
STCE

The Art of Differentiating Computer Programs

using Algorithmic Differentiation (AD)

Uwe Naumann

LuFG Informatik 12
Software and Tools for Computational Engineering
RWTH Aachen
naumann@stce.rwth-aachen.de

www.stce.rwth-aachen.de

1 / 65

STCE

Motivation: Numerical Simulation
e.g., MITgcm

2 / 65

STCE Formally

Given: Numerical simulation program

F : IRn → IRm, y = F (x)

Wanted: Sensitivity of outputs y ∈ IRm on inputs x ∈ IRn (Jacobian
∇F (x))

∇F (x) ≡
(
∂yj
∂xi

)j=0,...,m−1

i=0,...,n−1

3 / 65

STCE Sensitivities / Derivatives

y = f (x); effect of perturbation in x depending on y ′ ≡ ∂y
∂x

I for large y ′ > 0 → large increase in y (instable)

I for small y ′ > 0 → small increase in y (stable)

I for large y ′ < 0 → large decrease in y (instable)

I for small y ′ < 0 → small decrease in y (stable)

I for y ′ = 0 → invariant

4 / 65

STCE Outline

I 3 lectures

I 2 tutorials

I see tutorial sheet for contents

5 / 65

STCE Literature

U. Naumann:
The Art of Differentiating Computer Programs.
An Introduction to Algorithmic Differentiation
Number 24 of Software, Environments, and
Tools Series, SIAM, 2012.

naumann@stce.rwth-aachen.de

6 / 65

STCE More ...

I Computational Differentiation (V3Ü1, Ba, WS)

I Combinatorial Problems in Scientific Computing (V2Ü2, Ma, SS)

7 / 65

STCE Our Objective

For a given numerical simulation program, e.g.,

void f (i n t n , double ∗x , i n t m, double ∗y) {
y [0]= x [0] ∗ (x [0]+ x [1]) ;
y [1]= s i n (x [1]) ;

}

build a program that can be used to compute the sensitivites of all
outputs with respect to all inputs (Jacobian matrix).

8 / 65

STCE

Specific Objective:
Tangent-Linear Code

ẏ = ∇F (x) · ẋ
y = F (x)

void f (i n t n , double ∗x , i n t m, double ∗y)

becomes

void d f (i n t n , double ∗x , double ∗dx ,
i n t m, double ∗y , double ∗dy)

and computes product of the Jacobian with ẋ in ẏ; not the Jacobian
itself.

9 / 65

STCE Example

void f (i n t n , double ∗x , i n t m, double ∗y) {
y [0]= x [0] ∗ (x [0]+ x [1]) ;
y [1]= s i n (x [1]) ;

}

I Single Assignment Code (SAC)

I Directed Acyclic Graph (AST, DAG)

I Linearized SAC

I Linearized AST, DAG

I Local Tangent-Linear Code

I Chain Rule

10 / 65

STCE

Jacobian
Computation and Validation

void f (i n t n , double ∗x , i n t m, double ∗y) {
y [0]= x [0] ∗ (x [0]+ x [1]) ;
y [1]= s i n (x [1]) ;

}

I driver for tangent-linear code

I validation by finited differences

11 / 65

STCE

Validation through Approximation
Forward Finite Differences

Let D ⊆ IRn be an open domain and F : D → IRm such that

F =

 F0
...

Fm−1

 .

A forward finite difference approximation of the ith column of the
Jacobian ∇F at point x0 is computed as

∂F

∂xi
(x0) ≡


∂F0
∂xi

(x0)
...

∂Fm−1

∂xi
(x0)

 ≈1
F (x0 + ei · h)− F (x)

h
(1)

The i th Cartesian basis vector in IRn is denoted by ei .

12 / 65

STCE However ...

