77 IRNWNTHAACHEN

‘STC UNIVERSITY

The Art of Differentiating Computer Programs
using Algorithmic Differentiation (AD)

Uwe Naumann

LuFG Informatik 12
-a/,vml ot domton 33 €013 Software and Tools for Computational Engineering
RWTH Aachen
naumann@stce.rwth-aachen.de
www.stce.rwth-aachen.de

Motivation: Numerical Simulation

e.g., MITgcm

Latitude

‘S'I:CE 1UNIVEI?EI%¥ Form a I Iy

Given: Numerical simulation program

F:R"—=R™ y=F(x)

Wanted: Sensitivity of outputs y € R on inputs x € R" (Jacobian
VF(x))

TRWTHAA(

PRER - Sensitivities / Derivatives

y = f(x); effect of perturbation in x depending on y’ = ¥

v

for large y’ > 0 — large increase in y (instable)

v

for small y’ > 0 — small increase in y (stable)

v

for large y' < 0 — large decrease in y (instable)

v

for small y’ < 0 — small decrease in y (stable)

v

for y/ = 0 — invariant

Outline

» 3 lectures
» 2 tutorials

> see tutorial sheet for contents

Literature

U. Naumann:

The Art of Differentiating Computer Programs.
An Introduction to Algorithmic Differentiation
Number 24 of Software, Environments, and
Tools Series, SIAM, 2012.

naumann@stce.rwth-aachen.de

‘S'I:CE 1UNIVEI?EI%¥ M ore ...

» Computational Differentiation (V3U1, Ba, WS)
» Combinatorial Problems in Scientific Computing (VZUZ, Ma, SS)

cenier— Qur Objective

For a given numerical simulation program, e.g.,

void f(int n, double xx, int m, double xy) {
y[0]=x[0]*(x[0]+x[1]);
: y[1]=sin(x[1]);

build a program that can be used to compute the sensitivites of all
outputs with respect to all inputs (Jacobian matrix).

ey OPECific Objective:

CE 1UNIVERS"Y

Tangent-Linear Code

void f(int n, double xx, int m, double xy)

becomes

void df(int n, double xx, double xdx,
int m, double xy, double xdy)

and computes product of the Jacobian with x in y; not the Jacobian
itself.

‘S'I:CE 1UNIVEI?EI%¥ Exa m p | e

void f(int n, double xx, int m, double xy) {
y[0]=x[0]*(x[0]+x[1]);
} y[1]=sin(x[1]);

v

Single Assignment Code (SAC)
Directed Acyclic Graph (AST, DAG)
Linearized SAC

Linearized AST, DAG

Local Tangent-Linear Code

Chain Rule

v

v

v

v

v

10 /65

ey JACODIAN
‘STCE 1UNIVERSHY

Computation and Validation

void f(int n, double xx, int m, double xy) {
y[0]=x[0]*(x[0]+x[1]);
} y[l]=sin(x[1]);

» driver for tangent-linear code

» validation by finited differences

11/65

Validation through Approximation

\CHEN

‘STCW“S'“ . . :
Forward Finite Differences

Let D C R" be an open domain and F : D — R such that

A forward finite difference approximation of the ith column of the
Jacobian VF at point x° is computed as

%Fo (XO)
OF , o 7 F(x° +e; - h) — F(x)
() = ~ - (1)
i OFm1
o (X)

The ith Cartesian basis vector in R" is denoted by e;.
12 /65

sTce N However ...

Consider the approximation of the first derivative of y = f(x) = x in
single precision |IEEE floating-point arithmetic on a 64 bit machine at
x = 108 by the forward finite quotient

f(x+ h) —f(x)

Vi(x) =~
with h = 0.1. Obviously, Vf(x) = 1 independent of x. The code

float x=1le6, h=le—1;
cout << " (f(x+h)—f(x))/h=" << (x+h—x)/h << endl;

returns 1.25.

13 /65

ey 1angent-Linear Code
‘STC 1UNIVERS"Y

by Forward Mode AD

2
_ n-1 2 _ 1
*<ZI:OXI) ’n*3 8:Tv72Tc&7»v7()
y
Vo = Xo; V1 =X1; V2 =X2 g7 =2 v
=g =V =3
VG:v32+V4; V= e Tt v+ tere i) +ors)
Vg =Vvy, Yy =g ;
76 =1
6:TV3+V4TC6_3-V§1)+C614-V£1) 75 =1
A
53 =1 Coa=1
3ITV3TC370-V(()1) 4ZTV12TC411-V1(1) 5ZTV22TC5>2~V2(1)
A]
a0=2-w Gu1=2-v 5o =2V
1 1 1
O:TXOTXS) l:TxlTxf) 2:TX2Tx§)

14 /65

e FUrther Motivation
‘STCE \UNIVERSITY

Nonlinear Optimization

Consider the nonlinear programming problem (NLP)

in f
2 1

n—1 2
- (z) °)
i=0

void f(int n, double xx, double &y)
{

where, for example,

is implemented as

y=0;
for (int i=0;i<n;i++) y=y+x[i]*x[i];
y=y*y.

