2) Lehrstuhl fiir Informatik 2 Compiler Construction SoSe 2012

Modellierung und Verifikation von Software Exercise 7 (Hand in until 18.06.2012)
AOR Priv.-Doz. Dr. Thomas Noll Friedrich Gretz, Christina Jansen
Exercise 1 (Attributed Grammars and Equality Systems): (4 Points)

Consider the language L = {a®"|n € N}. Notice that L is not context-free! Provide an attributed grammar for
the language given by {a}*. Determine — via a synthesized boolean attribute at the starting symbol — whether a
derived word is contained in L. For this purpose do only use plain functions like addition, multiplication or equality
testing, but not testing if a function is a power of two etc.

Generate the corresponding equality system for the input word a* and solve it.

Exercise 2 (Circularity Test): (8 Points)
Consider the following grammar G = (N, X, P, S) with inherited attributes i1, /2 and synthesised attributes s1, s2.

S - S il10=1

i20=2
i1.1=s1.1
i2.1=1i1.0
s2.0=s52.1
S — AA Jjll=sl1
i2.1=1i1.0
i1.2=0
i2.2=1i2.0
s1.0=s52.1
s2.0=52.2
S —- A i1.1=0
i2.1=1i2.0
s2.0=52.1
A — a s1.0=0
s2.0=11.0
A — b s2.0=0
s1.0=1i2.0

a) Provide the dependency graph for each production in G.

b) Apply the circularity test from the lecture to G.
1. Calculate the set /S(A) for all A€ N.

2. Is G circular? Justify your answer.

c) To simplify the circularity test we want to consider so-called strong circularity. To this aim we modify our
circularity test in a way, that attribute dependencies caused by different syntax trees are not distinguished
anymore. Thus /S(A), A€ N, is now defined as follows:

IS(A) ={(B,a)|B A & in some syntax tree t with root label A} C Inh x Syn

with B € inh(A), a € syn(A).
Hint: /S(A) is not a system of attribute dependence sets anymore, but a union!

If we adapt the circularity test from the lecture to this definition of /S(A), does it provide the result that
G is strongly non-circular? Argue why!