Consider the approximation of the first derivative of y = f (x) = x in
single precision IEEE floating-point arithmetic on a 64 bit machine at
x = 106 by the forward finite quotient

∇f (x) ≈ f (x + h)− f (x)

h

with h = 0.1. Obviously, ∇f (x) = 1 independent of x . The code

. . .
f l o a t x=1e6 , h=1e−1;
cout << ” (f (x+h)− f (x)) / h=” << (x+h−x)/ h << e n d l ;
. . .

returns 1.25.

13 / 65

STCE

Tangent-Linear Code
by Forward Mode AD

0 : ↑ x0 ↑ x
(1)
0

3 : ↑ v2
0 ↑ c3,0 · v (1)

0

1 : ↑ x1 ↑ x
(1)
1 2 : ↑ x2 ↑ x

(1)
2

4 : ↑ v2
1 ↑ c4,1 · v (1)

1 5 : ↑ v2
2 ↑ c5,2 · v (1)

2

6 : ↑ v3 + v4 ↑ c6,3 · v (1)
3 + c6,4 · v (1)

4

7 : ↑ v6 + v5 ↑ c7,6 · v (1)
6 + c7,5 · v (1)

5

8 : ↑ v2
7 ↑ c8,7 · v (1)

7
y =

(∑n−1
i=0 x2

i

)2

, n = 3

v0 = x0; v1 = x1; v2 = x2
v3 = v2

0 ; v4 = v2
1 ; v5 = v2

2

v6 = v3 + v4; v7 = v6 + v5
v8 = v2

7 ; y = v8

c3,0 = 2 · v0

c6,3 = 1

c4,1 = 2 · v1 c5,2 = 2 · v2

c6,4 = 1

c8,7 = 2 · v7

c7,6 = 1

c7,5 = 1

14 / 65

STCE

Further Motivation
Nonlinear Optimization

Consider the nonlinear programming problem (NLP)

min
x∈IRn

f (x)

where, for example,

f (x) =

(
n−1∑
i=0

x2
i

)2

(2)

is implemented as

void f (i n t n , double ∗x , double &y)
{

y =0;
f o r (i n t i =0; i<n ; i ++) y=y+x [i]∗ x [i] ;
y=y∗y ;

}

The function has a global minimum at x = 0.
15 / 65

STCE Nonlinear Optimization

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

-1 -0.5 0 0.5 1

(x**2)**2

16 / 65

STCE Steepest Descent

... computes
xk+1 = xk − αk · ∇f (xk) .

for some suitable starting value x0 = (x0
i)i=0,...,n−1 and with a step length

αk > 0, where ∇f (xk) denotes the gradient of f at the current iterate.

The step length αk > 0 is, for example, chosen by recursive bisection on
αk starting from αk = 1 (0.5, 0.25, . . .) and such that a decrease in the
objective value is ensured

17 / 65

STCE More Applications

...

18 / 65

STCE Computational Finance

c©BBA

19 / 65

STCE Aeroacoustics

c©INRIA

20 / 65

STCE Automative Engineering

c©VW / ESI

21 / 65

STCE dcc (version 0.9)

See

www.siam.org/books/se24

for

I source

I use guide

I Windows version

22 / 65

STCE By The Way ...

It also works for, e.g.

void f (i n t n , double ∗x , double &y) {
i n t i =0;
whi le (i<n) {

i f (i ==0) { y=x [i]∗ x [i] ; }
e l s e { y=y+x [i]∗ x [i] ; }
i=i +1;

}
y=y∗y ;

}

as well as for interprocedural code etc.

23 / 65

STCE Parsing SL2

A Straight-Line Simple Language program is a sequence of statements
described by the grammar G = (Vn,Vt ,P, s) with nonterminal symbols

Vn =


s (sequence of statements)
a (assignment)
e (expression)


terminal symbols

Vt =



V (program variables)

C (constants)

F (unary intrinsic)

L (linear binary arithmetic operator)

N (nonlinear binary arithmetic operator)

;) (= (remaining single character tokens)


24 / 65

STCE

... start symbol s, and production rules

P =


(P1) s : a (P2) s : as (P3) a : V = e;
(P4) e : eLe (P5) e : eNe (P6) e : F (e)
(P7) e : V (P8) e : C

 .

