A%S(‘gu,u.\u((- (PUJ QAQ
<%: ueder, fx 1@(L

Selliee

\ (
[¢] o e*
=14y
e | =T
L,,/\ Il eb*

g, | -

Xd| "
\ 1 o/ \\O%a 3l

ng

%Co'] ’k(ﬂ YC';(

(< (oG} @) s LG

S-abvitld el &‘u,toqs(ﬂc

A

14

7 1 A
Mu'u C\iw. (—o kuom l\“d.&c o(‘
L "9
/

l\u«l&wu‘%‘__\ P”(\K[\ AT 9(R 1\1 Lu-(% V(WI‘QM

dux Vo uves

218 Chapter 4. Derivative Code Compilers—An Introductory Tutorial

Table 4.4. Syntaz-directed assignment-level SAC for y = sin(zx * 2).

i PARSED | ACTION | $3.¢ | $3.c Comment
0 N S
11 V=F{V S
7 R(PT7) 2 vp =T
13 | V=F(eNC
8 RP8) | 3 |[ws=2
13 | V=F(eNe S
14 R(P5) vy = T, <. .=¢€te

vy =25 <. =¢€%e¢

1 V1 = V2 * U3; Neg="x%"
eli=2¢€e?i=3

11 V=F(e S
15 V=F(e) S
18 R(P6) vy = T <

vz = 2; <

V1 = Ug * U3; <...=¢€.c

0 l:v_()':sin(vl); Fe="7sin”, e i=1

4 V=e S T
10 Ve=e; S
14 R(P3) vy = x; <

V3 = 2; <

V1 = V2 * U3 <

v = sin(v1); <. .. =ec

y:v(ﬂ Ve="y",ei=0
0 $accept | ACCEPT

#define BUFFER_SIZE 100000

typedef struct {
int i;
charx* c¢;

} ptNodeType;

#define YYSTYPE ptNodeType

The bison preprocessor macro YYSTYPE is set to ptNodeType for this purpose. A
sufficiently large buffer of characters is required to store the SAC. For simplicity,

we define its size statically in ast.h.
The flex input file includes ast.h prior to parser.tab.h. Otherwise, it is

similar to Listings 4.9 and 4.10.

S&dw-m‘mh‘ei@ «S*C- %('Z«\u@.‘@.wg/\a%e

o Q(‘\\hx ~dircebd A% fquiient -
;include <stdio.h> (‘Q\,Q{\ gAC

#include <stdlib.h>
#include "ast.h"

static int sacvce; // sac variable counter q*4§* .\

void get_memory(YYSTYPE* v) |
v—>c=malloc(BUFFER_SIZE*sizeof(char)); }

void free memory (YYSTYPE* v) { if (v->C) free(v->c); }

%}

$token VC F L N

$left L
%left N

o\
o

s12 program : s {
printf("%s",$1l.c);
free memory (&S1);
}i
s : a
| a s {
get memory (&3);
sprintf ($$.c,"%s%s",$1.¢c,%82.¢C);
free memory (&$1); free_memory(&$2);

a : V '='" { sacve=0; } e ";' {
get memory (&$S);
sprintf ($$.c,"$s%s=vsd;\n",$4.c,51.c,%4.3);
free memory(&$1); free _memory(&354);

e : e L e {
$$.Jj=sacvctt;
get memory (&$$);
sprintf ($$.c, "%s%sved=vsdssvsd; \n",
$1.¢,%3.¢,8%.3,$1.3,%2.¢,83.3)
free memory (&S1);

I e N e {
$S.j=sacvctt;
get _memory (&$%);
sprintf($$.c,"%s%sv%d=v%d%sv%d;\n",
$1.¢,%$3.¢,8%.3,%1.3,%2.¢,83.3) 7
free memory (&$1);

| F'(' e ") {
S.j=sacvcet+;
get memory (&3);
sprintf ($$.c, "$sved=sin (vsd);\n",
$3.¢,$5.3,$3.3)
free memory (&3$3);

v {
$S.j=sacvct++;

get memory (&$$);
sprintf ($$.c,"vsd=%s;\n",$$.3,81.c);
free memory(&S1);

