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Motivation: Numerical Simulation

e.g., MITgcm

Latitude
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Given: Numerical simulation program

F:R"—=R™ y=F(x)

Wanted: Sensitivity of outputs y € R on inputs x € R" (Jacobian
VF(x))
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PRER - Sensitivities / Derivatives

y = f(x); effect of perturbation in x depending on y’ = ¥

v

for large y’ > 0 — large increase in y (instable)

v

for small y’ > 0 — small increase in y (stable)

v

for large y' < 0 — large decrease in y (instable)

v

for small y’ < 0 — small decrease in y (stable)

v

for y/ = 0 — invariant



Outline

» 3 lectures
» 2 tutorials

> see tutorial sheet for contents
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» Computational Differentiation (V3U1, Ba, WS)
» Combinatorial Problems in Scientific Computing (VZUZ, Ma, SS)



cenier— Qur Objective

For a given numerical simulation program, e.g.,

void f(int n, double xx, int m, double xy) {
y[0]=x[0]*(x[0]+x[1]);
: y[1]=sin(x[1]);

build a program that can be used to compute the sensitivites of all
outputs with respect to all inputs (Jacobian matrix).



ey OPECific Objective:
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Tangent-Linear Code

void f(int n, double xx, int m, double xy)

becomes

void df(int n, double xx, double xdx,
int m, double xy, double xdy)

and computes product of the Jacobian with x in y; not the Jacobian
itself.
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void f(int n, double xx, int m, double xy) {
y[0]=x[0]*(x[0]+x[1]);
} y[1]=sin(x[1]);

v

Single Assignment Code (SAC)
Directed Acyclic Graph (AST, DAG)
Linearized SAC

Linearized AST, DAG

Local Tangent-Linear Code

Chain Rule

v

v

v

v

v
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Computation and Validation

void f(int n, double xx, int m, double xy) {
y[0]=x[0]*(x[0]+x[1]);
} y[l]=sin(x[1]);

» driver for tangent-linear code

» validation by finited differences
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Validation through Approximation

\CHEN

‘STCW“S'“ . . :
Forward Finite Differences

Let D C R" be an open domain and F : D — R such that

A forward finite difference approximation of the ith column of the
Jacobian VF at point x° is computed as

%Fo (XO)
OF , o 7 F(x° +e; - h) — F(x)
() = ~ - (1)
i OFm1
o (X )

The ith Cartesian basis vector in R" is denoted by e;.
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sTce N However ...

Consider the approximation of the first derivative of y = f(x) = x in
single precision |IEEE floating-point arithmetic on a 64 bit machine at
x = 108 by the forward finite quotient

f(x+ h) —f(x)

Vi(x) =~
with h = 0.1. Obviously, Vf(x) = 1 independent of x. The code

float x=1le6, h=le—1;
cout << " (f(x+h)—f(x))/h=" << (x+h—x)/h << endl;

returns 1.25.
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by Forward Mode AD
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Nonlinear Optimization

Consider the nonlinear programming problem (NLP)

in f
2 1

n—1 2
- (z ) °)
i=0

void f(int n, double xx, double &y)
{

where, for example,

is implemented as

y=0;
for (int i=0;i<n;i++) y=y+x[i]*x[i];
y=y*y.

}

The function has a global minimum at x = 0.
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Nonlinear Optimization

(x2)*2
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rcereet  Steepest Descent

. computes
XKL = xk — qy - VF(xF)

for some suitable starting value x° = (Xf)),':o,m,,,_l and with a step length

oy > 0, where V£ (x*) denotes the gradient of f at the current iterate.

The step length oy > 0 is, for example, chosen by recursive bisection on
ay starting from «, =1 (0.5,0.25,...) and such that a decrease in the
objective value is ensured
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srce e More Applications
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srcer " Computational Finance
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sTceee  Aeroacoustics

GRAD
231

l 1761
16422
+1.3083
0.97445

| osuos?

-+ 0.30669

0027199
-0.36108
059494

M= ©INRIA

20/23



stcemeet  Aytomative Engineering

Coutesy of Volkswagen AG,
Computation by ESI

©VW / ESI
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stcem e dcc (version 0.9)

See
www.siam.org/books/se24

for
> source
> use guide

» Windows version
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GEMER By The Way ...

It also works for, e.g.

void f(int n, double xx, double &y) {
int i=0;
while (i<n) {
if (i==0) { y=x[il]sx[i]; }
else { y=y+x[i]*x[i]; }
i=i+1;
}

Y=Y *Y,

as well as for interprocedural code etc.
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