
Compiler Construction

Lecture 1: Introduction

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Outline

1 Preliminaries

2 Introduction

Compiler Construction Summer Semester 2012 1.2

People

Lectures:

Thomas Noll (noll@cs.rwth-aachen.de)
Uwe Naumann (naumann@stce.rwth-aachen.de)

Exercise classes:

Friedrich Gretz (fgretz@cs.rwth-aachen.de)
Christina Jansen (christina.jansen@cs.rwth-aachen.de)

Compiler Construction Summer Semester 2012 1.3

noll@cs.rwth-aachen.de
naumann@stce.rwth-aachen.de
fgretz@cs.rwth-aachen.de
christina.jansen@cs.rwth-aachen.de

Wanted: Student Assistant

Evaluation of exercises

Organizational support

12 hrs/week contract

Previous CC lecture not a prerequisite (but of course helpful)

Compiler Construction Summer Semester 2012 1.4

Target Audience

BSc Informatik:

Wahlpflichtfach Theorie

MSc Informatik:

Theoretische Informatik

MSc Software Systems Engineering:

Theoretical Foundations of SSE (was: Theoretical CS)

Diplomstudiengang Informatik:

Theoretische (+ Praktische) Informatik
Vertiefungsfach Formale Methoden, Programmiersprachen und

Softwarevalidierung

Combination with Katoen, Thomas, Vöcking, ...; Kobbelt, Seidl, ...

Compiler Construction Summer Semester 2012 1.5

Expectations

What you can expect:

how to implement (imperative) programming languages
application of theoretical concepts
compiler = example of a complex software architecture
gaining experience with tool support

Compiler Construction Summer Semester 2012 1.6

Expectations

What you can expect:

how to implement (imperative) programming languages
application of theoretical concepts
compiler = example of a complex software architecture
gaining experience with tool support

What we expect: basic knowledge in

imperative programming languages
algorithms and data structures
formal languages and automata theory

Compiler Construction Summer Semester 2012 1.6

Organization

Schedule:

Lecture Wed 10:00–11:30 AH 6 (starting 4 April)
Lecture Thu 15:00–16:30 AH 5 (starting 5 April)
Exercise class Mon 10:00–11:30 AH 2 (starting 16 April)
see overview at http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Compiler Construction Summer Semester 2012 1.7

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Organization

Schedule:

Lecture Wed 10:00–11:30 AH 6 (starting 4 April)
Lecture Thu 15:00–16:30 AH 5 (starting 5 April)
Exercise class Mon 10:00–11:30 AH 2 (starting 16 April)
see overview at http://www-i2.informatik.rwth-aachen.de/i2/cc12/

1st assignment sheet next week, presented 16 April

Work on assignments in groups of three

Compiler Construction Summer Semester 2012 1.7

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Organization

Schedule:

Lecture Wed 10:00–11:30 AH 6 (starting 4 April)
Lecture Thu 15:00–16:30 AH 5 (starting 5 April)
Exercise class Mon 10:00–11:30 AH 2 (starting 16 April)
see overview at http://www-i2.informatik.rwth-aachen.de/i2/cc12/

1st assignment sheet next week, presented 16 April

Work on assignments in groups of three

Written exams (2 h) on Thu 12 July/Mon 24 September

for BSc/MSc candidates (6 credits)
for Diplom candidates (Übungsschein)

Admission requires at least 50% of the points in the exercises

Compiler Construction Summer Semester 2012 1.7

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Organization

Schedule:

Lecture Wed 10:00–11:30 AH 6 (starting 4 April)
Lecture Thu 15:00–16:30 AH 5 (starting 5 April)
Exercise class Mon 10:00–11:30 AH 2 (starting 16 April)
see overview at http://www-i2.informatik.rwth-aachen.de/i2/cc12/

1st assignment sheet next week, presented 16 April

Work on assignments in groups of three

Written exams (2 h) on Thu 12 July/Mon 24 September

for BSc/MSc candidates (6 credits)
for Diplom candidates (Übungsschein)

Admission requires at least 50% of the points in the exercises

Written material in English, lecture and exercise classes in German,
rest up to you

Compiler Construction Summer Semester 2012 1.7

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Outline

1 Preliminaries

2 Introduction

Compiler Construction Summer Semester 2012 1.8

What Is It All About?

Compiler = Program: Source code → Target code

Source code: in high-level programming language, tailored to problem

imperative vs. declarative (functional, logic) vs.
object-oriented
sequential vs. concurrent

Target code: usually byte/assembly/machine code, tailored to machine

architecture dependent (RISC/CISC/parallel)

Compiler Construction Summer Semester 2012 1.9

Usage of Compiler Technology I

Programming language interpreters

Ad-hoc implementation of small programs in scripting languages
(perl, bash, ...)