}

The function has a global minimum at x = 0.
15/65

Nonlinear Optimization

(x2)*2

16 /65

— 7 RWNTHAA

rcereet Steepest Descent

. computes
XKL = xk — qy - VF(xF)

for some suitable starting value x° = (Xf)),':o,m,,,_l and with a step length

oy > 0, where V£ (x*) denotes the gradient of f at the current iterate.

The step length oy > 0 is, for example, chosen by recursive bisection on
ay starting from «, =1 (0.5,0.25,...) and such that a decrease in the
objective value is ensured

17 /65

— 7RWTHAA

srce e More Applications

18 /65

srcer " Computational Finance

4 WU LIDUR (USL) U8 U ULUUUU (ULUUTU) oy e

|ad | 5d [am|am[em]| 1y | 2v | sy [1ov [Full)

7.35
522
.
N
3.09
T \
—
~
_ _ 0.96
Mo 2008 Dec Jan Feh

©BBA

19/65

sTceee Aeroacoustics

GRAD
231

l 1761
16422
+1.3083
0.97445

| osuos?

-+ 0.30669

0027199
-0.36108
059494

M= ©INRIA

20/65

stcemeet Aytomative Engineering

Coutesy of Volkswagen AG,
Computation by ESI

©VW / ESI

21/65

TRWTHAA

stcem e dcc (version 0.9)

See
www.siam.org/books/se24

for
> source
> use guide

» Windows version

22 /65

GEMER By The Way ...

It also works for, e.g.

void f(int n, double xx, double &y) {
int i=0;
while (i<n) {
if (i==0) { y=x[il]sx[i]; }
else { y=y+x[i]*x[i]; }
i=i+1;
}

Y=Y *Y,

as well as for interprocedural code etc.

23 /65

TRWTHAA(

\UNIVERSITY Pa rSl ng S L2

A Straight-Line Simple Language program is a sequence of statements
described by the grammar G = (V,,, V¢, P, s) with nonterminal symbols

s (sequence of statements)
Vp, =< a (assignment)
e (expression)
terminal symbols

(program variables)

constants)

unary intrinsic)

=~ T 0 <

nonlinear binary arithmetic operator)

(
(
(
(linear binary arithmetic operator)
(
(

remaining single character tokens)

24 /65

‘S'l:CE 1UNIVEI?EI%¥

.. start symbol s, and production rules

(P1) s:a (P2) s:as (P3) a:V =g
P{ (P4) e:ele (P5) e:eNe (P6) e:F(e) }

(P7) e:V (P8) e:C

25 /65

‘S'IECE 1UNIVEI?§I%¥ A m b | g u |ty

» Associativity?
? ?
axbxc=(axb)xc=ax(bx*c)
» Operator Precedence?

a—l—b*c;(a—l—b)*c;a—i-(b*c)

... to be resolved by bison.

26 /65

TRWTHAA(

TER Parser — Parse Tree — Unparser

For example,

void f(int n, double xx, int m, double xy) {
y[0]=x[0]*(x[0]+x[1]);
} y[1]=sin(x[1]);

v

function body is word in G

v

parser yields parse tree

v

linearization annotates parse tree

v

DFS tangent-linear code unparser

27 /65

TRWTHAACHEN .
¢E™&¥ Unambiguous SL?

An SL? program is a sequence of statements described by the grammar
G = (V,, V4, P, s) with nonterminal symbols

s (sequence of assignments) a (assignment)
Vi, = .
e (expression) t (term) f (factor)

terminal symbols

program variables))
constants)

unary intrinsic)

=~ T 0O <

nonlinear binary arithmetic operator)

(
(
(
(linear binary arithmetic operator)
(
(

N—r
—~
I

remaining single character tokens)

28 /65

‘S'l:CE 1UNIVEI?EI%¥

.. start symbol s, and production rules

(P1) s:a (P2) s:as (P3) a:V=g¢
p_ (P4) e:elt (P5) e:t (P6) t:tNf
) (PT) t:f (P8) f:F(e) (P9) f:V
(P10) f:C
implies