25 / 65

STCE Ambiguity

I Associativity?

a ∗ b ∗ c
?
= (a ∗ b) ∗ c

?
= a ∗ (b ∗ c)

I Operator Precedence?

a + b ∗ c
?
= (a + b) ∗ c

?
= a + (b ∗ c)

... to be resolved by bison.

26 / 65

STCE Parser → Parse Tree → Unparser

For example,

void f (i n t n , double ∗x , i n t m, double ∗y) {
y [0]= x [0] ∗ (x [0]+ x [1]) ;
y [1]= s i n (x [1]) ;

}

I function body is word in G

I parser yields parse tree

I linearization annotates parse tree

I DFS tangent-linear code unparser

27 / 65

STCE Unambiguous SL2

An SL2 program is a sequence of statements described by the grammar
G = (Vn,Vt ,P, s) with nonterminal symbols

Vn =

{
s (sequence of assignments) a (assignment)
e (expression) t (term) f (factor)

}
terminal symbols

Vt =



V (program variables)

C (constants)

F (unary intrinsic)

L (linear binary arithmetic operator)

N (nonlinear binary arithmetic operator)

;) (= (remaining single character tokens)


28 / 65

STCE

... start symbol s, and production rules

P =


(P1) s : a (P2) s : as (P3) a : V = e;
(P4) e : eLt (P5) e : t (P6) t : tNf
(P7) t : f (P8) f : F (e) (P9) f : V
(P10) f : C

 .

implies

I left-most bracketing for chained binary operations

I precedence of nonlinear over linear operations

29 / 65

STCE LR(0) Automaton

0
$accept : . s $end
s : . a | . a s
a : . V = e ;

1
a : V . = e ;

V

2
$accept : s . $end

s

3
s : a . | a . s
s : . a | . a s
a : . V = e ;

a

4
a : V = . e ;
e : . e L t | . t
t : . t N f | . f
f : . F (e) | . V | . C

=

5
$accept : s $end .

$end
V

a

6
s : a s .

s

7
f : V .

V

8
f : C .

C

9
f : F . (e)

F

10
a : V = e . ;
e : e . L t

e

11
e : t .
t : t . N f

t

12
t : f .

f

13
f : F (. e)
e : . e L t | . t
t : . t N f | . f
f : . F (e) | . V | . C

(

14
e : e L . t
t : . t N f | . f
f : . F (e) | . V | . C

L

15
a : V = e ; .

;

16
t : t N . f
f : . F (e) | . V | . C

N

V
C

F

t f

17
f : F (e .)
e : e . L t

e

V C

F

f

18
e : e L t .
t : t . N f

t

V
C

F

19
t : t N f .

f

L

20
f : F (e) .

)

N

30 / 65

STCE

SLR Parsing
V = F (VNC);

STACK STATE PARSED INPUT ACTION

1 0 V = F (VNC); S
2 0 1 V = F (VNC); S
3 0,1 4 V = F (VNC); S
4 0,1,4 9 V = F (VNC); S
...

31 / 65

STCE Operator Precedence LR(0) Automaton

0$accept: . s $end
s: . a | . a s

a: . V
 = e ;

1a: V
 . = e ;

V

2$accept: s . $end

s

3s: a . | a . s
s: . a | . a s
a: . V

 = e ;

a

4a: V
 = . e ;

e: . e L e | . e N
 e | . F (e) | . V

 | . C

=

5$accept: s $end .

$end
V

a

6s: a s .

s

7e: V
 .

V

8e: C
 .

