
Compiler Construction
Lecture 10: Syntax Analysis VI (LR(0) Parsing)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Outline

1 Repetition: LR(0) Grammars

2 LR(0) Parsing

Compiler Construction Summer Semester 2012 10.2

LR(0) Grammars

The case k = 0 is relevant (in contrast to LL(0)): here the decision is just
based on the contents of the pushdown, without any lookahead.

Corollary (LR(0) grammar)

G ∈ CFGΣ has the LR(0) property if for all rightmost derivations of the
form

S

{

⇒∗

r
αAw ⇒r αβw

⇒∗

r γBx ⇒r αβy

it follows that α = γ, A = B, and x = y .

Goal: derive a finite information from the pushdown which suffices to
resolve the nondeterminism (similar to abstraction of right context in LL
parsing by fo-sets)

Compiler Construction Summer Semester 2012 10.3

LR(0) Items and Sets

Definition (LR(0) items and sets)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ be start separated by S ′ → S and
S ′ ⇒∗

r αAw ⇒r αβ1β2w (i.e., A→ β1β2 ∈ P).

[A→ β1 · β2] is called an LR(0) item for αβ1.
Given γ ∈ X ∗, LR(0)(γ) denotes the set of all LR(0) items for γ,
called the LR(0) set (or: LR(0) information) of γ.
LR(0)(G) := {LR(0)(γ) | γ ∈ X ∗}.

Corollary

1 For every γ ∈ X ∗, LR(0)(γ) is finite.
2 LR(0)(G) is finite.
3 The item [A→ β·] ∈ LR(0)(γ) indicates the possible reduction

(w , αβ, z) ⊢ (w , αA, zi) where πi = A→ β and γ = αβ.
4 The item [A→ β1 · Y β2] ∈ LR(0)(γ) indicates an incomplete handle

β1 (to be completed by shift operations or ε-steps).

Compiler Construction Summer Semester 2012 10.4

LR(0) Conflicts

Definition (LR(0) conflicts)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ and I ∈ LR(0)(G).

I has a shift/reduce conflict if there exist A→ α1aα2,B → β ∈ P
such that

[A→ α1 · aα2], [B → β·] ∈ I .

I has a reduce/reduce conflict if there exist A→ α,B → β ∈ P with
A 6= B or α 6= β such that

[A→ α·], [B → β·] ∈ I .

Lemma

G ∈ LR(0) iff no I ∈ LR(0)(G) contains conflicting items.

Proof.

omitted

Compiler Construction Summer Semester 2012 10.5

Computing LR(0) Sets I

Theorem (Computing LR(0) sets)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ be start separated by S ′ → S and reduced.
1 LR(0)(ε) is the least set such that

[S ′ → ·S] ∈ LR(0)(ε) and
if [A→ ·Bγ] ∈ LR(0)(ε) and B → β ∈ P,
then [B → ·β] ∈ LR(0)(ε).

2 LR(0)(αY) (α ∈ X ∗,Y ∈ X) is the least set such that

if [A→ γ1 · Y γ2] ∈ LR(0)(α),
then [A→ γ1Y · γ2] ∈ LR(0)(αY) and
if [A→ γ1 · Bγ2] ∈ LR(0)(αY) and B → β ∈ P,
then [B → ·β] ∈ LR(0)(αY).

Compiler Construction Summer Semester 2012 10.6

Computing LR(0) Sets II

Example (cf. Example 9.6)

G : S ′ → S
S → B | C
B → aB | b
C → aC | c

[S ′ → ·S] ∈

LR(0)(ε)
[A→ ·Bγ] ∈ LR(0)(ε),B → β ∈ P
=⇒ [B → ·β] ∈ LR(0)(ε)

[A→ γ1 · Y γ2] ∈ LR(0)(α)
=⇒ [A→ γ1Y · γ2] ∈ LR(0)(αY)

I0 := LR(0)(ε) : [S ′ → ·S] [S → ·B] [S → ·C] [B → ·aB]
[B → ·b] [C → ·aC] [C → ·c]

I1 := LR(0)(S) : [S ′ → S ·]
I2 := LR(0)(B) : [S → B·]
I3 := LR(0)(C) : [S → C ·]
I4 := LR(0)(a) : [B → a · B] [C → a · C] [B → ·aB] [B → ·b]