> left-most bracketing for chained binary operations

» precedence of nonlinear over linear operations

29 /65

LR(0) Automaton

0
Saccept : . s $end
s:.al.as
a:.V=e;
a
A\
3
2 s:a‘la.s
$accept : s . $end aI as a
$end/ / \
5 1
$accept : s $end . a:V.=¢e; s:as.
\ 4
4
a:V=.e¢e;
e:.eLtl.t
V {t: tNfI.f
¢ f:.F(e)l.VI.C

F f
¢ 30/65

p "]'ﬂ'l'I'I'IAACHEN

E 1UNIVERS"Y

SLR Parsing

V = F(VNC);

STACK | STATE | PARSED | INPUT ACTION
1 0 V [=F(VNC); | S
2 0 1 V=1 F(NC), |Ss
3 0.1 4| V=F]| (VNC); s
4| 014 9| V=F(| WO); s

31/65

77 IRNNTHAA

PR Operator Precedence LR(0) Automaton

ERFEY

DUIATI(R)d AN 272 R
a2

A®

DUIATI(R)d AN 272 @
aran

DTIATI(2)d AN a2 @
N

32/65

Operator Precedence Parsing

V = F(VNC);
STACK | STATE PARSED | INPUT ACTION

1 0 V [=F(VNC); | S

2 0 1 V=|FNC):; |5

3 01 4 V=F | (VNC); S

4 01,4 9 V =F(| VNC); s

5 01,49 11 V =F(V | NO); s

6 01,4911 7 NC); R(P6)

7 01,49 11 V =F(e | NC); S

8 01,4911 15| V=F(eN | C); S

9 0,1,4,9,11,15 13 | V=F(eNC |); S
10 | 0,1,4,9,11,15,13 8): R(P7)
11 0,1,4,9,11,15 13 | V =F(eNe |); S
12 | 0,1,4,9,11,15,13 17): R(P4)
13 01,49 11 V=Fe|)

33 /65

STACK | STATE PARSED | INPUT | ACTION
14 0,1,4,9,11 15| V="F(e) | ; S
15 | 0,1,4,9,11,15 18 : R(P5)
16 0,1 4 V=e]|; S
17 0,14 10 V =g S
18 0,1,4,10 14 R(P3)
19 0 a S
20 0 3 R(P1)
21 0 s S
22 0 2 $end S
23 0,2 5 R(PO)
24 0 $accept ACCEPT

34 /65

Implementation with flex and bison

scanner.1l

%{ #include "parser.tab.h" %}

whitespace [\t\n]+

variable [a—z]

constant [0-9]

%%

{whitespace} {}

"sin” { return F; }

v { return L; }

" { return N; }

{variable} { return V; }

{constant} { return C; }
{ return yytext[0]; }

%%

void lexinit (FILE xsource) { yyin=source; }

35/65

. Implementation with flex and bison

(Sf&WRSIW

parser.y

%token V C F L N

%left L
%left N
%%

s @ a

| a's
a VvV '=" e
e : el e
| e Ne
| F (e)
| V

| C

%%

36 /65

. Implementation with flex and bison

(Sf&WRSIW

parser.y (Code Section)

#include<stdio .h>
int yyerror(char xmsg) { printf("ERROR: %s._\n" ,msg); return —1; }

int main(int argc,charx*x argv)

{
FILE xsource_file=fopen(argv[1l],"r");
lexinit (source_file);
yyparse ();
fclose(source_file);
return O;
}

37/65

Toward Single-Pass Compilation

» Parse Tree Printer

» data associated with parse tree nodes (unsigned int by default)

» access to data corresponding to left-hand side of production rule by $$

> access to data corresponding to symbols on right-hand side of
production rule by postion, i.e. $1, $2,

> see code

» Parser/Unparser

» association of user-defined data (e.g. charx) through redefinition of
preprocessor macro YYSTYPE
> see code

38 /65

ey TOWard Single-Pass Compilation
’ 'ElUNIVERSIW

of Tangent-Linear Code

. attribute grammars:

> assignment-level SAC requires unique auxilliary variable names —
enumeration of subexpression

» enumeration of subexpressions requires number of nodes
(subexpressions) in subtree

