Compiler Construction

Lecture 10: Syntax Analysis VI (LR(0) Parsing)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/
P

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

© Repetition: LR(0) Grammars

m Compiler Construction Summer Semester 2012 10.2

LR(0) Grammars

The case k = 0 is relevant (in contrast to LL(0)): here the decision is just
based on the contents of the pushdown, without any lookahead.

Corollary (LR(0) grammar)

G € CFGyx has the LR(0) property if for all rightmost derivations of the
form
S =7 adAw =, affw
=¥ vBx =, afy

it follows that « = v, A= B, and x = y.

Goal: derive a finite information from the pushdown which suffices to
resolve the nondeterminism (similar to abstraction of right context in LL
parsing by fo-sets)

mH Compiler Construction Summer Semester 2012 10.3

LR(0) Items and Sets
Definition (LR(0) items and sets)

Let G = (N,X,P,S) € CFGy be start separated by S’ — S and
S' =% aAw =, af16ow (ie., A— 162 € P).
@ [A— (31 (2] is called an LR(0) item for af31.
@ Given v € X*, LR(0)(~y) denotes the set of all LR(0) items for ~,
called the LR(0) set (or: LR(0) information) of ~.
o LR(0)(G) :={LR(0)(7) | v € X*}.

Q For every v € X*, LR(0)(~) is finite.

@ LR(0)(G) is finite.

© The item [A — (-] € LR(0)(7y) indicates the possible reduction
(w,af,z) F (w,aA, zi) where mj = A — (3 and v = af.

Q The item [A — 1 - Y 32] € LR(0)(v) indicates an incomplete handle
p1 (to be completed by shift operations or c-steps).

v

RWNTH Compiler Construction Summer Semester 2012 10.4

LR(0) Conflicts

Definition (LR(0) conflicts)
Let G = (N,%,P,S) € CFGx and I € LR(0)(G).

@ [has a shift/reduce conflict if there exist A — ajaaz, B — € P
such that

[A—>Oz1 -aaz],[B —>,B] el

@ [has a reduce/reduce conflict if there exist A — a, B — § € P with
A # B or o # (3 such that

[A—], [B— B3] €l

G € LR(0) iff no | € LR(0)(G) contains conflicting items.

omitted U
RWNTH Compiler Construction Summer Semester 2012 10.5

Computing LR(0) Sets |

Theorem (Computing LR(0) sets)

Let G = (N,X,P,S) € CFGyx be start separated by S’ — S and reduced.
©Q LR(0)(e) is the least set such that
o [S" — -S] € LR(0)(¢) and
o if[A— By] € LR(0)(c) and B — B € P,
then [B — 3] € LR(0)(g).
Q@ LR(0)(aY) (a € X*,Y € X) is the least set such that
o if[A— v Y] e LR(0)(a),
then [A — 1Y - y] € LR(0)(aY) and
o if[A— 11 Bvy] € LR(0)(aY)and B— 3 €P,
then [B — -B] € LR(0)(aY).

mH Compiler Construction Summer Semester 2012 10.6

Computing LR(0) Sets II

Example (cf. Example 9.6)

G: =S
B /
2l 1SSl
C —aClc
LR(0 [A— -By] € LR(0)(¢),B =€ P [A—= 7Yy e LR(0)(x)
0)€) " 18 5 8] € LRO)(e) = [A—=mnY 7] € LR(0)(aY
lo :== LR(0)(¢) : S"—-S] [S—-B] [S—-C] [B—-aB]
B — -b] [C—-aC] [C—]
L = LR(0)(S) =S
b= LR(O)B): [S— B]
I := LR(0)(C) S— C]
ly ;== LR(0)(a) : B—a-B] [C—a-C] [B—-aB] [B— ‘b
C—-aC] [C—]
ls = LR(O)(b) : [B — b]
I ;== LR(0)(c) : C —c]
Iz := LR(0)(aB) : [B — aB]
Is := LR(0)(aC) : [C — aC]
(0)(
N\

Reduce/Reduce Conflicts

G: =S
S — Aa|Bb
A —a
B — a

e): [§8—=-5] [S—-Aa] [S— -Bb] [A—-a] [B— -3
S): [§—=5]

A): [S—A-q]

B): [S— B-b

a): [A—=a] [B — a]

Aa): [S — Aa]

Bb): [S — Bb]

Note: G is unambiguous

Shift/Reduce Conflicts

G: =S
S —aS|a

0)e): [S"—-S] [S—-aS] [S— -a

0)(S): [5"— 5]

LR(0)(a): [S—a-S] [S—:aS] [S—-a [S— a]
(0)(aS) : [S — aS]

Note: G is unambiguous

mH Compiler Construction Summer Semester 2012 10.9

© LR(0) Parsing

m Compiler Construction Summer Semester 2012 10.10

The goto Function |

Observation: if G € LR(0), then LR(0)(+y) yields deterministic
shift /reduce decision for NBA(G) in a configuration with pushdown ~
= new pushdown alphabet: LR(0)(G) in place of X

Moreover LR(0)(vY) is determined by LR(0)(y) and Y but independent
from v in the following sense:

LR(0)(7) = LR(0)(v") == LR(0)(vY) = LR(0)(v'Y)

Definition 10.1 (LR(0) goto function)

The function goto : LR(0)(G) x X — LR(0)(G) is determined by

goto(/,Y)=1" iff there exists v € X* such that
I = LR(0)(~) and I’ = LR(0)(7Y).

