/11 21

The Complexity of LL(1) Parsing II

Proof.

Let (w,S, ε) `n (ε, ε, z) in DTA(G). To show: n ≤ (|w| + 1) · (|N | + 1)

1 Clear: the computation involves |w| matching steps.

2 Since G is ε-free, every matching step is preceded (and followed)
by k expansion steps of the form

(av,A1α1, . . .) ` (av,A2α2α1, . . .)
...
` (av,Akαk . . . α1, . . .)
` (av, aαk+1 . . . α1, . . .)

where Ai → Ai+1αi+1 for each i ∈ [k − 1] and Ak → aαk+1.

3 This implies that Ai 6= Aj for i 6= j (by Lemma 9.7, G is not left
recursive), and hence k ≤ |N |.

4 Altogether: n ≤ (|w| + 1) · (|N | + 1).

Compiler Construction Winter semester 2010/11 22

	Repetition: LL(1) Grammars
	Deterministic Top-Down Parsing
	Transformation to LL(1)
	The Complexity of LL(1) Parsing