C

9e: F . (e)

F

10a: V
 = e . ;

e: e . L e | e . N
 e

e

11e: F (. e)
e: . e L e | . e N

 e | . F (e) | . V
 | . C

(

12e: e L . e
e: . e L e | . e N

 e | . F (e) | . V
 | . C

L

13e: e N
 . e

e: . e L e | . e N
 e | . F (e) | . V

 | . C

N

14a: V
 = e ; .

;

V

C

F

15e: e . L e | e . N
 e | F (e .)

e

V
C

F

16e: e . L e | e L e . | e . N
 e

e

V

C

F

17e: e . L e | e . N
 e | e N

 e .

e

L
N

18e: F (e) .)

N

32 / 65

STCE

Operator Precedence Parsing
V = F (VNC);

STACK STATE PARSED INPUT ACTION

1 0 V = F (VNC); S
2 0 1 V = F (VNC); S
3 0,1 4 V = F (VNC); S
4 0,1,4 9 V = F (VNC); S
5 0,1,4,9 11 V = F (V NC); S
6 0,1,4,9,11 7 NC); R(P6)
7 0,1,4,9 11 V = F (e NC); S
8 0,1,4,9,11 15 V = F (eN C); S
9 0,1,4,9,11,15 13 V = F (eNC); S

10 0,1,4,9,11,15,13 8); R(P7)
11 0,1,4,9,11,15 13 V = F (eNe); S
12 0,1,4,9,11,15,13 17); R(P4)
13 0,1,4,9 11 V = F (e); S

33 / 65

STCE

STACK STATE PARSED INPUT ACTION

14 0,1,4,9,11 15 V = F (e) ; S
15 0,1,4,9,11,15 18 ; R(P5)
16 0,1 4 V = e ; S
17 0,1,4 10 V = e; S
18 0,1,4,10 14 R(P3)
19 0 a S
20 0 3 R(P1)
21 0 s S
22 0 2 $end S
23 0,2 5 R(P0)
24 0 $accept ACCEPT

34 / 65

STCE

Implementation with flex and bison

scanner.l

%{ #i n c l u d e ” p a r s e r . tab . h” %}

wh i t e space [\ t \n]+
v a r i a b l e [a−z]
c on s t an t [0−9]

%%

{wh i t e space } { }
” s i n ” { r e t u r n F ; }
”+” { r e t u r n L ; }
”∗” { r e t u r n N; }
{ v a r i a b l e } { r e t u r n V; }
{ con s t an t } { r e t u r n C ; }
. { r e t u r n y y t e x t [0] ; }

%%

vo id l e x i n i t (FILE ∗ s ou r c e) { y y i n=sou r c e ; }

35 / 65

STCE

Implementation with flex and bison

parser.y

%token V C F L N

%l e f t L
%l e f t N

%%

s : a
| a s
;

a : V ’=’ e ’ ; ’ ;
e : e L e
| e N e
| F ’ (’ e ’) ’
| V
| C
;

%%
. . .

36 / 65

STCE

Implementation with flex and bison

parser.y (Code Section)

. . .

#inc lude<s t d i o . h>

i n t y y e r r o r (char ∗msg) { p r i n t f (”ERROR: %s \n” ,msg) ; r e t u r n −1; }

i n t main (i n t argc , char ∗∗ a rgv)
{

FILE ∗ s o u r c e f i l e=fopen (a rgv [1] , ” r ”) ;
l e x i n i t (s o u r c e f i l e) ;
y ypa r s e () ;
f c l o s e (s o u r c e f i l e) ;
r e t u r n 0 ;

}

37 / 65

STCE Toward Single-Pass Compilation

I Parse Tree Printer
I data associated with parse tree nodes (unsigned int by default)
I access to data corresponding to left-hand side of production rule by $$
I access to data corresponding to symbols on right-hand side of

production rule by postion, i.e. $1, $2, ...
I see code

I Parser/Unparser
I association of user-defined data (e.g. char∗) through redefinition of

preprocessor macro YYSTYPE
I see code

38 / 65

STCE

Toward Single-Pass Compilation
of Tangent-Linear Code

... attribute grammars:

