
STCE

The Art of Differentiating Computer Programs

using Algorithmic Differentiation (AD)

Uwe Naumann

LuFG Informatik 12
Software and Tools for Computational Engineering
RWTH Aachen
naumann@stce.rwth-aachen.de

www.stce.rwth-aachen.de

1 / 23

STCE

Motivation: Numerical Simulation
e.g., MITgcm

2 / 23

STCE Formally

Given: Numerical simulation program

F : IRn → IRm, y = F (x)

Wanted: Sensitivity of outputs y ∈ IRm on inputs x ∈ IRn (Jacobian
∇F (x))

∇F (x) ≡
(
∂yj
∂xi

)j=0,...,m−1

i=0,...,n−1

3 / 23

STCE Sensitivities / Derivatives

y = f (x); effect of perturbation in x depending on y ′ ≡ ∂y
∂x

I for large y ′ > 0 → large increase in y (instable)

I for small y ′ > 0 → small increase in y (stable)

I for large y ′ < 0 → large decrease in y (instable)

I for small y ′ < 0 → small decrease in y (stable)

I for y ′ = 0 → invariant

4 / 23

STCE Outline

I 3 lectures

I 2 tutorials

I see tutorial sheet for contents

5 / 23

STCE Literature

U. Naumann:
The Art of Differentiating Computer Programs.
An Introduction to Algorithmic Differentiation
Number 24 of Software, Environments, and
Tools Series, SIAM, 2012.

naumann@stce.rwth-aachen.de

6 / 23

STCE More ...

I Computational Differentiation (V3Ü1, Ba, WS)

I Combinatorial Problems in Scientific Computing (V2Ü2, Ma, SS)

7 / 23

STCE Our Objective

For a given numerical simulation program, e.g.,

void f (i n t n , double ∗x , i n t m, double ∗y) {
y [0]= x [0] ∗ (x [0]+ x [1]) ;
y [1]= s i n (x [1]) ;

}

build a program that can be used to compute the sensitivites of all
outputs with respect to all inputs (Jacobian matrix).

8 / 23

STCE

Specific Objective:
Tangent-Linear Code

ẏ = ∇F (x) · ẋ
y = F (x)

void f (i n t n , double ∗x , i n t m, double ∗y)

becomes

void d f (i n t n , double ∗x , double ∗dx ,
i n t m, double ∗y , double ∗dy)

and computes product of the Jacobian with ẋ in ẏ; not the Jacobian
itself.

9 / 23

STCE Example

void f (i n t n , double ∗x , i n t m, double ∗y) {
y [0]= x [0] ∗ (x [0]+ x [1]) ;
y [1]= s i n (x [1]) ;

}

I Single Assignment Code (SAC)

I Directed Acyclic Graph (AST, DAG)

I Linearized SAC

I Linearized AST, DAG

I Local Tangent-Linear Code

I Chain Rule

10 / 23

STCE

Jacobian
Computation and Validation

void f (i n t n , double ∗x , i n t m, double ∗y) {
y [0]= x [0] ∗ (x [0]+ x [1]) ;
y [1]= s i n (x [1]) ;

}

I driver for tangent-linear code

I validation by finited differences

11 / 23

STCE

Validation through Approximation
Forward Finite Differences

Let D ⊆ IRn be an open domain and F : D → IRm such that

F =

 F0
...

Fm−1

 .

A forward finite difference approximation of the ith column of the
Jacobian ∇F at point x0 is computed as

∂F

∂xi
(x0) ≡


∂F0
∂xi

(x0)
...

∂Fm−1

∂xi
(x0)

 ≈1
F (x0 + ei · h)− F (x)

h
(1)

The i th Cartesian basis vector in IRn is denoted by ei .

12 / 23

STCE However ...

Consider the approximation of the first derivative of y = f (x) = x in
single precision IEEE floating-point arithmetic on a 64 bit machine at
x = 106 by the forward finite quotient

∇f (x) ≈ f (x + h)− f (x)

h

with h = 0.1. Obviously, ∇f (x) = 1 independent of x . The code

. . .
f l o a t x=1e6 , h=1e−1;
cout << ” (f (x+h)− f (x)) / h=” << (x+h−x)/ h << e n d l ;
. . .

returns 1.25.

13 / 23

STCE

Tangent-Linear Code
by Forward Mode AD

0 : ↑ x0 ↑ x
(1)
0

3 : ↑ v2
0 ↑ c3,0 · v (1)

0

1 : ↑ x1 ↑ x
(1)
1 2 : ↑ x2 ↑ x

(1)
2

4 : ↑ v2
1 ↑ c4,1 · v (1)

1 5 : ↑ v2
2 ↑ c5,2 · v (1)

2

6 : ↑ v3 + v4 ↑ c6,3 · v (1)
3 + c6,4 · v (1)

4

7 : ↑ v6 + v5 ↑ c7,6 · v (1)
6 + c7,5 · v (1)

5

8 : ↑ v2
7 ↑ c8,7 · v (1)

7
y =

(∑n−1
i=0 x2

i

)2

, n = 3

v0 = x0; v1 = x1; v2 = x2
v3 = v2

0 ; v4 = v2
1 ; v5 = v2

2

v6 = v3 + v4; v7 = v6 + v5
v8 = v2

7 ; y = v8

c3,0 = 2 · v0

c6,3 = 1

c4,1 = 2 · v1 c5,2 = 2 · v2

c6,4 = 1

c8,7 = 2 · v7

c7,6 = 1

c7,5 = 1

14 / 23

STCE

Further Motivation
Nonlinear Optimization

Consider the nonlinear programming problem (NLP)

min
x∈IRn

f (x)

where, for example,

f (x) =

(
n−1∑
i=0

x2
i

)2

(2)

is implemented as

void f (i n t n , double ∗x , double &y)
{

y =0;
f o r (i n t i =0; i<n ; i ++) y=y+x [i]∗ x [i] ;
y=y∗y ;

}

The function has a global minimum at x = 0.
15 / 23

STCE Nonlinear Optimization

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1 -0.5 0 0.5 1

(x**2)**2

16 / 23

STCE Steepest Descent

... computes
xk+1 = xk − αk · ∇f (xk) .

for some suitable starting value x0 = (x0
i)i=0,...,n−1 and with a step length

αk > 0, where ∇f (xk) denotes the gradient of f at the current iterate.

The step length αk > 0 is, for example, chosen by recursive bisection on
αk starting from αk = 1 (0.5, 0.25, . . .) and such that a decrease in the
objective value is ensured

17 / 23

STCE More Applications

...

18 / 23

STCE Computational Finance

c©BBA

19 / 23

STCE Aeroacoustics

c©INRIA

20 / 23

STCE Automative Engineering

c©VW / ESI

21 / 23

STCE dcc (version 0.9)

See

www.siam.org/books/se24

for

I source

I use guide

I Windows version

22 / 23

STCE By The Way ...

It also works for, e.g.

void f (i n t n , double ∗x , double &y) {
i n t i =0;
whi le (i<n) {

i f (i ==0) { y=x [i]∗ x [i] ; }
e l s e { y=y+x [i]∗ x [i] ; }
i=i +1;

}
y=y∗y ;

}

as well as for interprocedural code etc.

23 / 23