» implementation of inherited attributes through global variables in
bison

39 /65

<77 IRNNTHAACHEN
‘STCE 1UNIVERS"Y

S-Attributed Counting of Subexpressions

a:V=e
el F(e")
cellen

c e Ne™

{els:=es+1}
{els:=etst+e?s+1}
{els:=ets+e?s+1}
{els:=1}

{els:=1}

40 /65

sTce™eet |mplementation

a VvV '="e ";" { printf("%d\n",$3); }
e : el e { $$=8$1+%3+1; }

| e Ne { $$=$1+83+1; }

| F (" e ") { $$=$3+1; }

|V { $§=1; }

| C { $%$=1; }

41 /65

7 IRMNTHAACHEN
‘STCE 1UNIVERS"Y

L-Attributed Enumeration of Subexpressions

a:V=e {ei:=0}
el Fle") {els=es+1; ei=ei+1}
efle” {els:=elste?s+1
eni=eli+1 e?ji=etj+es }
ceMNe? {els:=ets+e?s+1
eni=eli4+1; e”i=eti+ets}
VvV {els:=1}
e {els:=1}

42 /65

Implementation

%{ unsigned int sacvc; %}

%token V. C F L N

%left L
%left N
%%
a : V '="{ sacve=0; } e ;'
e : e L e { $%$=sacvc++; }
| e Ne { $$=sacvc++; }
| F'(" e ") { $$=sacvc++; }
| V { $$=sacvc++; }
| C { $$=sacvc++; }

%%

43 /65

ey O1Ngle-Pass Assignment-Level SAC

STCE UNIVERSITY

Attribute Grammar

(P3) a:V=e ei=0
a.c=ec
+ V.c+"=v0;"
(P4) e :eMle? els=ets+e”s+1
eti=eli+1
e?i=emi+es
e.c=elc+e.c
+"v +eli+r= +eti+ Le

+"V e

44 / 65

(P5)e’ : e"Ne? el s=elste?s+1
ei=elit+1

e?j=enj+es

ec=eml.c+e.c
+"v +eli+"=" +emi+ N.c
£V e 4

Shift-reduce conflicts are resolved by specifying the order of evaluation
for associativity and operator precedence.

45 /65

‘S'I:CE 1UNIVEI?§I%¥

(P6)e’ : F(e") els=e"s+1
ei=eli+1
elc=e'.c

+HVH +eI'i+YY:YY +F.C+”(V” +er.i+”);”

(PT)e:V es=1
ec="V' +ei+"
(P8)e: C es=1

ec="V' +ei+"

"+ V4"

"4+ CcH+""

46 / 65

7IRWTHAACHEN
CE 1UNIVERSITY

Parsing y = sin(x * 2);

Single-Pass Assignment-Level SAC

i PARSED | ACTION | $$./ | $$.c Comment

0 V S

11| V=FV S

7 R(PT) 2 Vo = X;

13 | V=F(eNC S

8 R(P8) | 3 |[vs=2

13 | V=F(eNe S

14 R(P5) Vo = X; <...=ec
vz = 2; <...=e"c

] Ne=
eni=2, emi=3
11 V=F(e S

47 /65

‘S'l:CE 1UNIVEI?EI%¥

15
18

10
14

V=F(e)

$accept

ACCEPT

V2 = X;
vz = 2,
Vi = Vo % V3,

V2 = X;
vz = 2;
Vi = Vo ¥ V3]
vo = sin(v1);

<SAANAA

=e'.c
c="sin",eli=1
...=e.c
c="y",ei=0

48 / 65

Single-Pass Assignment-Level SAC

Parse Tree
a
V2 = x;
v = 2;
Vi = Vo ks
vo = sin(v1);
y = wvo;
X
/ sin
_ va = X;
Y - vs =2;
Vi = vk Vs
vo = sin(v1);
(] [w=x)
v3 = 2;
Vi = vk Vs
/1 \\
X 2
V2 = X; v =2;

49 /65

ey O1NEle-Pass Assignment-Level SAC

\UNIVERSITY

Implementation

See codes/SD_SAC and have fun!

Application of the syntax-directed assignment-level SAC compiler to the
SL2 program

X=X*Y ;
x=sin (xxy+3);

yields

v0=x; vl=y; v2=v0xvl; x=v2;
vO0=x; vl=y; v2=v0xvl; v3=3; v4=v2+v3; vb=sin(v4d); x=v5;

50 /65

stcente Single-Pass TLC

> attribute grammar
» implementation with flex and bison

» case studies (trafo + drivers)

51/65

Single-Pass Tangent-Linear Code

Attribute Grammar

(P3) a:V=¢ ei=0

a.c=ec
+V.c+ " _=v0"
+ V.c+"=v0;"
For y = v, we get y(1) = 8—y . Vél) = v.

Linear (P4) and nonlinear (P5) operators can be described by a single
rule P4/5. The differences are restricted to the expressions for the local
partial derivatives.

