

Exercise 1 (Attributed Grammars and Equality Systems):

(4 Points)

Consider the language $L = \{a^{2^n} \mid n \in \mathbb{N}\}$. Notice that L is not context-free! Provide an attributed grammar for the language given by $\{a\}^*$. Determine – via a synthesized boolean attribute at the starting symbol – whether a derived word is contained in L . For this purpose do only use plain functions like addition, multiplication or equality testing, but not testing if a function is a power of two etc.

Generate the corresponding equality system for the input word a^4 and solve it.

Exercise 2 (Circularity Test):

(8 Points)

Consider the following grammar $G = (N, \Sigma, P, S)$ with inherited attributes $i1, i2$ and synthesised attributes $s1, s2$.

$$\begin{array}{ll}
 S' \rightarrow S & i1.0 = 1 \\
 & i2.0 = 2 \\
 & i1.1 = s1.1 \\
 & i2.1 = i1.0 \\
 & s2.0 = s2.1 \\
 S \rightarrow AA & i1.1 = s1.1 \\
 & i2.1 = i1.0 \\
 & i1.2 = 0 \\
 & i2.2 = i2.0 \\
 & s1.0 = s2.1 \\
 & s2.0 = s2.2 \\
 S \rightarrow A & i1.1 = 0 \\
 & i2.1 = i2.0 \\
 & s2.0 = s2.1 \\
 A \rightarrow a & s1.0 = 0 \\
 & s2.0 = i1.0 \\
 A \rightarrow b & s2.0 = 0 \\
 & s1.0 = i2.0
 \end{array}$$

a) Provide the dependency graph for each production in G .

b) Apply the circularity test from the lecture to G .

1. Calculate the set $IS(A)$ for all $A \in N$.
2. Is G circular? Justify your answer.

c) To simplify the circularity test we want to consider so-called strong circularity. To this aim we modify our circularity test in a way, that attribute dependencies caused by different syntax trees are not distinguished anymore. Thus $IS(A)$, $A \in N$, is now defined as follows:

$$IS(A) = \{(\beta, \alpha) \mid \beta \xrightarrow{A} \alpha \text{ in some syntax tree } t \text{ with root label } A\} \subseteq inh \times syn$$

with $\beta \in inh(A)$, $\alpha \in syn(A)$.

Hint: $IS(A)$ is not a system of attribute dependence sets anymore, but a union!

If we adapt the circularity test from the lecture to this definition of $IS(A)$, does it provide the result that G is strongly non-circular? Argue why!