I assignment-level SAC requires unique auxilliary variable names →
enumeration of subexpression

I enumeration of subexpressions requires number of nodes
(subexpressions) in subtree

I implementation of inherited attributes through global variables in
bison

39 / 65

STCE S-Attributed Counting of Subexpressions

a : V = e;

e l : F (er) {e l .s := er .s + 1 }
: er1Ler2 {e l .s := er1 .s + er2 .s + 1 }
: er1Ner2 {e l .s := er1 .s + er2 .s + 1 }
: V { e l .s := 1 }
: C { e l .s := 1 }

40 / 65

STCE Implementation

a : V ’=’ e ’ ; ’ { p r i n t f (”%d\n” , $3) ; } ;
e : e L e { $$=$1+$3+1; }
| e N e { $$=$1+$3+1; }
| F ’ (’ e ’) ’ { $$=$3+1; }
| V { $$=1; }
| C { $$=1; }
;

41 / 65

STCE L-Attributed Enumeration of Subexpressions

a : V = e; { e.i := 0 }
e l : F (er) { e l .s := er .s + 1; er .i := e l .i + 1 }

: er1Ler2 { e l .s := er1 .s + er2 .s + 1

er1 .i := e l .i + 1; er2 .i := er1 .i + er1 .s }
: er1Ner2 { e l .s := er1 .s + er2 .s + 1

er1 .i := e l .i + 1; er2 .i := er1 .i + er1 .s }
: V { e l .s := 1 }
: C { e l .s := 1 }

42 / 65

STCE Implementation

%{ uns igned i n t s a cvc ; %}

%token V C F L N

%l e f t L
%l e f t N

%%

a : V ’=’ { s a cvc =0; } e ’ ; ’
e : e L e { $$=sacvc++; }
| e N e { $$=sacvc++; }
| F ’ (’ e ’) ’ { $$=sacvc++; }
| V { $$=sacvc++; }
| C { $$=sacvc++; }
;

%%
. . .

43 / 65

STCE

Single-Pass Assignment-Level SAC
Attribute Grammar

(P3) a : V = e; e.i = 0

a.c = e.c

+ V .c + ”=v0;”

(P4) e l : er1Ler2 e l .s = er1 .s + er2 .s + 1

er1 .i = e l .i + 1

er2 .i = er1 .i + er1 .s

e l .c = er1 .c + er2 .c

+ ”v” + e l .i + ”=v” + er1 .i + L.c

+ ”v” + er2 .i + ” ;”

44 / 65

STCE

(P5)e l : er1Ner2 e l .s = er1 .s + er2 .s + 1

er1 .i = e l .i + 1

er2 .i = er1 .i + er1 .s

e l .c = er1 .c + er2 .c

+ ”v” + e l .i + ”=v” + er1 .i + N.c

+ ”v” + er2 .i + ” ;”

Shift-reduce conflicts are resolved by specifying the order of evaluation
for associativity and operator precedence.

45 / 65

STCE

(P6)e l : F (er) e l .s = er .s + 1

er .i = e l .i + 1

e l .c = er .c

+ ”v” + e l .i + ”=” + F .c + ”(v” + er .i + ”);”

(P7) e : V e.s = 1

e.c = ”v” + e.i + ”=” + V .c + ” ;”

(P8) e : C e.s = 1

e.c = ”v” + e.i + ”=” + C .c + ” ;”

46 / 65

STCE

Single-Pass Assignment-Level SAC
Parsing y = sin(x ∗ 2);

i PARSED ACTION $$.i $$.c Comment
0 V S

. . .
11 V = F (V S
7 R(P7) 2 v2 = x ;