[C → ·aC] [C → ·c]
I5 := LR(0)(b) : [B → b·]
I6 := LR(0)(c) : [C → c ·]
I7 := LR(0)(aB) : [B → aB·]
I8 := LR(0)(aC) : [C → aC ·]

(LR(0)(aa) = LR(0)(a) = I4, LR(0)(ab) = LR(0)(b) = I5,
LR(0)(ac) = LR(0)(c) = I6, ..., I9 := LR(0)(γ) = ∅ in all remaining cases)

no conflicts =⇒ G ∈ LR(0) (but G /∈ LL(1))
Compiler Construction Summer Semester 2012 10.7

Reduce/Reduce Conflicts

Example

G : S ′ → S
S → Aa | Bb
A → a
B → a

LR(0)(ε) : [S ′ → ·S] [S → ·Aa] [S → ·Bb] [A→ ·a] [B → ·a]
LR(0)(S) : [S ′ → S ·]
LR(0)(A) : [S → A · a]
LR(0)(B) : [S → B · b]
LR(0)(a) : [A→ a·] [B → a·]
LR(0)(Aa) : [S → Aa·]
LR(0)(Bb) : [S → Bb·]

Note: G is unambiguous

Compiler Construction Summer Semester 2012 10.8

Shift/Reduce Conflicts

Example

G : S ′ → S
S → aS | a

LR(0)(ε) : [S ′ → ·S] [S → ·aS] [S → ·a]
LR(0)(S) : [S ′ → S ·]
LR(0)(a) : [S → a · S] [S → ·aS] [S → ·a] [S → a·]
LR(0)(aS) : [S → aS ·]

Note: G is unambiguous

Compiler Construction Summer Semester 2012 10.9

Outline

1 Repetition: LR(0) Grammars

2 LR(0) Parsing

Compiler Construction Summer Semester 2012 10.10

The goto Function I

Observation: if G ∈ LR(0), then LR(0)(γ) yields deterministic
shift/reduce decision for NBA(G) in a configuration with pushdown γ
=⇒ new pushdown alphabet: LR(0)(G) in place of X

Moreover LR(0)(γY) is determined by LR(0)(γ) and Y but independent
from γ in the following sense:

LR(0)(γ) = LR(0)(γ′) =⇒ LR(0)(γY) = LR(0)(γ′Y)

Definition 10.1 (LR(0) goto function)

The function goto : LR(0)(G)× X → LR(0)(G) is determined by

goto(I ,Y) = I ′ iff there exists γ ∈ X ∗ such that
I = LR(0)(γ) and I ′ = LR(0)(γY).

Compiler Construction Summer Semester 2012 10.11

The goto Function II

Example 10.2 (cf. Example 9.12)

I0 := LR(0)(ε) : [S ′ → ·S]
[S → ·B] [S → ·C]
[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

I1 := LR(0)(S) : [S ′ → S ·]
I2 := LR(0)(B) : [S → B ·]
I3 := LR(0)(C) : [S → C ·]
I4 := LR(0)(a) : [B → a · B] [C → a · C]

[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

I5 := LR(0)(b) : [B → b·]
I6 := LR(0)(c) : [C → c ·]
I7 := LR(0)(aB) : [B → aB ·]
I8 := LR(0)(aC) : [C → aC ·]
I9 := ∅

goto S B C a b c
I0 I1 I2 I3 I4 I5 I6
I1
I2
I3
I4 I7 I8 I4 I5 I6
I5
I6
I7
I8
I9

(empty = I9)

Compiler Construction Summer Semester 2012 10.12

The goto Function III

Example 10.2 (continued)

Representation of goto funtion as finite automaton:

[S ′ → ·S]
[S → ·B] [S → ·C]
[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

[S ′ → S ·]

[S → B·] [S → C ·]

[B → a · B] [C → a · C]
[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

[B → b·] [C → c ·]

[B → aB·] [C → aC ·]

I0

I1

I2 I3

I4I5 I6

I7 I8

S

B

C

ab

c

b

c

B

C

a

(omitted: sink state I9 = ∅) Compiler Construction Summer Semester 2012 10.13

The LR(0) Action Function

The parsing automaton will be defined using another table, the action
function, which determines the shift/reduce decision.
(Reminder: π0 = S ′ → S)

Definition 10.3 (LR(0) action function)

The LR(0) action function

act : LR(0)(G)→ {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I) :=











red i if i 6= 0, πi = A→ α and [A→ α·] ∈ I
shift if [A→ α1 · aα2] ∈ I
accept if [S ′ → S ·] ∈ I
error if I = ∅

Corollary 10.4

For every G ∈ CFGΣ, G ∈ LR(0) iff act is well defined.

