, 2
§“‘((‘(- i(\w; §(\M(1L j}_\—*‘*a‘“%(g ¢

- W(vi()?(.&()w’s = O;(b‘/l“‘ ()’)TQLQ).L\QQ {)NQp
~ \wmbc‘guow\ =+ SR e

e

N4 (o) Audounsl
1 &wc(‘%mJ(Uou 7.%. %e\eeer& DS #aqu
#

2 Kehd 2B S fas
4. V=

<

di. (av fle pobabic]] 1w wideglu SSwill wu(oS
Qu(ih&m«e@q Ne&(\lmm{ wesdie /Qoﬂuk(«‘om
duw% ‘ A M eides ,oews e g{l.}é«,‘w
Toutde offl wedu , 28, wa(d phn SL
Pﬂ‘rm wif Uuan Zubis i Vit e ceveanans

G’Q"’ Ui Keas %Z«(.(do ol &@Wi7 {;ej(\uu»\

% Thliows fiu e el s wadals s TOS
%((%oq!Lu(ﬁq (T@J(u(‘q-{'l - k. N(‘o%{ém{qﬂ - > g\qmgo?f
[S, 4, \/

b 2l aucliads ddy SGft don lsprefondie Spubel
’ﬂ(0% it Alew 7roo(Kkl1w e {

4 4. Syntax Analysis

197

0
$accept - . s $end
s: aj as
a: V=c¢;
S
a
A
3 «
2 s:a.|la s ’
$accept : s . $end s: al. as a
a: V=c¢;
v
$en $
5 i
$accept s $end a:V.=¢ tas
4
a: V= _¢:
c: ¢Lt] t
/Vt: tNf] o f .
. f:. F(e)} Vi.C ~
¢
10
a:V=ec
() cre Lt
P F L \
. i5
. ¢ a: V=
s F(e)| v CLC
t/ v cl f
e
11 17
et f:F(e)
t:t Nf c:e. Lt
N) \
14
20 erel .t
f:F{e). e tNf| f
f: F(e)}] VI|.C
t
Vi ¢ \
18 12
ciclLt tof
N tot NF
E
16
t:tN f
f: F(e)|l V| C
— NGy
19 8
t:tNf TV f:C.

[l Gowes QNksvgkmiv

Figure 4.13. Characteristic automaton for SL? programs.

Ko

A‘\‘W-\ (

uv

e(‘cfeqh'g‘c Q\J " k

44 Syntax Analysis 201

Table 4.2. SLR Parsing of V = F(VNC);” based on Definition 4.15;
we show the contents of the STACK, the current STATE in the characteristic au-
tomaton, the string PARSED so far, the remaining INPUT, and the ACTION fo
be taken in each state. The parse tree can be derived by bottom-up interpretation of
the reductions in the last column.

STACK | STATE PARSED | INPUT ACTION
1 D V[= F(VNC); | S
2 0 1 v=|FVNC); |8
3 0,1 4 V=F| (VNC) S
4 0,1,4 9 V= F(| VNCY; s
5 0,1,4,9 13| V=FV | NC) S
6 0,1,4,9,13 7 NC); R(P9)
7 0,1,4,9 13 vV =F(f | NC); S
8 0,1,4,9,13 12 NC); R(PT)
9 0,1,4,9 13 vV =F(t | NC); S
10 0,1,4,9,13 11| V=F@N|C) s
1 0,1,4,9,13,11 16 | V=FeNC |); S
12 | 0,1,4,9,13.11,16 8); R(P10)
13 0,1,4,9,13,11 16 | V=FUNf | % S
14 | 0,1,4,9,13,11,16 19): R(P6)
15 0,1,4,9 13 V=F@|) s
16 0,1,4,9,13 11)i R(P5)
17 0,1,4,9 13 V=Fel|) S
18 0,1,4,9,13 7| v=F|; S
19 0,1,4,9,13,17 20 ; R(P8)
20 0,1 4 v="F|; S
21 0,1,4 12 : R(PT)
22 0,1 4 V=i]; s
23 0,1,4 11 : R(P5)
24 0,1 4 V=el: S
25 0,1,4 10 V=e S
26 0,1,4,10 15 R(P3)
27 0 a S
28 0 3 R(P1)
29 . 0 s S
30 0 2 s$end S
31 0,2 5 R(PO)
32 0 Saccept ACCEPT

4.4.5 Parser for SL? Programs with flex and bison

We use flex and bison to implement a parser for SL? programs. For the sake of
brevity, variables and constants are restricted to lowercase letters and single digits,
respectively. The flex source file is shown in Listing 4.2. Whitespaces are ignored
(line 5). Intrinsic functions (line 12), linear operators (line 13), and nonlineax
operators (line 14) are represented by a single instance each. The named tokens
(F, L, N, V, and C) to be returned to the parser are encoded as integers in the file

SLR (\Lsgu

0
$accept > . s $end

$accept -> s . $end

5
$accept -> s $end .

! 9
: f>F. (e
1
1
1
1
1
1
1
1
1
I
1
|
f
I
I
: , 17 11
| / e->e.Lt e->t.
!) f->F'(e." t>t Nf
1
1 /l
;
1 1§ I \Y
i /
] !
] !
1 U 20
1 N
“ , [>FE'(Ce")
\ 1 —— -
A ! ///
C \ ! P N
\ ! P
AY H /z’
12
t->1
C
16
t>tN.{
'
C if
b/ 8

{>C.

