
Compiler Construction Summer Term 2012
Exam 12.07.2012

aaapl. Prof. Dr. T. Noll, Prof. Dr. U. Naumann, F. Gretz, C. Jansen, M. Förster, J. Lotz

First Name:

Second Name:

Matriculation Number:

Degree Programme (please mark):

◦ CS Bachelor
◦ CS Master
◦ CS Lehramt
◦ SSE Master
◦ Other:

Σ Points Points obtained
Exercise 1 5
Exercise 2 10
Exercise 3 10
Exercise 4 10
Exercise 5 10
Exercise 6 15
Σ 60

• Mark every sheet with your matriculation number.

• Check that your copy of the exam consists of 8 sheets.

• Duration of exam: 120 minutes.

• No helping materials (e.g. books, notes, slides) are permitted.

• Give your solution on the respective sheet. Also use the backside if necessary. If you need
more paper, ask the assistants.

• Write with blue or black ink; do not use a pencil or red ink.

• Make sure all electronic devices are switched off and are nowhere near you.

• Any attempt at deception leads to failure for this exam, even if it is detected only later.

1

Matr.No.:
Compiler Construction Summer Term 2012

Exam 12.07.2012

Question 1 (Multiple Choice): (5 Points)

T(rue) or F(alse)? Please check! (Each correct answer gives 0.5 points, wrong answers are ignored.)

1. Lexical analysis:

©T ©F Prefix-free languages can be analysed with a scanner using the first-match principle only (that is,
without considering the longest match). (Reminder: a language is called prefix free if it does not
contain a proper prefix of any of its elements.)

©T ©F The worst-case time complexity of the backtracking automaton (as presented in the lecture) is
quadratic in the length of the input word.

©T ©F Every input word that can be decomposed with respect to the given regular expressions also has a
first-longest-match decomposition.

2. Syntax analysis:

©T ©F Every grammar that generates exactly one word has the LL(0) property.

©T ©F A context-free grammar has the LL(1) property if the lookahead sets of all productions with the same
left-hand side are pairwise inequal.

©T ©F A context-free grammar that generates an inherently ambiguous language can never be transformed
to an equivalent LR(k) grammar (for any k).

3. Semantic analysis:

©T ©F An attribute grammar is circular if the dependency graph of each of its syntax trees contains a cycle.

©T ©F The language {anbncn | n ∈ N} can be recognized by an attribute grammar using only synthesized
attributes.

4. Code generation:

©T ©F In the procedure stack, static links to the I/O frame can only originate in the MAIN frame.

©T ©F The following procedure stack could result from the execution of a translated EPL program:

13 : 4 : 9 : 1 : 4 : 3 : 2 : 2 : 4 : 4 : 3 : 15 : 1 : 3 : 2 : 12 : 0 : 0 : 0 : 17 : 3

2

Matr.No.:
Compiler Construction Summer Term 2012

Exam 12.07.2012

Question 2 (Lexical Analysis): (10 Points)

a) Given the regular expressions α1 = a+b and α2 = (a+ba)+. Perform an FLM-analysis, i.e.

i) Construct the corresponding product automaton A recognising L(A) = Jα1K ∪ Jα2K. (Here you can
start with the DFAs of the two expressions)

ii) Partition the set of final states to follow the first-match-principle.

iii) Provide a run of the backtracking automaton on the input w = abaa.

b) Implement the backtracking automaton for lexical analysis. To this aim fill in the gaps in the skeleton below
with java-like pseudo-code. Output the resulting analysis as well as possible errors when reasonable.

You may utilise the following functions:

• LinkedList:

– isEmpty() returns true if the list is empty, otherwise false.

– toString() returns a string containing all elements of the list in the correct order

– getFirst() returns the first element of the list. If the list is empty, it returns null.

– removeFirst() removes the first element from the list and returns it. If the list is empty, it returns
null.

– addFirst(Object o) adds o to the beginning of the list (defined on lists of objects, too).

– add(Object o) adds o to the end of the list (defined on lists of objects, too).

– clear() removes all of the elements from the list.

• DFA:

– getNext(Char x, State s) returns the resulting state when taking an x-transition in state s.

– isProductive(State s) returns true if s is a productive state, otherwise false.

• StatePartition:

– getToken(State s) returns the token which corresponds to the final state s according to the
partition. If s is not in the set of final states, it returns null.

• Token:

– toString() returns a string representing the token

p u b l i c vo i d backt rackAutomaton (L i n k e d L i s t <Char> i npu t , DFA automaton ,
S t a t e P a r t i t i o n f i n a l S t a t e s , S t a t e i n i t i a l S t a t e){

// s e t to e i t h e r n u l l o r the c u r r e n t token r e c o g n i s e d
Token mode = n u l l ;
// s t o r e s the c u r r e n t s t a t e o f the automaton
S ta t e c u r S t a t e = i n i t i a l S t a t e ;
// s t o r e s s ymbo l s f o r b a c k t r a c k i n g
L i n k e d L i s t <Char> b a c k t r a c k S t o r e = new L i n k e d L i s t <Char > () ;
// the r e s u l t i n g a n a l y s i s
L i n k e d L i s t <Token> r e s u l t = new L i n k e d L i s t <Token > () ;

