
Compiler Construction
Lecture 11: Syntax Analysis VII (SLR(1) and LR(1) Parsing)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Outline

1 Repetition: LR(0) Parsing

2 SLR(1) Parsing

3 LR(1) Parsing

Compiler Construction Summer Semester 2012 11.2

The goto Function

Observation: if G ∈ LR(0), then LR(0)(γ) yields deterministic
shift/reduce decision for NBA(G) in a configuration with pushdown γ
=⇒ new pushdown alphabet: LR(0)(G) in place of X

Moreover LR(0)(γY) is determined by LR(0)(γ) and Y but independent
from γ in the following sense:

LR(0)(γ) = LR(0)(γ′) =⇒ LR(0)(γY) = LR(0)(γ′Y)

Definition (LR(0) goto function)

The function goto : LR(0)(G)× X → LR(0)(G) is determined by

goto(I ,Y) = I ′ iff there exists γ ∈ X ∗ such that
I = LR(0)(γ) and I ′ = LR(0)(γY).

Compiler Construction Summer Semester 2012 11.3

The LR(0) Action Function

The parsing automaton will be defined using another table, the action
function, which determines the shift/reduce decision.
(Reminder: π0 = S ′ → S)

Definition (LR(0) action function)

The LR(0) action function

act : LR(0)(G) → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I) :=











red i if i 6= 0, πi = A → α and [A → α·] ∈ I
shift if [A → α1 · aα2] ∈ I
accept if [S ′ → S ·] ∈ I
error if I = ∅

Corollary

For every G ∈ CFGΣ, G ∈ LR(0) iff act is well defined.

Together, act and goto form the LR(0) parsing table of G .Compiler Construction Summer Semester 2012 11.4

The LR(0) Parsing Automaton I

Definition (LR(0) parsing automaton)

Let G = 〈N ,Σ,P , S〉 ∈ LR(0). The (deterministic) LR(0) parsing automaton of
G is defined by the following components.

Input alphabet Σ

Pushdown alphabet Γ := LR(0)(G)

Output alphabet ∆ := [p] ∪ {0, error}

Configurations Σ∗ × Γ∗ ×∆∗

Initial configuration (w , I0, ε) where I0 := LR(0)(ε)

Final configurations {ε} × {ε} ×∆∗

Transitions:

shift: (aw , αI , z) ⊢ (w , αII ′, z) if act(I) = shift and goto(I , a) = I ′

reduce: (w , αII1 . . . In, z) ⊢ (w , αII ′, zi) if act(In) = red i , πi = A → Y1 . . .Yn,
and goto(I ,A) = I ′

accept: (ε, I0I , z) ⊢ (ε, ε, z 0) if act(I) = accept
error: (w , αI , z) ⊢ (ε, ε, z error) if act(I) = error

Compiler Construction Summer Semester 2012 11.5

Outline

1 Repetition: LR(0) Parsing

2 SLR(1) Parsing

3 LR(1) Parsing

Compiler Construction Summer Semester 2012 11.6

Removing Conflicts in LR(0) Parsing

In practice: often G /∈ LR(0)

Example 11.1

GAE : E ′ → E E → E+T | T
T → T*F | F F → (E) | a | b

LR(0)(GAE) with conflicts:

I0 : [E ′ → ·E] [E → ·E+T] I1 : [E ′ → E ·] [E → E · +T]
[E → ·T] [T → ·T*F] I2 : [E → T ·] [T → T · *F]
[T → ·F] [F → ·(E)] I3 : [T → F ·]
[F → ·a] [F → ·b]

I4 : [F → (· E)] [E → ·E+T] I5 : [F → a·]
[E → ·T] [T → ·T*F] I6 : [F → b·]
[T → ·F] [F → ·(E)] I7 : [E → E+ · T] [T → ·T*F]
[F → ·a] [F → ·b] [T → ·F] [F → ·(E)]

[F → ·a] [F → ·b]
I8 : [T → T* · F] [F → ·(E)] I9 : [F → (E ·)] [E → E · +T]

[F → ·a] [F → ·b] I10 : [E → E+T ·] [T → T · *F]
I11 : [T → T*F ·] I12 : [F → (E)·]

Compiler Construction Summer Semester 2012 11.7

Adding Lookahead I

Goal: resolving conflicts by considering next input symbol

Observations:

[A → β1 · aβ2] ∈ LR(0)(αβ1)
=⇒ S ′ ⇒∗

r αAw ⇒r αβ1
ր

pushdown

aβ2w
տ
next input symbol

Thus: shift only on lookahead a

[A → β·] ∈ LR(0)(αβ)
=⇒ S ′ ⇒∗

r αAxw ⇒r αβ
ր

pushdown

xw
տ
input

=⇒ x ∈ fo(A) ⊆ Σε (x = ε only if w = ε)

Thus: reduce with A → β only if lookahead x ∈ fo(A)

Compiler Construction Summer Semester 2012 11.8

Adding Lookahead II

Example 11.2 (cf. Example 11.1)

