
2 Lehrstuhl für Informatik 2

Modellierung und Veri�kation von Software

Compiler Construction SoSe 2012

Exercise 1 (Hand in until 30.04.2012)

aaAOR Priv.-Doz. Dr. Thomas Noll Friedrich Gretz, Christina Jansen

Exercise 1 (Time and Space Complexity): (2 Points)

Consider the comparison of the complexities for DFA and NFA method given in lecture three, slide 9.

a) Give an example regular expression, for which the DFA method requires the worst-case space complexity

O(2j�j). Argue why your answer is correct.

b) Give an example regular expression, for which the NFA method requires the worst-case time complexity

O(j�j � jw j). Defend your answer shortly.

Exercise 2 (Longest First Match Principle): (4 Points)

a) For extended matching two principles have been introduced to resolve nondeterminism during analysis,

the longest match principle and the �rst match principle. Argue why these principles are reasonable to

use. Instead, we could have insisted on an unambiguous de�nition of the symbol classes, i.e. for regular

expressions �1; : : : ; �n it should hold J�iK \ J�jK = ;, for all 1 � i < j � n. Why is this not a good idea

from a practical point of view? Give examples to support your explanations.

b) Let �1; : : : ; �n be regular expressions over � and w 2 ��. In the lecture it was assumed that " 62 J�iK 6= ;

for all i 2 f1; : : : ; ng. Show that these are reasonable assumptions by proving the following proposition:

� If J�iK = ; for some i 2 f1; : : : ; ng there exists no �m-analysis of w w.r.t. �1; : : : ; �n that is not a

�m-analysis of w w.r.t. �1; : : : ; �i�1; �i+1; : : : ; �n as well.

� If " 2 J�iK for some i 2 f1; : : : ; ng then the �m-analysis of w w.r.t. �1; : : : ; �n is not unique (if it

exists).

Exercise 3 (Backtracking DFA): (4 Points)

Let �1 = wr ite, �2 = �(�jN)� where � := (aj : : : jz jAj : : : jZ); N := (0j1j : : : j9).

a) Construct DFAs Ai for �i such that L(Ai) = J�iK.

b) Construct DFA A such that L(A) = L(A1) [L(A2).

c) Determine the �rst match partitioning of the set of �nal states in A.

(The regular expressions are ordered (�1; �2).)

d) Determine the set of reachable and productive states in A.

e) Compute the run of the corresponding backtracking DFA for input wr iteln(). Provide the run by giving the

corresponding con�gurations.

Exercise 4 (Lexer Implementation): (10 Points)

The goal of this exercise is to build our own lexer which transforms and input string into a list of tokens.

� For each token implement or generate a DFA.

� Build the parallel composition of these DFAs.

Hint: You do not have to build one �monolithic� automaton, instead whenever the parallel automaton makes

one step, you can mimic this by performing a transition in each of the individual automata.

1

2 Lehrstuhl für Informatik 2

Modellierung und Veri�kation von Software

Compiler Construction SoSe 2012

Exercise 1 (Hand in until 30.04.2012)

� Partition the �nal states of the parallel automaton according to the �rst match principle.

� Implement the backtracking mechanism.

Given an input �le with a WHILE program, e.g.:

1 /* GCD-Computation of x and y
2 w/ WHILE */
3 int x; int y;
4 x = read();
5 y = read();
6 while (x != y) {
7 if (y <= x) {
8 y = y - x;
9 } else {
10 x = x - y;
11 }
12 }
13 // Output result
14 write("GCD: ");
15 write(x);

your program should generate a list of token like this:

[INT, ID, SEMICOLON, INT, ID, SEMICOLON, ID, ASSIGN, READ, LPAR, RPAR, SEMICOLON,

ID, ASSIGN, READ, LPAR, RPAR, SEMICOLON, WHILE, LPAR, ID, NEQ, ID, RPAR, LBRACE,

IF, LPAR, ID, LEQ, ID, RPAR, LBRACE, ID, ASSIGN, ID, MINUS, ID, SEMICOLON, RBRACE,

ELSE, LBRACE, ID, ASSIGN, ID, MINUS, ID, SEMICOLON, RBRACE, RBRACE, WRITE, LPAR,

STRING, RPAR, SEMICOLON, WRITE, LPAR, ID, RPAR, SEMICOLON]

2

