2) Lehrstuhl fiir Informatik 2 Compiler Construction SoSe 2012

Modellierung und Verifikation von Software Exercise 0 (Hand in until 16.04.2012)
AOR Priv.-Doz. Dr. Thomas Noll Friedrich Gretz, Christina Jansen
Remarks:

e During the exercises we will implement our very own compiler for the simple language WHILE.
e The target code will be Jasmin : jasmin.sourceforge.net

e The following programs implements the gcd-algorithm in WHILE.

1 /* GCD-Computation of x and y
2 w/ WHILE */

3 int x; int y;

4 x = read();

5 y = read();

6 while ( x !'=y ) {
7 if (y <= x) {
8 y=3 - %
9 } else {

10 X =X -
11 }

12 }

13 // Output result
14 write("GCD: ");

15 write(x);

e Our WHILE programming language should capture variable declarations (ints only), assignments, arithmetic
operations, conditional branches, loops, basic I/O and Java-style comments.

Exercise 1 (Lexemes, Symbol Classes and Tokens): (2 Points)

Give a complete list of the symbol classes and corresponding tokens needed for the lexical analysis of WHILE.
Decompose the if-branch of the gcd-program (lines 7-9) into a sequence of lexemes and translate each lexeme
into a symbol.

Exercise 2 (Simple Matching Problem): (3 Points)

a) Give regular expressions and languages for the keyword w hile, identifiers ids and comments cmts in WHILE.
Denote the languages by Lynite, Lids: Lemts-

b) Derive an NFA that accepts w € Lioken, token € {while, ids, cmts} in state Groken.

c) Solve the simple matching problem for the input string / * stupld commen + %/ using the algorithm given
in the lecture. Apply the DFA- as well as the NFA-method.

Exercise 3 (DFA Implementation): (5 Points)

This course will be accompanied by a series of practical assignments with the goal to build our own compiler.
Please consider the following general remarks regarding implementation assignments:
e All implementation tasks must be done in Java.

e Submitted code which does not execute is worthless (0 points). Therefore make sure you submit any third
party libraries (jar files) that you have used and if you need any adaptation of the classpath in the javac/java
call, then provide us the command line that will run your code. Of course, you should test you code, too.



o

Lehrstuhl fiir Informatik 2
Modellierung und Verifikation von Software

Compiler Construction SoSe 2012
Exercise 0 (Hand in until 16.04.2012)

e You may use third party libraries that do not simplify the assignment considerably. l.e. you might want to
use some data structures from, say Guava!, but you should not use some library that would solve the task

automatically like lexer or parser generator libraries.

e Please document your code properly, such that it is possible to grasp the your ideas quickly.

e The code will be graded mostly by functionality but also by its clarity and style.

In this exercise we make the first steps towards building a lexer. The task of a lexer is to read an input string and
return a sequence of symbols. For now, we start by building deterministic finite automata that recognise particular

tokens. Please consider the hints below.

1. Write a class, say DFA.java, that is instantiated with a string. This class should represent a DFA that

recognises exactly the given string.

2. Write a class, say CommentDFA java, that recognises single-line and multi-line comments. (Note, that a
single-line comment is terminated by a newline symbol \n (Linux), carriage return \r (Macintosh) or \r\n

(Windows).)

For testing, instantiate CommentDFA and DFA("while"). Let them both run on the following input words: "while",
"While", " /**while* /", "/* */* /" "/ /foo\n". The expected output should be something like :

$java Main testl.txt
input: while

WHILE: accept
COMMENT: refute

$java Main test2.txt
input: While

WHILE: refute
COMMENT: refute

$java Main test3.txt
input: /**whilex/
WHILE: refute
COMMENT: accept

$java Main test4.txt
input: /* x/*/
WHILE: refute
COMMENT: refute

$java Main testb.txt
input: //foo

WHILE: refute
COMMENT: accept

Hints:

¢ It might be worthwhile to create an abstract class, say AbstractDFA java, that implements the common

methods of all your DFA implementations.

e On the course web page we provide you the Main.java file that contains everything necessary to read input

as a string from a given file.

Lhttp:/ /code.google.com/p/guava-libraries/