GAE : E ′ → E (0)
E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

A ∈ N fo(A)
E ′ {ε}
E {+,), ε}

I1 = {[E ′ → E ·], [E → E · +T]}:

accept on lookahead ε
shift on lookahead +

I2 = {[E → T ·], [T → T · *F]}:
red 2 on lookahead +/)/ε
shift on lookahead *

I10 = {[E → E+T ·], [T → T · *F]}:
red 1 on lookahead +/)/ε
shift on lookahead *

=⇒ SLR(1) parsing (Simple LR(1))

Compiler Construction Summer Semester 2012 11.9

The SLR(1) Action Function

Definition 11.3 (SLR(1) action function)

The SLR(1) action function

act : LR(0)(G) ×Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I , x) :=



















red i if i 6= 0, πi = A → α, [A → α·] ∈ I ,
and x ∈ fo(A)

shift if [A → α1 · xα2] ∈ I and x ∈ Σ
accept if [S ′ → S ·] ∈ I and x = ε
error otherwise

Definition 11.4 (SLR(1) grammar)

A grammar G ∈ CFGΣ has the SLR(1) property (notation: G ∈ SLR(1))
if its SLR(1) action function is well defined.

Together, act and the LR(0) goto function (cf. Definition 10.1) form the
SLR(1) parsing table of G .

Compiler Construction Summer Semester 2012 11.10

The SLR(1) Parsing Table

Example 11.5 (cf. Example 11.1)

I0 : [E ′ → ·E] [E → ·E+T] I1 : [E ′ → E ·] [E → E · +T]
[E → ·T] [T → ·T*F] I2 : [E → T ·] [T → T · *F]
[T → ·F] [F → ·(E)] I3 : [T → F ·]
[F → ·a] [F → ·b]

I4 : [F → (· E)] [E → ·E+T] I5 : [F → a·]
[E → ·T] [T → ·T*F] I6 : [F → b·]
[T → ·F] [F → ·(E)] I7 : [E → E+ · T] [T → ·T*F]
[F → ·a] [F → ·b] [T → ·F] [F → ·(E)]

[F → ·a] [F → ·b]
I8 : [T → T* · F] [F → ·(E)] I9 : [F → (E ·)] [E → E · +T]

[F → ·a] [F → ·b] I10 : [E → E+T ·] [T → T · *F]
I11 : [T → T*F ·] I12 : [F → (E)·]

A ∈ N fo(A)
E ′ {ε}
E {+,), ε}
T {+, *,), ε}
F {+, *,), ε}

LR(0)(GAE) act goto
+ * () a b ε E T F + * () a b

I0 shift shift shift I1 I2 I3 I4 I5 I6
I1 shift accept I7
I2 red 2 shift red 2 red 2 I8
I3 red 4 red 4 red 4 red 4
I4 shift shift shift I9 I2 I3 I4 I5 I6
I5 red 6 red 6 red 6 red 6
I6 red 7 red 7 red 7 red 7
I7 shift shift shift I10 I3 I4 I5 I6
I8 shift shift shift I11 I4 I5 I6
I9 shift shift I7 I12
I10 red 1 shift red 1 red 1 I8
I11 red 3 red 3 red 3 red 3
I12 red 5 red 5 red 5 red 5

Compiler Construction Summer Semester 2012 11.11

The SLR(1) Parsing Automaton

Definition 11.6 (SLR(1) parsing automaton)

The SLR(1) parsing automaton is defined as in the LR(0) case (see
Definition 10.6), except for the transition relation:

shift: (aw , αI , z) ⊢ (w , αII ′, z) if act(I , a) = shift and
goto(I , a) = I ′

reducea: (aw , αII1 . . . In, z) ⊢ (aw , αII ′, zi) if act(In, a) = red i ,
πi = A → Y1 . . .Yn, and goto(I ,A) = I ′

reduceε: (ε, αII1 . . . In, z) ⊢ (ε, αII ′, zi) if act(In, ε) = red i ,
πi = A → Y1 . . .Yn, and goto(I ,A) = I ′

accept: (ε, I0I , z) ⊢ (ε, ε, z 0) if act(I , ε) = accept

errora: (aw , αI , z) ⊢ (ε, ε, z error) if act(I , a) = error

errorε: (ε, αI , z) ⊢ (ε, ε, z error) if act(I , ε) = error

Compiler Construction Summer Semester 2012 11.12

Outline

1 Repetition: LR(0) Parsing

2 SLR(1) Parsing

3 LR(1) Parsing

Compiler Construction Summer Semester 2012 11.13

SLR(1) Conflicts

Problem: not all conflicts can be resolved using fo sets

Example 11.7

GLR : S ′ → S S → L=R | R L → *R | a R → L

LR(0)(GLR):

I0 := LR(0)(ε) : [S ′ → ·S] [S → ·L=R] [S → ·R]
[L → ·*R] [L → ·a] [R → ·L]