%4
#include "parser.tab.h”
int lineno=l;

%}

whitespace [\t]+
newline \h

variable fa-z]

constant [0-9]
{whitespace} {1}
{newline} { lineno++; }
"sin" { return F;
nyn { return L; }
nxn { return N; }
{variable} { return V;
{constant} { return C;

{ return yytext[0];

oe
oL

void lexinit (FILE *source)

{

yyin=source;

}

§<l¥tUiea.(~

oe

{

#include<stdio.h> // for FILE
#include<iostream> // for cout

extern int lineno;
extern int yylex():
extern void lexinit (FILE™*);

extern int yyerror (const char*);

) {)#&u ‘

$token V C F L N

o\

oe
ov

S a
| a s
a’.vv—_' e 1,'
e e L ©
It
t : t N f
|
f. Fl(l e l)l
| V
| C

int yyerror (const char *msg)

std::cout << "Error: " << msg <<" in line "<< lineno
<<" of the input file."<< std::endl;
exit(-1);

int main(int argc,char** argv)
{
FILE *source file=fopen(argv[l],"r");
lexinit (source_file);
yyparse () ;
fclose (source file);
return 0;

parse : parser.tab.c lex.yy.C
g++ —-g $~ -1fl -lm -o $@

parser.tab.c : parser.y
bison -g -v --defines=parser.tab.h -0 $@ s$<

lex.yy.c : scanner.l
flex $<

clean
rm -f parser.tab.* lex.yy.* parse parser.output

parser.dot parser.pdf

.PHONY: clean

UA(k&t{tt

200 Chapter 4. Derivative Code Compilers—An Introductory Tutorial

0
Saccept: s Send
si.al os

Vol

e

2
Saceept- s Send

Send

N
Saccepic s $end

4
V= ¢
e elel eNe| Ftej] . ¥V] C

1t
el e)
e: ele] eNel Fee)| V] C

v e

15
ee Lele Neiti(e)

J N { R
}4 -’/ -
I

=
%
Eies el &
el & R -
N e eLe| eNel F(er] V].C

\
in

ere Lelele le Ne
"\
B,
13

ceN e -

e ele] eNej F(enl Vi €}~
L

17

X
.

e:e Lele NejeNe

Figure 4.14. Characteristic automaton for SI? programs.

QL@LO) Adows wit Grles Pl
Crv weeboddonbige @rmaetkik

202

Chapter 4 Derivative Code Compilers—An Introductory Tutoria!

Table 4.3. Parsing “V = F(VNC);” based on Definition 4.16. We show
the contents of the STACK, the current STATE in the characteristic automaton, the
string PARSED so far, the remaining INPUT, and the ACTION to be taken in each
state. The parse tree can be derived by bottom-up interpretation of the reductions

in the last column

STACK | STATE PARSED | INPUT ACTION
1 0 V | = F(VNC): | S
2 0 1 V=| F(VNC) S
3 0,1 4 V=F]|(VNC) S
4 0,1,4 9 vV =F(| VNC) S
5 0,1,4,9 11 vV =FV | NC); S
6 0,1,4,9,11 7 NC); R(P6)
7 0,1,4,9 11 V =Fle | NC); S
8 0,1,4,9,11 15| V=FeEN|C) S
9 0,1,4,9,11,15 13 | V =F(eNC |); S
10 | 0,1,4,9,11,15,13 8)i R(PT)
11 0,1,4,9,11,15 13| V =F(eNe |); S
12 | 0,1,4,9,11,15,13 17); R(P4)
13 0,1,4,9 11 V=Fle |) S
14 0,1,4,9,11 15 V=F) | ; S
15 0,1,4,9,11,15 18 ; R(P5)
16 0,1 4 Ve=el; S
17 0,1,4 10 V=e S
18 0,1,4,10 14 R(P3)
19 0 a S
20 0 3 R(P1)
21 0 E] S
22 0 2 $end S
23 0,2 5 R(PO)
24 0 $accept ACCEPT

parser .tab h. Its inclusion into lex yy.c prior to any other automatically generated
code is triggered by the corresponding preprocessor directive at the beginning of
the first section of the flex input file (lines 1-3). The remaining unnamed single
character tokens are simply forwarded to the parser (line 17). A special lexinit

O‘b t(-‘f('ﬁ.zeco.m%(')d%_»

routine is provided to set the pointer yyin to the given source file (line 21).

0
Saccept -> . s $end

5 {
#include "parser.tab.h"

%}

whitespace [\t\nl+
variable [a-2z]
constant [0-9]

ow
oo

{whitespace} {1}

"sin" { return F; }

myn { return L; }

" { return N; } Q \
{variable} { return V; } ¢ ‘)'Q
{constant} { return C; }

{ return yytext[0]; }

o
ove

void lexinit (FILE *source) { yyin=source; }

%token V C F L N

3left L
$left N
L pmpt\
| a s
a,ZV'S' e l,v ;
e e L e
| e N e
‘ Fl(l e l)l
Y
| C

oo
o\®

#include<stdio.h>

int yyerror (char *msg) { printf ("ERROR: %s \n",msg); return -
1; }

int main(int argc,char** argv)
{
FILE *source file=fopen(argv[1l],"r");
lexinit (source file);
yyparse();
fclose (source file);
return 0;

parse : parser.tab.c lex.yy.cC
gcc -g $~ -1fl -lm -o $@

parser.tab.c : parser.y
pison -g -v --defines=parser.tab.h -o 5@ $<

lex.yy.c : scanner.l
flex $<

clean
rm —-f parser.tab.* lex.yy.* parse parser.output
parser.dot parser.pdf

.PHONY: clean

\Md‘i 0(1(