Programs usually interpreted, i.e., executed stepwise

Moreover: many non-scripting languages involve interpreters
(e.g., JVM as byte code interpreter)

Compiler Construction Summer Semester 2012 1.10

Usage of Compiler Technology II

Web browsers

Receive HTML (XML) pages from web server

Analyse (parse) data and translate it to graphical representation

Compiler Construction Summer Semester 2012 1.11

Usage of Compiler Technology III

Text processors

LATEX = “programming language” for texts of various kinds

Translated to DVI, PDF, ...

Compiler Construction Summer Semester 2012 1.12

Properties of a Good Compiler

Correctness

Goals: conformance to source and target language specifications;
“equivalence” of source and target code

compiler validation and verification
proof-carrying code, ...

Compiler Construction Summer Semester 2012 1.13

Properties of a Good Compiler

Correctness

Goals: conformance to source and target language specifications;
“equivalence” of source and target code

compiler validation and verification
proof-carrying code, ...

Efficiency of generated code

Goal: target code as fast and/or memory efficient as possible
program analysis and optimization

Compiler Construction Summer Semester 2012 1.13

Properties of a Good Compiler

Correctness

Goals: conformance to source and target language specifications;
“equivalence” of source and target code

compiler validation and verification
proof-carrying code, ...

Efficiency of generated code

Goal: target code as fast and/or memory efficient as possible
program analysis and optimization

Efficiency of compiler

Goal: translation process as fast and/or memory efficient as possible (for
inputs of arbitrary size)

fast (linear-time) algorithms
sophisticated data structures

Compiler Construction Summer Semester 2012 1.13

Properties of a Good Compiler

Correctness

Goals: conformance to source and target language specifications;
“equivalence” of source and target code

compiler validation and verification
proof-carrying code, ...

Efficiency of generated code

Goal: target code as fast and/or memory efficient as possible
program analysis and optimization

Efficiency of compiler

Goal: translation process as fast and/or memory efficient as possible (for
inputs of arbitrary size)

fast (linear-time) algorithms
sophisticated data structures

Remark: mutual tradeoffs!
Compiler Construction Summer Semester 2012 1.13

Aspects of a Programming Language

Syntax: “How does a program look like?”

hierarchical composition of programs from structural components

Compiler Construction Summer Semester 2012 1.14

Aspects of a Programming Language

Syntax: “How does a program look like?”

hierarchical composition of programs from structural components

Semantics: “What does this program mean?”

“Static semantics”: properties which are not (easily) definable in syntax
(declaredness of identifiers, type correctness, ...)

“Dynamic semantics”: execution evokes state transformations of an
(abstract) machine

Compiler Construction Summer Semester 2012 1.14

Aspects of a Programming Language

Syntax: “How does a program look like?”

hierarchical composition of programs from structural components

Semantics: “What does this program mean?”

“Static semantics”: properties which are not (easily) definable in syntax
(declaredness of identifiers, type correctness, ...)

“Dynamic semantics”: execution evokes state transformations of an
(abstract) machine

Pragmatics

length and understandability of programs

learnability of programming language

appropriateness for specific applications

...

Compiler Construction Summer Semester 2012 1.14

Motivation for Rigorous Formal Treatment

Example

1 From NASA’s Mercury Project: FORTRAN DO loop

DO 5 K = 1,3: DO loop with index variable K
DO 5 K = 1.3: assignment to (real) variable DO5K

Compiler Construction Summer Semester 2012 1.15

Motivation for Rigorous Formal Treatment

Example

1 From NASA’s Mercury Project: FORTRAN DO loop

DO 5 K = 1,3: DO loop with index variable K
DO 5 K = 1.3: assignment to (real) variable DO5K

2 How often is the following loop traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

Compiler Construction Summer Semester 2012 1.15

Motivation for Rigorous Formal Treatment

Example

1 From NASA’s Mercury Project: FORTRAN DO loop

DO 5 K = 1,3: DO loop with index variable K
DO 5 K = 1.3: assignment to (real) variable DO5K

2 How often is the following loop traversed?

for i := 2 to 1 do ...

FORTRAN IV: once
PASCAL: never

3 What if p = nil in the following program?

while p <> nil and p^.key < val do ...

