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People

Lectures:

Thomas Noll (noll@cs.rwth-aachen.de)
Uwe Naumann (naumann@stce.rwth-aachen.de)

Exercise classes:

Friedrich Gretz (fgretz@cs.rwth-aachen.de)
Christina Jansen (christina.jansen@cs.rwth-aachen.de)
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Wanted: Student Assistant

Evaluation of exercises

Organizational support

12 hrs/week contract

Previous CC lecture not a prerequisite (but of course helpful)

Compiler Construction Summer Semester 2012 1.4



Target Audience

BSc Informatik:

Wahlpflichtfach Theorie

MSc Informatik:

Theoretische Informatik

MSc Software Systems Engineering:

Theoretical Foundations of SSE (was: Theoretical CS)

Diplomstudiengang Informatik:

Theoretische (+ Praktische) Informatik
Vertiefungsfach Formale Methoden, Programmiersprachen und

Softwarevalidierung

Combination with Katoen, Thomas, Vöcking, ...; Kobbelt, Seidl, ...
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Expectations

What you can expect:

how to implement (imperative) programming languages
application of theoretical concepts
compiler = example of a complex software architecture
gaining experience with tool support
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Expectations

What you can expect:

how to implement (imperative) programming languages
application of theoretical concepts
compiler = example of a complex software architecture
gaining experience with tool support

What we expect: basic knowledge in

imperative programming languages
algorithms and data structures
formal languages and automata theory
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Organization

Schedule:

Lecture Wed 10:00–11:30 AH 6 (starting 4 April)
Lecture Thu 15:00–16:30 AH 5 (starting 5 April)
Exercise class Mon 10:00–11:30 AH 2 (starting 16 April)
see overview at http://www-i2.informatik.rwth-aachen.de/i2/cc12/
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Organization

Schedule:

Lecture Wed 10:00–11:30 AH 6 (starting 4 April)
Lecture Thu 15:00–16:30 AH 5 (starting 5 April)
Exercise class Mon 10:00–11:30 AH 2 (starting 16 April)
see overview at http://www-i2.informatik.rwth-aachen.de/i2/cc12/

1st assignment sheet next week, presented 16 April

Work on assignments in groups of three

Written exams (2 h) on Thu 12 July/Mon 24 September

for BSc/MSc candidates (6 credits)
for Diplom candidates (Übungsschein)

Admission requires at least 50% of the points in the exercises

Written material in English, lecture and exercise classes in German,
rest up to you
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What Is It All About?

Compiler = Program: Source code → Target code

Source code: in high-level programming language, tailored to problem

imperative vs. declarative (functional, logic) vs.
object-oriented
sequential vs. concurrent

Target code: usually byte/assembly/machine code, tailored to machine

architecture dependent (RISC/CISC/parallel)
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Usage of Compiler Technology I

Programming language interpreters

Ad-hoc implementation of small programs in scripting languages
(perl, bash, ...)

Programs usually interpreted, i.e., executed stepwise

Moreover: many non-scripting languages involve interpreters
(e.g., JVM as byte code interpreter)

Compiler Construction Summer Semester 2012 1.10



Usage of Compiler Technology II

Web browsers

Receive HTML (XML) pages from web server

Analyse (parse) data and translate it to graphical representation
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Usage of Compiler Technology III

Text processors

LATEX = “programming language” for texts of various kinds

Translated to DVI, PDF, ...
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Properties of a Good Compiler

Correctness

Goals: conformance to source and target language specifications;
“equivalence” of source and target code

compiler validation and verification
proof-carrying code, ...
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Properties of a Good Compiler

Correctness

Goals: conformance to source and target language specifications;
“equivalence” of source and target code

compiler validation and verification
proof-carrying code, ...

Efficiency of generated code

Goal: target code as fast and/or memory efficient as possible
program analysis and optimization

Efficiency of compiler

Goal: translation process as fast and/or memory efficient as possible (for
inputs of arbitrary size)

fast (linear-time) algorithms
sophisticated data structures

Remark: mutual tradeoffs!
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Aspects of a Programming Language

Syntax: “How does a program look like?”

hierarchical composition of programs from structural components
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“Static semantics”: properties which are not (easily) definable in syntax
(declaredness of identifiers, type correctness, ...)

“Dynamic semantics”: execution evokes state transformations of an
(abstract) machine
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Aspects of a Programming Language

Syntax: “How does a program look like?”

hierarchical composition of programs from structural components

Semantics: “What does this program mean?”

“Static semantics”: properties which are not (easily) definable in syntax
(declaredness of identifiers, type correctness, ...)

“Dynamic semantics”: execution evokes state transformations of an
(abstract) machine

Pragmatics

length and understandability of programs

learnability of programming language

appropriateness for specific applications

...
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Motivation for Rigorous Formal Treatment

Example

1 From NASA’s Mercury Project: FORTRAN DO loop

DO 5 K = 1,3: DO loop with index variable K
DO 5 K = 1.3: assignment to (real) variable DO5K
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Example

1 From NASA’s Mercury Project: FORTRAN DO loop

DO 5 K = 1,3: DO loop with index variable K
DO 5 K = 1.3: assignment to (real) variable DO5K

2 How often is the following loop traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never
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Motivation for Rigorous Formal Treatment

Example

1 From NASA’s Mercury Project: FORTRAN DO loop

DO 5 K = 1,3: DO loop with index variable K
DO 5 K = 1.3: assignment to (real) variable DO5K

2 How often is the following loop traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

3 What if p = nil in the following program?

while p <> nil and p^.key < val do ...