. . .
13 V=F(eNC S

8 R(P8) 3 v3 = 2;

13 V=F(eNe S
14 R(P5) v2 = x ; < . . . = er1 .c

v3 = 2; < . . . = er2 .c
1 v1 = v2 ∗ v3; N.c = ” ∗ ”

er1 .i = 2, er2 .i = 3
11 V=F(e S

47 / 65

STCE

15 V=F(e) S
18 R(P6) v2 = x ; <

v3 = 2; <
v1 = v2 ∗ v3; < . . . = er .c

0 v0 = sin(v1); F .c = ” sin ”, er .i = 1

4 V=e S
10 V=e; S
14 R(P3) v2 = x ; <

v3 = 2; <
v1 = v2 ∗ v3; <
v0 = sin(v1); < . . . = e.c
y = v0; V .c = ”y”, e.i = 0

. . .
0 $accept ACCEPT

48 / 65

STCE

Single-Pass Assignment-Level SAC
Parse Tree

x

v2 = x ;

2

v3 = 2;

∗

v2 = x ;
v3 = 2;
v1 = v2 ∗ v3;

sin

v2 = x ;
v3 = 2;
v1 = v2 ∗ v3;
v0 = sin(v1);

y =

a

v2 = x ;
v3 = 2;
v1 = v2 ∗ v3;
v0 = sin(v1);
y = v0;

()

49 / 65

STCE

Single-Pass Assignment-Level SAC
Implementation

See codes/SD SAC and have fun!

Application of the syntax-directed assignment-level SAC compiler to the
SL2 program

x=x∗y ;
x=s i n (x∗y +3);

yields

v0=x ; v1=y ; v2=v0∗v1 ; x=v2 ;
v0=x ; v1=y ; v2=v0∗v1 ; v3 =3; v4=v2+v3 ; v5=s i n (v4) ; x=v5 ;

50 / 65

STCE Single-Pass TLC

I attribute grammar

I implementation with flex and bison

I case studies (trafo + drivers)

51 / 65

STCE

Single-Pass Tangent-Linear Code
Attribute Grammar

(P3) a : V = e; e.i = 0

a.c = e.c

+ V .c + ” =v0 ;”

+ V .c + ”=v0;”

For y = v0, we get y (1) = ∂y
∂v0
· v (1)

0 = v0.

Linear (P4) and nonlinear (P5) operators can be described by a single
rule P4/5. The differences are restricted to the expressions for the local
partial derivatives.

52 / 65

STCE

(P4/5) e l : er1Oer2 e l .s = er1 .s + er2 .s + 1

er1 .i = e l .i + 1

er2 .i = er1 .i + er1 .s

e l .c = er1 .c + er2 .c

+ ”v” + e l .i + ” =” + ∂er1 .iO + ”∗v” + er2 .i

+ ” +” + ∂er2 .iO + ”∗v” + er1 .i + ” ;”

+ ”v” + e l .i + ”=v” + er1 .i + O.c + ”v”

+ er2 .i + ” ;”

where ...

53 / 65

STCE

... O ∈ {L,N} and the local partial derivatives are

∂er1 .iL := 1 ,

∂er2 .iL :=

{
”1” if L.c = ”+”

”−1” if L.c = ”−”
,

∂er1 .iN :=

{
”v” + er2 .i if N.c = ”∗”
”1/v” + er2 .i if N.c = ”/”

,

and

∂er2 .iN :=

{
”v” + er1 .i if N.c = ”∗”
”− ” + ∂er1 .iN + ” ∗ ” + ∂er1 .iN + ” ∗ v” + er1 .i if N.c = ”/”

.

As before, shift-reduce conflicts are resolved by specifying the order of

evaluation for associativity and operator precedence.

54 / 65

STCE

(P6) e l : F (er) e l .s = er .s + 1

er .i = e l .i + 1

e l .c = er .c

+ ”v” + e l .i + ” =” + ∂er .iF + ”∗ v” + er .i + ” ;”

+ ”v” + e l .i + ”=” + F .c + ”(v” + er .i + ”);”

where

∂er .iF :=


”cos(v” + er .i + ”)” if F .c = ”sin”

”−sin(v” + er .i + ”)” if F .c = ”cos”

”exp(v” + er .i + ”)” if F .c = ”exp”
... etc.