52 /65

‘S'I:CE 1UNIVEI?§I%¥

(P4/5) e :en0e? els=ets+e”s+1
eni=¢eli+1
e”i=e"i+ets
e.c=elc+ec
+ "V el i = 4 0en O+ e
£ 4 B O+ e
+"V e+ =" +eti4+ Oc+ "V
+e2i+""

where ...

53 /65

. O € {L, N} and the local partial derivatives are

85"1_,'L = 1 s

"1 if L.c="4"
8e’2.iL = I c N)
"1 ifLe="-"

PR TI B if Noc ="%"
en IV .= ”]_/V” + e if N.C:”/” ,

and

g N)V e if Noc="+"
Tl = 4 0 N+ %" 4 Ben iN+" V" e if Ne=")"

As before, shift-reduce conflicts are resolved by specifying the order of
evaluation for associativity and operator precedence.

54 /65

‘S'l:CE 1UNIVEI?EI%¥

(P6) e :F(e") els=e"s+1
ei=eli+1
elc=e"c
+V i = O iF e e+

+HVH +el.i+”:” —|—F.C+” (V” +er.i+,'),

where
"cos(V' +e"i+")" if F.c ="sin"
"—sin(v' +e".i+")" if F.c ="cos"

66’.1',: = ”eXp(V” + er.i+"),, |f F.C — nexpu

etc.

55/65

‘S'I:CE 1UNIVEI?§I%¥

(P7) e:V es=1
ec="V' +ei+"="+V.c+"_"
+"V' +ei+"="+V.c+";"
(P8) e:C es=1
ec="V'+ei+"_=0"
+"Vv'+ei+"="4+Cc+";

56 /65

7IRMNTHAACHEN
CE 1UNIVERSITY

Single-Pass Tangent-Linear Code

Parsing y = sin(x * 2);

i PARSED | ACTION | $$./ | $%$.c
0 Vv S
11| V=F(V
7 R(PT) 1 vz(l) =xM; v, =x
13 | V=F(eNC S
8 R(P8) | 2 vél) =0, 3 =2;
13 | V=F(eNe S
14 R(P5) v2(1) =xM); v, = x;
vél) =0; v3 =2
3 vl(l) = V2(1)*V3+V2*V3E1); Vi = Vo % V3
11 V=F(e S
15 V=F(e) S

57 /65

‘S'l:CE 1UNIVEI?EI%¥

(1) = v2(1) * V3 + Vo % V,ng); Vi = Vo % v3;
4 vél) = cos(vy) * vf) v = sin(vy);
4 V=e S
10 V=¢; S
14 R(P3) WY = x0); v, = x;
v:,gl) =0; 3 =2
Vl(l) = V(l) * V3 + vo x V3(1); Vi = Vo ¥ V3;
() = = cos(vy) * V1() v = sin(vy);

y(l)_V P Y =W,

0 | $accept | ACCEPT

58 /65

ey OiNgle-Pass Tangent-Linear Code

CE 1UNIVERS"Y

Implementation

See codes/SD_TLC and have fun!

Application of the syntax-directed tangent-linear code compiler to the SL
program
if (x<y) {

x=sin(x);

while (y<x) { x=sin(xx3); }

y=4xx+y ;

}
yields

59 /65

RWTHAACHEN
\UNIVERSITY

if (x<y) {

vO_=x_; v0=x;

vl _ =cos(v0)xv0_; vl=sin(v0);

x_=vl_: x=vl;

while (y<x) {
v0_=x_; v0=x;
vl_=0; v1=3;
v2_=vO0_xv14+vOxvl_; v2=vOxvl:
v3_=cos(v2)xv2_; v3=sin(v2);
x_=v3_; x=v3;

v0_=0; v0=4;

vl_=x_:; vl=x;
v2_=vO0_xv1+vOxvl_; v2=vOxvl;
v3_=y_; v3=y;

vd_=v2_+v3_; vid=v2+v3;
y_=v4_; y=v4;

} 60 /65

‘S'IECE 1UNIVEI?§I%¥ O utlook

> lectures
> theses

> jobs

61/65

stcerer Race

Gradient of

in
> tangent-linear mode
» adjoint mode

for n = 100, 500, 1000,

62 /65

stce™e" Race — Results

1e+06

T
forward finite differences —+—
central finite differences <~
tangent-linear ------

adjoint & o

10000

100

run time (s)
o
o
=
T

0.0001

1e-06 - b

1le-08 - b

le-10 . . .
100 1000 10000 100000 1le+06

63 /65