Pascal: strict Boolean operations  
Modula: non-strict Boolean operations X
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Historical Development

Code generation: since 1940s

ad-hoc techniques
concentration on back-end
first FORTRAN compiler in 1960
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Historical Development

Code generation: since 1940s

ad-hoc techniques
concentration on back-end
first FORTRAN compiler in 1960

Formal syntax: since 1960s

LL/LR parsing
shift towards front-end
semantics defined by compiler/interpreter

Formal semantics: since 1970s

operational
denotational
axiomatic
see course Semantics and Verification of Software

Automatic compiler generation: since 1980s

[f]lex, yacc, ANTLR, action semantics, ...
see http://catalog.compilertools.net/
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Compiler Phases

Lexical analysis (Scanner):

recognition of symbols, delimiters, and comments
by regular expressions and finite automata
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by context-free grammars and pushdown automata

Semantic analysis:

checking context dependencies, data types, ...
by attribute grammars

Generation of intermediate code:

translation into (target-independent) intermediate code
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Code optimization: to improve runtime and/or memory behavior
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Compiler Phases

Lexical analysis (Scanner):

recognition of symbols, delimiters, and comments
by regular expressions and finite automata

Syntax analysis (Parser):

determination of hierarchical program structure
by context-free grammars and pushdown automata

Semantic analysis:

checking context dependencies, data types, ...
by attribute grammars

Generation of intermediate code:

translation into (target-independent) intermediate code
by tree translations

Code optimization: to improve runtime and/or memory behavior
Generation of target code: tailored to target system
Additionally: optimization of target code, symbol table, error handling
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Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
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Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

x1 := y2 + 1
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Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

regular expressions/finite automata

x1 := y2 + 1

(id, x1)(gets, )(id, y2)(plus, )(int, 1)
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Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

context-free grammars/pushdown automata

(id, x1)(gets, )(id, y2)(plus, )(int, 1)

Assgn

Var Exp

Sum

Var Const
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Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

attribute grammars

Assgn

Var Exp

Sum

Var Const

Assgn

Var Exp

Sum

Var Const

ok

int int

int

int int
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Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

tree translations

Assgn

Var Exp

Sum

Var Const

ok

int int

int

int int

LOAD y2; LIT 1; ADD; STO x1
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Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

LOAD y2; LIT 1; ADD; STO x1

...

...
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Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

[omitted: symbol table, error handling]
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Classification of Compiler Phases

Analysis vs. synthesis

Analysis: lexical/syntax/semantic analysis
(determination of syntactic structure, error handling)

Synthesis: generation of (intermediate/machine) code + optimization
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(determination of syntactic structure, error handling)

Synthesis: generation of (intermediate/machine) code + optimization

Front-end vs. back-end
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Classification of Compiler Phases

Analysis vs. synthesis

Analysis: lexical/syntax/semantic analysis
(determination of syntactic structure, error handling)

Synthesis: generation of (intermediate/machine) code + optimization

Front-end vs. back-end

Front-end: machine-independent parts
(analysis + intermediate code + machine-independent
optimizations)

Back-end: machine-dependent parts
(generation + optimization of machine code)

Historical: n-pass compiler

n = number of runs through source program

nowadays mainly one-pass
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Literature

(CS Library: “Handapparat Softwaremodellierung und Verifikation”)

General

A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman: Compilers – Principles, Techniques,

and Tools; 2nd ed., Addison-Wesley, 2007
A.W. Appel, J. Palsberg: Modern Compiler Implementation in Java, Cambridge
University Press, 2002
D. Grune, H.E. Bal, C.J.H. Jacobs, K.G. Langendoen: Modern Compiler Design,
Wiley & Sons, 2000
R. Wilhelm, D. Maurer: Übersetzerbau, 2. Auflage, Springer, 1997

Compiler Construction Summer Semester 2012 1.20



Literature

(CS Library: “Handapparat Softwaremodellierung und Verifikation”)

General

A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman: Compilers – Principles, Techniques,

and Tools; 2nd ed., Addison-Wesley, 2007
A.W. Appel, J. Palsberg: Modern Compiler Implementation in Java, Cambridge
University Press, 2002
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R. Wilhelm, D. Maurer: Übersetzerbau, 2. Auflage, Springer, 1997

Special

O. Mayer: Syntaxanalyse, BI-Wissenschafts-Verlag, 1978
D. Brown, R. Levine T. Mason: lex & yacc, O’Reilly, 1995
T. Parr: The Definite ANTLR Reference, Pragmatic Bookshelf, 2007
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A.W. Appel, J. Palsberg: Modern Compiler Implementation in Java, Cambridge
University Press, 2002
D. Grune, H.E. Bal, C.J.H. Jacobs, K.G. Langendoen: Modern Compiler Design,
Wiley & Sons, 2000
R. Wilhelm, D. Maurer: Übersetzerbau, 2. Auflage, Springer, 1997

Special

O. Mayer: Syntaxanalyse, BI-Wissenschafts-Verlag, 1978
D. Brown, R. Levine T. Mason: lex & yacc, O’Reilly, 1995
T. Parr: The Definite ANTLR Reference, Pragmatic Bookshelf, 2007

Historical

W. Waite, G. Goos: Compiler Construction, 2nd edition, Springer, 1985
N. Wirth: Grundlagen und Techniken des Compilerbaus, Addison-Wesley, 1996
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