mH Compiler Construction Summer Semester 2012 10.11

The goto Function |l

Example 10.2 (cf. Example 9.12)

Il ;== LR(0)(e) : [S" — 5]
[S—-B] [S—-C] goto|S B C a b ¢
[B—) aB] [B—) b] Ih |h b L lyls I
[C — -aC] [C —] h
L= LR(O)(S) : [5, — 5] I3
h:=LR(0)(B): [S— B] I3
I = LR(O)(C) : [5 — C] Iy Iz Ig Iy Is I
Iy :LR(O)(a) [B—>aB] [C—>aC] Is
[B — -aB] [B — -b] ls
[C — -aC] [C — (] Iz
I .= LR(0)(b) : [B — b] I
lo == LR(0)(c): [C — c] Iy
lz .= LR(0)(aB) : [B — aB]
;3 = 6R(O)(3C) 1 [C — aC] (empty =)
9 1=

RWNTH Compiler Construction Summer Semester 2012

The goto Function Il

Example 10.2 (continued)

Representation of goto funtion as finite automaton:

EIIN
(5~ 5]

A

N 5] b

[S" — -S]
k5= Bllsiz 1 ok fa 2 5 SHB=
[C — -aC] [C — -]

—F ~
EE |

P ES e BCSa
[B — -aB] [B — -b]
[C — -aC] [C —] C

vE=E]E U [C= 1]

a

mH Compiler Construction Summer Semester 2012 10.13

The LR(0) Action Function

The parsing automaton will be defined using another table, the action
function, which determines the shift/reduce decision.
(Reminder: 79 =S — S)

Definition 10.3 (LR(0) action function)

The LR(0) action function
act : LR(0)(G) — {redi | i € [p]} U {shift, accept, error}
is defined by

redi ifi#0,mi=A—aand [A—a]el
shift if [A— a1 -aan] €/

accept if [S'— S]el

error if =1

act(l) :=

Corollary 10.4
For every G € CFGyx, G € LR(0) iff act is well defined.

RWNTH Compiler Construction Summer Semester 2012 10.14

The LR(0) Parsing Table

Example 10.5 (cf. Example 10.2)

G: S-S (9)
S —B|C (1,2 I = LR(0)(e) : [S' — -S]
B —aB|b (3,4) S—-B] [S—-C]
C —aClc (5,6) B — -aB] [B — -b]
LR(0)(G)| act goto I == LR(0)(S) : g/: ;ﬁ] €=]
1> B Cabch i R0)B): [5— B]
I shift |h b K Lk I l = LR(0)(C): [S— C]
e = LR(0)(a) : [B —a-B] [C—a-C]
l2 e B — -aB] [B — -b]
/i shift I s b5 I g acl le=d
I red 4 Is := LR(0)(b) B — b’
; P ls := LR(0)(c): [C — c']
/6 43 Iz := LR(0)(aB) : [B — aB:]
I7 RS Iz := LR(0)(aC) : [C — aC]
s red 5 Il == 0
lo error T
(empty = k)

mH Compiler Construction Summer Semester 2012 10.15

The LR(0) Parsing Automaton |

Definition 10.6 (LR(0) parsing automaton)

Let G = (N,X,P,S) € LR(0). The (deterministic) LR(0) parsing automaton of
G is defined by the following components.

@ Input alphabet X

@ Pushdown alphabet I := LR(0)(G)

Output alphabet A := [p] U {0, error}
Configurations £* x [* x A*

Initial configuration (w, o, €) where Iy := LR(0)(¢)
Final configurations {e} x {e} x A*

e © ¢ ¢ ¢

Transitions:

shift: (aw,al,z) E (w,all’, z) if act(/) = shift and goto(/,a) = I’
reduce: (w,all ... I, z) E (w,all’, zi) if act(l,) =redi, ;i = A—= Yi... Y,
and goto(/, A) = I
accept: (g, b/, z) - (g,&,20) if act(/) = accept
error: (w,al,z) F (e, e, zerror) if act(/) = error

mH Compiler Construction Summer Semester 2012 10.16

The LR(0) Parsing Automaton Il

Example 10.7 (cf. Example 10.5)

G: §—S 0) LR(0) parsing of aac:
S »-B|C (1,2 (o, | -)
B —aB|b (3,4) - ’/0/ ')
C —»aClc (5,6) F(a?/"/“/ D
LR(O)(G) act gOtO = (’ /0/4I4/’
€, lolalale, €)
S HEab e F (e lolalals, 6)
lo shift | b K Iy 5 Ig (*)
h accept F(e lolalg ,65)
I3 red 1 F(e bl ,655)
/3 red 2 F (€y /0/1 ,6552)
Iy shift Iz I Iy Is Ig = (g, € 5 65520)
Is red 4
ls red 6 (Check by rig)htmost derivation
I red 3 on the board
I red 5 Remark: in the corresponding
Iy error computation of NBA(G), (x) is
empty = Io) nondeterministic

mH Compiler Construction Summer Semester 2012 10.17

The LR(0) Parsing Automaton 111

Theorem 10.8 (Correctness of LR(0) Parsing Automaton)

If G € LR(0), then the LR(0) parsing automaton of G is deterministic,
and for every w € ¥* and z € {0, ..., p}*:

(w, lo,e) F* (e,e,2) iff Zisa rightmost analysis of w

omitted

mH Compiler Construction Summer Semester 2012 10.18

	Repetition: LR(0) Grammars
	LR(0) Parsing

