2) Lehrstuhl fiir Informatik 2 Compiler Construction SoSe 2012

Modellierung und Verifikation von Software Exercise 1 (Hand in until 21.05.2012)
AOR Priv.-Doz. Dr. Thomas Noll Friedrich Gretz, Christina Jansen
Exercise 1 (Prefix-free Languages): (2 Points)

A language L € ¥* is called prefix-free, if LN LYt =0, i.e. if no proper prefix of a word in L isin L, too.

Show that the following holds for all non prefix-free languages L: L ¢ £(LR(0)).

Exercise 2 (Causes of Nondeterminism): (5 Points)

In the lecture we have seen four different causes, that led to nondeterminism in a NBA:
1. choice between shift and reduce

2. choice between different left-hand sides of the productions
3. choice between different right-hand sides of production

4. choice on when to terminate parsing

a) Explain in what situations point 4 may appear and how to resolve it.

b) Points 1, 2 and 3 may introduce conflicts into LR(0)-items. Please give minimal examples for those conflicts
(provide a grammar + a conflicting LR(0) item).

c) We considered reduce/reduce as well as shift/reduce conflicts in LR(0)-items. Explain briefly why we do
not have to consider shift/shift conflicts.

Exercise 3 (Nondeterministic Bottom-Up Automaton): (3 Points)

Consider the following grammar G:
S — expr
expr — ID|ID + expr

a) Specify NBA(G) (for the transitions it suffices to provide examples for shifting and reduction steps).
b) Give an accecpting run of NBA(G) on the input: /1D + ID.
c) Is G € LR(0)? Argue why!

Exercise 4 (Implementation of LR(0) sets): (5 Points)

After building a lexer in the previous exercise we now want to build a parser for our WHILE language. In this
exercise we take the first steps towards a parser.

Assume the following grammar for the WHILE language. The terminal alphabet is the set of tokens (coming from
the lexer), non-terminals and starting symbol are obvious. The production rules are given below:

2) Lehrstuhl fiir Informatik 2 Compiler Construction SoSe 2012

Modellierung und Verifikation von Software

Exercise 1 (Hand in until 21.05.2012)

start
program
statement
declaration
assignment
out

branch

loop

expr
subexpr
guard
subguard
relation

Task:

111l

A

program
program program | statement

declaration SEM | assignment SEM | branch | loop | out SEM

INT ID

ID ASSIGN expr | ID ASSIGN READ LBRAC RBRAC

WRITE LBRAC expr RBRAC | WRITE LBRAC STRING RBRAC

IF LBRAC guard RBRAC LCBRAC program RCBRAC |

IF LBRAC guard RBRAC LCBRAC program RCBRAC ELSE LCBRAC program RCBRAC
WHILE LBRAC guard RBRAC LCBRAC program RCBRAC

NUM | ID | subexpr | LBRAC subexpr RBRAC

expr PLUS expr | expr MINUS expr | expr TIMES expr | expr DIV expr

relation | subguard | LBRAC subguard RBRAC | NOT LBRAC guard RBRAC

guard AND guard | guard OR guard

expr LT expr | expr LEQ expr | expr EQ expr | expr NEQ expr | expr GEQ expr | expr GT expr

Your program should generate the LR(0) items from a hard-coded grammar. List all LR(0) sets and their items
like in Example 9.13 in the lecture. Indicate where conflicts occur. Give the total number of sets and conflicts.
Please summarize the main implementation ideas briefly and hand in your documentation together with the other
written exercises. Some questions that you should answer there are:

e what is your data structure for the grammar?

e which necessary methods does it provide?

e how are the LR(0) items and sets stored?

e how do you detect conflicts?

