
2 Lehrstuhl für Informatik 2

Modellierung und Veri�kation von Software

Compiler Construction SoSe 2012

Exercise 1 (Hand in until 21.05.2012)

aaAOR Priv.-Doz. Dr. Thomas Noll Friedrich Gretz, Christina Jansen

Exercise 1 (Pre�x-free Languages): (2 Points)

A language L 2 �� is called pre�x-free, if L \ L�+ = ;, i.e. if no proper pre�x of a word in L is in L, too.

Show that the following holds for all non pre�x-free languages L: L =2 L(LR(0)).

Exercise 2 (Causes of Nondeterminism): (5 Points)

In the lecture we have seen four di�erent causes, that led to nondeterminism in a NBA:

1. choice between shift and reduce

2. choice between di�erent left-hand sides of the productions

3. choice between di�erent right-hand sides of production

4. choice on when to terminate parsing

a) Explain in what situations point 4 may appear and how to resolve it.

b) Points 1, 2 and 3 may introduce con�icts into LR(0)-items. Please give minimal examples for those con�icts

(provide a grammar + a con�icting LR(0) item).

c) We considered reduce/reduce as well as shift/reduce con�icts in LR(0)-items. Explain brie�y why we do

not have to consider shift/shift con�icts.

Exercise 3 (Nondeterministic Bottom-Up Automaton): (3 Points)

Consider the following grammar G:
S ! expr

expr ! ID j ID + expr

a) Specify NBA(G) (for the transitions it su�ces to provide examples for shifting and reduction steps).

b) Give an accecpting run of NBA(G) on the input: ID + ID.

c) Is G 2 LR(0)? Argue why!

Exercise 4 (Implementation of LR(0) sets): (5 Points)

After building a lexer in the previous exercise we now want to build a parser for our WHILE language. In this

exercise we take the �rst steps towards a parser.

Assume the following grammar for theWHILE language. The terminal alphabet is the set of tokens (coming from

the lexer), non-terminals and starting symbol are obvious. The production rules are given below:

1

2 Lehrstuhl für Informatik 2

Modellierung und Veri�kation von Software

Compiler Construction SoSe 2012

Exercise 1 (Hand in until 21.05.2012)

start ! program

program ! program program | statement

statement ! declaration SEM | assignment SEM | branch | loop | out SEM

declaration ! INT ID

assignment ! ID ASSIGN expr | ID ASSIGN READ LBRAC RBRAC

out ! WRITE LBRAC expr RBRAC | WRITE LBRAC STRING RBRAC

branch ! IF LBRAC guard RBRAC LCBRAC program RCBRAC |

IF LBRAC guard RBRAC LCBRAC program RCBRAC ELSE LCBRAC program RCBRAC

loop ! WHILE LBRAC guard RBRAC LCBRAC program RCBRAC

expr ! NUM | ID | subexpr | LBRAC subexpr RBRAC

subexpr ! expr PLUS expr | expr MINUS expr | expr TIMES expr | expr DIV expr

guard ! relation | subguard | LBRAC subguard RBRAC | NOT LBRAC guard RBRAC

subguard ! guard AND guard | guard OR guard

relation ! expr LT expr | expr LEQ expr | expr EQ expr | expr NEQ expr | expr GEQ expr | expr GT expr

Task:

Your program should generate the LR(0) items from a hard-coded grammar. List all LR(0) sets and their items

like in Example 9.13 in the lecture. Indicate where con�icts occur. Give the total number of sets and con�icts.

Please summarize the main implementation ideas brie�y and hand in your documentation together with the other

written exercises. Some questions that you should answer there are:

� what is your data structure for the grammar?

� which necessary methods does it provide?

� how are the LR(0) items and sets stored?

� how do you detect con�icts?

2