I C {
S.j=sacvc++;
get memory (&$$);
sprintf ($$.c,"vsd=%s;\n",$$.3,51.c);
free memory(&S1);

oe
oo

int yyerror{char *msg) { printf ("ERROR: %s \n",msg); return -
1; 1

int main(int argc,char** argv)

{
FILE *source_file=fopen(argv[l],"r");
lexinit (source file); yyparse(); fclose (source file);
return 0;

% {
#include "ast.h"
#include "parser.tab.h" S Cluved (

#include<stdlib.h> // malloc
#include<string.h> // strcpy

void to_parser () {
yylval.c=(char*)malloc(BUFFER_SIZE*sizeof(char));

strecpy (yylval.c,yytext);

o0 v

}

whitespace [\t\n]l+

variable [a—2z]

constant [0-9]

{whitespace} {}

"sin" { to parser(); return F; }

; return L; }
; return N; }

"+")
)
y; return V; '}
)
]

to parser
to parser (
{variable} to parser (
{constant} { to parser(

0

{ return yytext]|

"W

; return C; }
;o)

oe
oe

void lexinit (FILE *source) { yyin=source; }

ast.h

$define BUFFER SIZE 100000

#define YYSTYPE astNodeType
bk

sdsac : parser.tab.c lex.yy.cC
gcc -g $~ -1fl -o $@

parser.tab.c : parser.y

bison -d $< .
U e (4 le
lex.yy.c : scanner.l
flex $<

clean
rm -f parser.tab.* lex.yy.* sdsac

.PHONY: clean

test.cpp

#include<iostream>
#include<cmath>
i3ing namespace std;

f(ocounles x, doubied vy) |
doucie v0,vl,v2,v3,v4,v5h;
//#include "test.in"
#include "test.out”

}

fix,vy):
cout << x << "\t" << y << endl;

0;

45 Single-Pass Derivative Code Compilers 225

Table 4.5. Syntaz-directed tangent-linear code for y = sin{x*2); set vgl) =

vi_ to establish the link with the code that is generated by the syntaz-directed tangent-
linear code compiler.

i PARSED | ACTION | $3.i | $$.c
0 \Y S
11| V=FV S
7 R(P7) 1 ’7}&1) =z uy = ’I,J
13 | V=F(eNC s
8 RPS) | 2 ||vi) =0 s =2
13 | V=F(eNe S
14 R(P5) Ur(zl) =z, vy =
?Jél) =0; v3=2;
3 ml) = vél) * Uz + Vg * Uél); V1 = Vg * v.’s;J
11 V=F(e S
15 V=F(e) S
18 R(P6) o) = 2W; vy =
vél) =0; v =2;
vgl) = v;l) * U3 -+ Vg ¥ vél); VL = Vg * V3
4 P)él> = cos(v1) * vgl); vp = sin(vll]
4 V=e S
10 V=e; S
14 R(P3) ol = 2D vy = g
vél) =0; vz = 2;
1;5” = vé” * vg + v * vgl); vy = V2 * V3]
v(gl) = cos{v1) * v§1); vo = sin(v1);
[;(U = U(()l)§ y= va
0 $accept | ACCEPT
if(x<y) {
x=sin (x);
while (y<x) { x=sin(xx3}; }
y=4*x+y ;
}
yields
if (x<y) {

vl.=x.; v0=x;
vl_=cos (v0)xv0.; vl=sin(v0);
x.=vl_; x=vl;

%Su‘*k —MEMQL(N Tn\q((a.((m\?(\ekb GOQ,(

%(thx - OLiﬁe(/(-*(Twe{up(N T CQ(L

o

{

#include <stdio.h>
#include <stdlib.h>
#include "ast.h"

B8
extern int yylex();

extern void lexinit (FILE*);

static int sacvc; // SAC variable counter

void get_memory(YYSTYPE* v) A
v->c=malloc (BUFFER SIZE*sizeof (char));
}
void free memory (YYSTYPE* v) {
if (v->c) free(v->c);
}

oo

}

$token VC F L N

$left L
$left N

o
o

sl program : s
{
printf("%s",81.¢c);
free memory (&S1);