Pascal: strict Boolean operations
Modula: non-strict Boolean operations X

Compiler Construction Summer Semester 2012 1.15

Historical Development

Code generation: since 1940s

ad-hoc techniques
concentration on back-end
first FORTRAN compiler in 1960

Compiler Construction Summer Semester 2012 1.16

Historical Development

Code generation: since 1940s

ad-hoc techniques
concentration on back-end
first FORTRAN compiler in 1960

Formal syntax: since 1960s

LL/LR parsing
shift towards front-end
semantics defined by compiler/interpreter

Compiler Construction Summer Semester 2012 1.16

Historical Development

Code generation: since 1940s

ad-hoc techniques
concentration on back-end
first FORTRAN compiler in 1960

Formal syntax: since 1960s

LL/LR parsing
shift towards front-end
semantics defined by compiler/interpreter

Formal semantics: since 1970s

operational
denotational
axiomatic
see course Semantics and Verification of Software

Compiler Construction Summer Semester 2012 1.16

Historical Development

Code generation: since 1940s

ad-hoc techniques
concentration on back-end
first FORTRAN compiler in 1960

Formal syntax: since 1960s

LL/LR parsing
shift towards front-end
semantics defined by compiler/interpreter

Formal semantics: since 1970s

operational
denotational
axiomatic
see course Semantics and Verification of Software

Automatic compiler generation: since 1980s

[f]lex, yacc, ANTLR, action semantics, ...
see http://catalog.compilertools.net/

Compiler Construction Summer Semester 2012 1.16

http://catalog.compilertools.net/

Compiler Phases

Lexical analysis (Scanner):

recognition of symbols, delimiters, and comments
by regular expressions and finite automata

Compiler Construction Summer Semester 2012 1.17

Compiler Phases

Lexical analysis (Scanner):

recognition of symbols, delimiters, and comments
by regular expressions and finite automata

Syntax analysis (Parser):

determination of hierarchical program structure
by context-free grammars and pushdown automata

Compiler Construction Summer Semester 2012 1.17

Compiler Phases

Lexical analysis (Scanner):

recognition of symbols, delimiters, and comments
by regular expressions and finite automata

Syntax analysis (Parser):

determination of hierarchical program structure
by context-free grammars and pushdown automata

Semantic analysis:

checking context dependencies, data types, ...
by attribute grammars

Compiler Construction Summer Semester 2012 1.17

Compiler Phases

Lexical analysis (Scanner):

recognition of symbols, delimiters, and comments
by regular expressions and finite automata

Syntax analysis (Parser):

determination of hierarchical program structure
by context-free grammars and pushdown automata

Semantic analysis:

checking context dependencies, data types, ...
by attribute grammars

Generation of intermediate code:

translation into (target-independent) intermediate code
by tree translations

Compiler Construction Summer Semester 2012 1.17

Compiler Phases

Lexical analysis (Scanner):

recognition of symbols, delimiters, and comments
by regular expressions and finite automata

Syntax analysis (Parser):

determination of hierarchical program structure
by context-free grammars and pushdown automata

Semantic analysis:

checking context dependencies, data types, ...
by attribute grammars

Generation of intermediate code:

translation into (target-independent) intermediate code
by tree translations

Code optimization: to improve runtime and/or memory behavior

Compiler Construction Summer Semester 2012 1.17

Compiler Phases

Lexical analysis (Scanner):

recognition of symbols, delimiters, and comments
by regular expressions and finite automata

Syntax analysis (Parser):

determination of hierarchical program structure
by context-free grammars and pushdown automata

Semantic analysis:

checking context dependencies, data types, ...
by attribute grammars

Generation of intermediate code:

translation into (target-independent) intermediate code
by tree translations

Code optimization: to improve runtime and/or memory behavior
Generation of target code: tailored to target system

Compiler Construction Summer Semester 2012 1.17

Compiler Phases

Lexical analysis (Scanner):

recognition of symbols, delimiters, and comments
by regular expressions and finite automata

Syntax analysis (Parser):

determination of hierarchical program structure
by context-free grammars and pushdown automata

Semantic analysis:

checking context dependencies, data types, ...
by attribute grammars

Generation of intermediate code:

translation into (target-independent) intermediate code
by tree translations

Code optimization: to improve runtime and/or memory behavior
Generation of target code: tailored to target system
Additionally: optimization of target code, symbol table, error handling

Compiler Construction Summer Semester 2012 1.17

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
Compiler Construction Summer Semester 2012 1.18

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

x1 := y2 + 1

Compiler Construction Summer Semester 2012 1.18

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

regular expressions/finite automata

x1 := y2 + 1

(id, x1)(gets,)(id, y2)(plus,)(int, 1)

Compiler Construction Summer Semester 2012 1.18

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

context-free grammars/pushdown automata

(id, x1)(gets,)(id, y2)(plus,)(int, 1)

Assgn

Var Exp

Sum

Var Const

Compiler Construction Summer Semester 2012 1.18

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

attribute grammars

Assgn

Var Exp

Sum

Var Const

Assgn

Var Exp

Sum

Var Const

ok

int int

int

int int

Compiler Construction Summer Semester 2012 1.18

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

tree translations

Assgn

Var Exp

Sum

Var Const

ok

int int

int

int int

LOAD y2; LIT 1; ADD; STO x1

Compiler Construction Summer Semester 2012 1.18

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

LOAD y2; LIT 1; ADD; STO x1

...

