

Exercise 1 (Characterisation of LL(1)):

(4 Points)

In the lecture two characterizations of $LL(1)$ have been given:

- $G \in LL(1)$ iff for all leftmost derivations of the form

$$S \Rightarrow_l^* wA\alpha \left\{ \begin{array}{l} \Rightarrow_l w\beta\alpha \\ \Rightarrow_l w\gamma\alpha \end{array} \right.$$

such that $\beta \neq \gamma$, it follows that $fi(\beta\alpha) \cap fi(\gamma\alpha) = \emptyset$.

- $G \in LL(1)$ iff for all pairs of rules $A \rightarrow \beta \mid \gamma \in P$ (where $\beta \neq \gamma$):

$$la(A \rightarrow \beta) \cap la(A \rightarrow \gamma) = \emptyset$$

- Lift the second definition to $LL(k)$ for $k \in \mathbb{N}^+$. (The first definition was given for $k \in \mathbb{N}^+$ in the lecture.)
- Show that the definitions are not equivalent by showing that the following grammar is in $LL(2)$ according to the first definition but not according to the second definition (also referred to as *strong LL(2)* property).

$$\begin{array}{l} S \rightarrow aAab \mid bAbb \\ A \rightarrow a \mid \epsilon \end{array}$$

- Explain (in a few words) why the definitions are not equivalent.

Exercise 2 (Find an equivalent LL(1) grammar):

(4 Points)

Consider the following grammar G :

$$\begin{array}{l} S \rightarrow (L) \mid a \\ L \rightarrow L, S \mid L, SS \mid S \mid SS \end{array}$$

- Show that G is not an $LL(1)$ grammar.
- Transform G into an equivalent grammar satisfying the $LL(1)$ property.
- Prove that G has the $LL(1)$ property.

Exercise 3 (LL(1) grammars are never ambiguous):

(2 Points)

Show that for every context-free grammar G the following holds:

$$G \text{ ambiguous} \Rightarrow G \notin LL(1)$$

Exercise 4 (Deterministic Top-Down Automaton):

(4 Points)

Consider the grammar $G = (N, \Sigma, P, start)$ covering boolean expressions of WHILE with:

- $N := \{start, guard, rel\}$

- $\Sigma := \{AND, OR, ID, EQ, LEQ\}$
- $start \rightarrow guard$
- $guard \rightarrow rel \mid guard \ AND \ guard \mid guard \ OR \ guard$
- $rel \rightarrow ID \ EQ \ ID \mid ID \ LEQ \ ID$

- Construct an equivalent grammar G' with $G' \in LL(1)$.
- Specify the deterministic top-down parsing automaton of G' .
- Provide a run of G' on the input $ID \ EQ \ ID \ AND \ ID \ LEQ \ ID$.