}
s : a
| a s
{
get memory (&$$);
sprintf ($$.c,"%s%s",$1l.c,%2.¢);
free memory(&$1); free memory(&$2);
}
a: v '="'
{
sacve=0;
1
e l,.l
{
get memory (&5%);
sprintf(S.c,"$s%s _=vid_; %s=vid; \n",
$4.c,81.c,$4.3,81.¢,84.3)7
free memory (&$1); free memory(&$4);
}

e : el e

$$.j=sacvct+;
get memory (&3$8);

sprintf ($$.c, "$s%sved_=vid_%svsd_; vsd=vsd%ssvsd; \n",
$1.¢,%3.¢,$%.9,81.3,%2.¢,$3.3,
$$.3,%81.3,%2.¢,83.7);

free memory(&$1);

}
e N e
{
if (!stremp($2.c,"*™M)) |
58, j=sacvc++;
get memory (&3$$);
sprintf ($$.c,

"$s%sved =vid *ved+vedrved_; vid=vedEsvid; \n",
$1.¢,%$3.¢,%$%$.53,%1.3,$3.3,%1.3,83.73,
$$.3,$1.3,%2.¢,83.3)

free memory (&$1);

if (lstrcmp($2.c,"sin")) {
$S.j=sacvct+;
get memory (&$$);
sprintf ($$.c¢,"$svsd =cos (v%d) *vsd ; vsd=sin(v%d);\n",
$3.¢,8$.3,$3.3,83.3,5%.3,93.3)7
free memory (&3$3);

}
Y

$$.j=sacvct+;

get memory (&$3);

sprintf($$.c,"vsd =%s_; vsd=%s;\n",$$.3,51.c,$5.3,51.¢c);
free_memory(&$l);

[C

S.j=sacvc++;

get memory (&$3);

sprintf ($$.c,"vsd =0; v%d=%s;\n",$$.3,$5.3,%1.¢c);
free memory (&$S1);

oe
o

int yyerror (char *msg) {
printf ("ERROR: %s \n",msg);
return -1;

}

int main(int argc,char** argv) {
FILE *source_file=fopen(argv[l],"r");
lexinit (source file);
yyparse ()
fclose (source_file);
return 0;

5 {
#include "ast.h"
#include "parser.tab.h"

#include<stdlib.h> // malloc
#include<string.h> // strcpy

void to parser() { »
yylval.c=(char*)malloc (BUFFER_SIZE*sizeof (char));

strecpy (yylval.c,yytext);

OO

}

whitespace [\t\n]+

variable [a-z] gC('u.uu Q
constant [0-9] ’
{whitespace} {3

"sin" { to parser(); return F; }

; return L; }
; return N; }

" to parser ()
)
y; return V; }
)
]

{ (

R { to parser(
{variable} { to parser/(
{constant} { to_parser(
{ return yytext][O

; return C; }
I

o©
oe

void lexinit(FILE *source) { yyin=source; }

ast.h

$define BUFFER _SIZE 100000

{

Poasmtiioda Ty

fidefine YYSTYPE astNodeType

<k

sdtlc : parser.tab.c lex.yy.cC
gece $° -1f1 -o s@

parser.tab.c : parser.y
bison -d $<

lex.yy.c : scanner.l
flex $<

clean
rm -f parser.tab.* lex.yy.* sdtlc

.PHONY: clean

s lee (A‘l(

teSt.cpp‘

#include<iostream>

#include<cmath>
using namesgace std;

cnn £ (Zouclies x, doubled X, dourtle y, deunle y)|
BISEsS: v0,vl,v2,v3,v4d,v5;

> v0_,vl ,v2 ,v3 ,vd ,v5 ;

"test.out”

£ (%, X_I§I y_) ;“

x=1.,y=2.;

x =0.,y =1.;

f (xyx ,¥,Y)3

cout << x << endl;

return 0;

o b Tl Gome Gl

teSt_fd.cpp

#include<iostream>
#include<cmath>
Gt namaznace std;

cie& X, doubles y) o
icunis vO,vl,v2,v3,v4,v5;
#include "test.in”

raturn O

|

oy

el i

A