55 / 65

STCE

(P7) e : V e.s = 1

e.c = ”v” + e.i + ” =” + V .c + ” ;”

+ ”v” + e.i + ”=” + V .c + ” ;”

(P8) e : C e.s = 1

e.c = ”v” + e.i + ” =0;”

+ ”v” + e.i + ”=” + C .c + ” ;”

56 / 65

STCE

Single-Pass Tangent-Linear Code
Parsing y = sin(x ∗ 2);

i PARSED ACTION $$.i $$.c
0 V S

. . .
11 V = F (V S

7 R(P7) 1 v
(1)
2 = x (1); v2 = x ;

. . .
13 V=F(eNC S

8 R(P8) 2 v
(1)
3 = 0; v3 = 2;

13 V=F(eNe S

14 R(P5) v
(1)
2 = x (1); v2 = x ;

v
(1)
3 = 0; v3 = 2;

3 v
(1)
1 = v

(1)
2 ∗ v3 + v2 ∗ v

(1)
3 ; v1 = v2 ∗ v3;

11 V=F(e S
15 V=F(e) S

57 / 65

STCE

18 R(P6) v
(1)
2 = x (1); v2 = x ;

v
(1)
3 = 0; v3 = 2;

v
(1)
1 = v

(1)
2 ∗ v3 + v2 ∗ v

(1)
3 ; v1 = v2 ∗ v3;

4 v
(1)
0 = cos(v1) ∗ v

(1)
1 ; v0 = sin(v1);

4 V=e S
10 V=e; S

14 R(P3) v
(1)
2 = x (1); v2 = x ;

v
(1)
3 = 0; v3 = 2;

v
(1)
1 = v

(1)
2 ∗ v3 + v2 ∗ v

(1)
3 ; v1 = v2 ∗ v3;

v
(1)
0 = cos(v1) ∗ v

(1)
1 ; v0 = sin(v1);

y (1) = v
(1)
0 ; y = v0;

. . .
0 $accept ACCEPT

58 / 65

STCE

Single-Pass Tangent-Linear Code
Implementation

See codes/SD TLC and have fun!

Application of the syntax-directed tangent-linear code compiler to the SL
program

i f (x<y) {
x=s i n (x) ;
whi le (y<x) { x=s i n (x ∗3) ; }
y=4∗x+y ;

}

yields

59 / 65

STCE

i f (x<y) {
v 0 =x ; v0=x ;
v 1 =cos (v0)∗ v 0 ; v1=s i n (v0) ;
x =v 1 ; x=v1 ;
whi le (y<x) {

v 0 =x ; v0=x ;
v 1 =0; v1 =3;
v 2 =v 0 ∗v1+v0∗ v 1 ; v2=v0∗v1 ;
v 3 =cos (v2)∗ v 2 ; v3=s i n (v2) ;
x =v 3 ; x=v3 ;

}
v 0 =0; v0 =4;
v 1 =x ; v1=x ;
v 2 =v 0 ∗v1+v0∗ v 1 ; v2=v0∗v1 ;
v 3 =y ; v3=y ;
v 4 =v 2 +v 3 ; v4=v2+v3 ;
y =v 4 ; y=v4 ;

}
60 / 65

STCE Outlook

I lectures

I theses

I jobs

61 / 65

STCE Race

Gradient of

y =

(
n−1∑
i=0

xi

)2

in

I tangent-linear mode

I adjoint mode

for n = 100, 500, 1000,

62 / 65

STCE Race – Results

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 100

 10000

 1e+06

 100 1000 10000 100000 1e+06

ru
n

tim
e

(s
)

n

forward finite differences
central finite differences

tangent-linear
adjoint

63 / 65