...

Compiler Construction Summer Semester 2012 1.18

Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code

[omitted: symbol table, error handling]

Compiler Construction Summer Semester 2012 1.18

Classification of Compiler Phases

Analysis vs. synthesis

Analysis: lexical/syntax/semantic analysis
(determination of syntactic structure, error handling)

Synthesis: generation of (intermediate/machine) code + optimization

Compiler Construction Summer Semester 2012 1.19

Classification of Compiler Phases

Analysis vs. synthesis

Analysis: lexical/syntax/semantic analysis
(determination of syntactic structure, error handling)

Synthesis: generation of (intermediate/machine) code + optimization

Front-end vs. back-end

Front-end: machine-independent parts
(analysis + intermediate code + machine-independent
optimizations)

Back-end: machine-dependent parts
(generation + optimization of machine code)

Compiler Construction Summer Semester 2012 1.19

Classification of Compiler Phases

Analysis vs. synthesis

Analysis: lexical/syntax/semantic analysis
(determination of syntactic structure, error handling)

Synthesis: generation of (intermediate/machine) code + optimization

Front-end vs. back-end

Front-end: machine-independent parts
(analysis + intermediate code + machine-independent
optimizations)

Back-end: machine-dependent parts
(generation + optimization of machine code)

Historical: n-pass compiler

n = number of runs through source program

nowadays mainly one-pass

Compiler Construction Summer Semester 2012 1.19

Literature

(CS Library: “Handapparat Softwaremodellierung und Verifikation”)

General

A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman: Compilers – Principles, Techniques,

and Tools; 2nd ed., Addison-Wesley, 2007
A.W. Appel, J. Palsberg: Modern Compiler Implementation in Java, Cambridge
University Press, 2002
D. Grune, H.E. Bal, C.J.H. Jacobs, K.G. Langendoen: Modern Compiler Design,
Wiley & Sons, 2000
R. Wilhelm, D. Maurer: Übersetzerbau, 2. Auflage, Springer, 1997

Compiler Construction Summer Semester 2012 1.20

Literature

(CS Library: “Handapparat Softwaremodellierung und Verifikation”)

General

A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman: Compilers – Principles, Techniques,

and Tools; 2nd ed., Addison-Wesley, 2007
A.W. Appel, J. Palsberg: Modern Compiler Implementation in Java, Cambridge
University Press, 2002
D. Grune, H.E. Bal, C.J.H. Jacobs, K.G. Langendoen: Modern Compiler Design,
Wiley & Sons, 2000
R. Wilhelm, D. Maurer: Übersetzerbau, 2. Auflage, Springer, 1997

Special

O. Mayer: Syntaxanalyse, BI-Wissenschafts-Verlag, 1978
D. Brown, R. Levine T. Mason: lex & yacc, O’Reilly, 1995
T. Parr: The Definite ANTLR Reference, Pragmatic Bookshelf, 2007

Compiler Construction Summer Semester 2012 1.20

Literature

(CS Library: “Handapparat Softwaremodellierung und Verifikation”)

General

A.V. Aho, M.S. Lam, R. Sethi, J.D. Ullman: Compilers – Principles, Techniques,

and Tools; 2nd ed., Addison-Wesley, 2007
A.W. Appel, J. Palsberg: Modern Compiler Implementation in Java, Cambridge
University Press, 2002
D. Grune, H.E. Bal, C.J.H. Jacobs, K.G. Langendoen: Modern Compiler Design,
Wiley & Sons, 2000
R. Wilhelm, D. Maurer: Übersetzerbau, 2. Auflage, Springer, 1997

Special

O. Mayer: Syntaxanalyse, BI-Wissenschafts-Verlag, 1978
D. Brown, R. Levine T. Mason: lex & yacc, O’Reilly, 1995
T. Parr: The Definite ANTLR Reference, Pragmatic Bookshelf, 2007

Historical

W. Waite, G. Goos: Compiler Construction, 2nd edition, Springer, 1985
N. Wirth: Grundlagen und Techniken des Compilerbaus, Addison-Wesley, 1996

Compiler Construction Summer Semester 2012 1.20

	Preliminaries
	Introduction