Together, act and goto form the LR(0) parsing table of G .Compiler Construction Summer Semester 2012 10.14

The LR(0) Parsing Table

Example 10.5 (cf. Example 10.2)

G : S
′ → S (0)

S → B | C (1, 2)
B → aB | b (3, 4)
C → aC | c (5, 6)

LR(0)(G) act goto

S B C a b c

I0 shift I1 I2 I3 I4 I5 I6

I1 accept
I2 red 1
I3 red 2
I4 shift I7 I8 I4 I5 I6

I5 red 4
I6 red 6
I7 red 3
I8 red 5
I9 error

(empty = I9)

I0 := LR(0)(ε) : [S ′ → ·S]
[S → ·B] [S → ·C]
[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

I1 := LR(0)(S) : [S ′ → S ·]
I2 := LR(0)(B) : [S → B·]
I3 := LR(0)(C) : [S → C ·]
I4 := LR(0)(a) : [B → a · B] [C → a · C]

[B → ·aB] [B → ·b]
[C → ·aC] [C → ·c]

I5 := LR(0)(b) : [B → b·]
I6 := LR(0)(c) : [C → c·]
I7 := LR(0)(aB) : [B → aB·]
I8 := LR(0)(aC) : [C → aC ·]
I9 := ∅

Compiler Construction Summer Semester 2012 10.15

The LR(0) Parsing Automaton I

Definition 10.6 (LR(0) parsing automaton)

Let G = 〈N ,Σ,P , S〉 ∈ LR(0). The (deterministic) LR(0) parsing automaton of
G is defined by the following components.

Input alphabet Σ

Pushdown alphabet Γ := LR(0)(G)

Output alphabet ∆ := [p] ∪ {0, error}

Configurations Σ∗ × Γ∗ ×∆∗

Initial configuration (w , I0, ε) where I0 := LR(0)(ε)

Final configurations {ε} × {ε} ×∆∗

Transitions:

shift: (aw , αI , z) ⊢ (w , αII ′, z) if act(I) = shift and goto(I , a) = I ′

reduce: (w , αII1 . . . In, z) ⊢ (w , αII ′, zi) if act(In) = red i , πi = A→ Y1 . . .Yn,
and goto(I ,A) = I ′

accept: (ε, I0I , z) ⊢ (ε, ε, z 0) if act(I) = accept
error: (w , αI , z) ⊢ (ε, ε, z error) if act(I) = error

Compiler Construction Summer Semester 2012 10.16

The LR(0) Parsing Automaton II

Example 10.7 (cf. Example 10.5)

G : S ′ → S (0)
S → B | C (1, 2)
B → aB | b (3, 4)
C → aC | c (5, 6)

LR(0)(G) act goto
S B C a b c

I0 shift I1 I2 I3 I4 I5 I6
I1 accept
I2 red 1
I3 red 2
I4 shift I7 I8 I4 I5 I6
I5 red 4
I6 red 6
I7 red 3
I8 red 5
I9 error

(empty = I9)

LR(0) parsing of aac :

(aac , I0 , ε)
⊢ (ac , I0I4 , ε)
⊢ (c , I0I4I4 , ε)
⊢ (ε, I0I4I4I6, ε)
⊢ (ε, I0I4I4I8, 6)
(∗)

⊢ (ε, I0I4I8 , 65)
⊢ (ε, I0I3 , 655)
⊢ (ε, I0I1 , 6552)
⊢ (ε, ε , 65520)

Check by rightmost derivation
(on the board)

Remark: in the corresponding
computation of NBA(G), (∗) is
nondeterministic

Compiler Construction Summer Semester 2012 10.17

The LR(0) Parsing Automaton III

Theorem 10.8 (Correctness of LR(0) Parsing Automaton)

If G ∈ LR(0), then the LR(0) parsing automaton of G is deterministic,
and for every w ∈ Σ∗ and z ∈ {0, . . . , p}∗:

(w , I0, ε) ⊢
∗ (ε, ε, z) iff ←−z is a rightmost analysis of w

Proof.

omitted

Compiler Construction Summer Semester 2012 10.18

	Repetition: LR(0) Grammars
	LR(0) Parsing