3

Matr.No.:
Compiler Construction Summer Term 2012

Exam 12.07.2012

wh i l e (! i n p u t . i sEmpty ()) {

i f (mode == n u l l) {

}
i f (! mode == n u l l) {

}
i f (i n p u t . i sEmpty () &&) {

}
}
i f (i n p u t . i sEmpty () &&) {

}
e l s e i f (i n p u t . i sEmpty () &&) {

} }

4

Matr.No.:
Compiler Construction Summer Term 2012

Exam 12.07.2012

Question 3 (Syntactic Analysis): (10 Points)

a) Consider the following grammar G:

S → aA | aB
A → a | aA
B → b | bB

i) Show that G /∈ LL(1).

ii) Is G ∈ LL(2)? Prove your answer.

b) Show that the set of all regular languages is a proper subset of the set of LL(1) languages, proceeding as
follows:

i) Show that every regular language can be generated by an LL(1) grammar.
(Hint: regular languages are recognized by deterministic finite automata.)

ii) Give an example of an LL(1) language that is not regular. (You do not have to prove that your language
is not regular.)

5

Matr.No.:
Compiler Construction Summer Term 2012

Exam 12.07.2012

Question 4 (Semantic Analysis): (10 Points)

The following grammar generates two sets, each with two words over Σ = {a}. We want to use attributes to
decide if the two generated sets have a non-empty intersection. An assistant came up with the following solution:
(Hint: result, nextSelect and length are synthetic attributes. curSelect is inherent. Furthermore you may assume
that nextSelect has been set to left initially by some other rules which are irrelevant for this question!)

S → {C}{C} result.0 = (length.2 == length.5)

curSelect.2 =


right if length.2 6= length.5 ∧ nextSelect.2 == left ∧ nextSelect.5 == left
left if length.2 6= length.5 ∧ nextSelect.2 == right ∧ nextSelect.5 == right
right if length.2 6= length.5 ∧ nextSelect.2 == right ∧ nextSelect.5 == left
left if length.2 6= length.5 ∧ nextSelect.2 == left ∧ nextSelect.5 == right

curSelect.5 =


right if length.2 6= length.5 ∧ nextSelect.2 == right ∧ nextSelect.5 == left
left if length.2 6= length.5 ∧ nextSelect.2 == left ∧ nextSelect.5 == left
right if length.2 6= length.5 ∧ nextSelect.2 == right ∧ nextSelect.5 == right
left if length.2 6= length.5 ∧ nextSelect.2 == left ∧ nextSelect.5 == right

C → A,B length.0 =

{
length.1 if curSelect.0 == left
length.3 if curSelect.0 == right

nextSelect.0 = curSelect.0
A → a length.0 = 1

A → aA length.0 = 1 + length.2
B → a length.0 = 1

B → aB length.0 = 1 + length.2

a) Apply the circularity test to decide whether the attributed grammar is circular!

b) Keep the underlying context-free grammar but define a new (non-circular) attribute grammar over it such
that again result.0 == true at the root node of the derivation tree if and only if the intersection of the two
generated sets is not empty. (Hint: Using synthetic attributes only suffices here.)

6

Matr.No.:
Compiler Construction Summer Term 2012

Exam 12.07.2012

Question 5 (Code Generation): (10 Points)

a) Let the current state of the abstract machine AM for procedures (without parameters) be given by

(l , d, p) := (3, 10, 9 : 4 : 45 : 3 : 2 : 4 : 3 : 30 : 5 : 10 : 4 : 40 : 1 : 2 : . . .).

We assume that the corresponding code contains the following instructions:

...
3:LOAD (0, 2)% (dif, off)
4:LOAD (1, 1)% (dif, off)
5:ADD
6:LT
8:JFALSE(20)
9:
...

Determine the respective machine state after the execution of the next five instructions.

(Reminder: the topmost entry of the runtime stack p is to the left, and each activation block is of the
form sl : dl : ra : loc1 : . . . : lock .)

b) Extend the code generation for EPL programs by taking counting loops into account. Do not explicitely
model for- by while-loops!

• The syntax of EPL is extended by statements of the form

for I := A1 toA2 doC ∈ Cmd

where I ∈ Ide , A1, A2 ∈ AExpr , and C ∈ Cmd .

• The interpretation of this construct is as usual: C is executed as long as the value of I is at most A2,
starting with initial value A1 and incremented by one at the end of each iteration.

• You can assume that the symbol table, st ∈ Tab, contains an entry of the form

st(I) = (var, lev , off)

(that is, I is declared as a variable on level lev ∈ Lev with offset off ∈ Off).

• Further you can assume that the evaluation of the arithmetic expessions A1 and A2 pushes its result
to the data stack.

Give a definition of the command translation mapping

ct(for I := A1 toA2 doC, st, a, l)

for a starting code address a ∈ PC and source code level l ∈ Lev .

7

Matr.No.:
Compiler Construction Summer Term 2012

Exam 12.07.2012

Question 6 (Algorithmic Differentiation): (15 Points)

Consider numerical programs whose syntax is defined by a grammar with the following production rules:

A → v = E ;

E → sin (E) | sub (E , E) | v

The start symbol is A. Terminal symbols represent scalar variables (v, for example, words over all lowercase
letters), the unary sinus function (sin , corresponding to string “ sin ”), and binary floating-point subtraction (sub,
corresponding to string “−”).

a) Give the LR(0) automaton of this grammar.

b) Extend the context-free grammar to an attribute grammar that generates tangent-linear derivative code.
Use the floating-point operations “∗” (binary scalar multiplication) and “cos” (unary cosinus). Give the result
of applying the corresponding single-pass compiler to the following program:

y=−(y , s i n (−(y , x))) ;

8