I1 := LR(0)(S) : [S ′ → S ·]
I2 := LR(0)(L) : [S → L · =R] [R → L·]
I3 := LR(0)(R) : [S → R ·]
I4 := LR(0)(*) : [L → * · R] [R → ·L] [L → ·*R] [L → ·a]
I5 := LR(0)(a) : [L → a·]
I6 := LR(0)(L=) : [S → L= · R] [R → ·L] [L → ·*R] [L → ·a]
I7 := LR(0)(*R) : [L → *R ·]
I8 := LR(0)(*L) : [R → L·]
I9 := LR(0)(L=R) : [S → L=R ·]

But: conflict in I2 not SLR(1)-solvable since = ∈ fo(R)

Compiler Construction Summer Semester 2012 11.14

LR(1) Items and Sets I

Observation: not every element of fo(A) can follow every occurrence of A
=⇒ refinement of LR(0) items by adding possible lookahead symbols

Definition 11.8 (LR(1) items and sets)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ be start separated by S ′ → S .

If S ′ ⇒∗
r αAaw ⇒r αβ1β2aw , then [A → β1 · β2, a] is called an LR(1)

item for αβ1.

If S ′ ⇒∗
r αA ⇒r αβ1β2, then [A → β1 · β2, ε] is called an LR(1) item

for αβ1.

Given γ ∈ X ∗, LR(1)(γ) denotes the set of all LR(1) items for γ,
called the LR(1) set (or: LR(1) information) of γ.

LR(1)(G) := {LR(1)(γ) | γ ∈ X ∗}.

Compiler Construction Summer Semester 2012 11.15

LR(1) Items and Sets II

Corollary 11.9

1 For every γ ∈ X ∗, LR(1)(γ) is finite.
2 LR(1)(G) is finite.
3 For every γ ∈ X ∗, LR(1)(γ) “contains” LR(0)(γ), i.e.,

{[A → β1 · β2] | [A → β1 · β2, x] ∈ LR(1)(γ)} = LR(0)(γ).

4 [A → β1 · β2, x] ∈ I ∈ LR(1)(G) =⇒ x ∈ fo(A)

Compiler Construction Summer Semester 2012 11.16

LR(1) Conflicts

Definition 11.10 (LR(1) conflicts)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ and I ∈ LR(1)(G).

I has a shift/reduce conflict if there exist A → α1aα2,B → β ∈ P
and x ∈ Σε such that

[A → α1 · aα2, x], [B → β·, a] ∈ I .

I has a reduce/reduce conflict if there exist x ∈ Σε and
A → α,B → β ∈ P with A 6= B or α 6= β such that

[A → α·, x], [B → β·, x] ∈ I .

Lemma 11.11

G ∈ LR(1) iff no I ∈ LR(1)(G) contains conflicting items.

Compiler Construction Summer Semester 2012 11.17

Computing LR(1) Sets I

The computation of LR(0) sets (cf. Theorem 9.11) can be extended to
cover right contexts:

Theorem 11.12 (Computing LR(1) sets)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ be start separated by S ′ → S and reduced.
1 LR(1)(ε) is the least set such that

[S ′ → ·S , ε] ∈ LR(1)(ε) and
if [A → ·Bγ, x] ∈ LR(1)(ε), B → β ∈ P, and y ∈ fi(γx), then
[B → ·β, y] ∈ LR(1)(ε).

2 LR(1)(αY) (α ∈ X ∗,Y ∈ X) is the least set such that

if [A → γ1 · Y γ2, x] ∈ LR(1)(α),
then [A → γ1Y · γ2, x] ∈ LR(1)(αY) and
if [A → γ1 · Bγ2, x] ∈ LR(1)(αY), B → β ∈ P, and y ∈ fi(γ2x), then
[B → ·β, y] ∈ LR(1)(αY).

Compiler Construction Summer Semester 2012 11.18

Computing LR(1) Sets II

Example 11.13 (cf. Example 11.7)

GLR : S ′ → S S → L=R | R L → *R | a R → L

LR(1)(GLR): [S
′ → ·S , ε] ∈ LR(1)(ε) [A → ·Bγ, x] ∈ LR(1)(ε),B → β ∈ P, y ∈ fi(γx)

=⇒ [B → ·β, y] ∈ LR(1)(ε)
[A
=

I ′0 := LR(1)(ε) : [S ′ → ·S , ε] [S → ·L=R, ε] [S → ·R, ε] [L → ·*R, =]
[L → ·a, =] [R → ·L, ε] [L → ·*R, ε] [L → ·a, ε]

I ′1 := LR(1)(S) : [S ′ → S ·, ε]
I ′2 := LR(1)(L) : [S → L · =R, ε] [R → L·, ε]
I ′3 := LR(1)(R) : [S → R·, ε]
I ′4 := LR(1)(*) : [L → * · R, =] [L → * · R, ε] [R → ·L, =] [R → ·L, ε]

[L → ·*R, =] [L → ·a, =] [L → ·*R, ε] [L → ·a, ε]
I ′5 := LR(1)(a) : [L → a·, =] [L → a·, ε]
I ′6 := LR(1)(L=) : [S → L= · R, ε] [R → ·L, ε] [L → ·*R, ε] [L → ·a, ε]
I ′7 := LR(1)(*R) : [L → *R·, =] [L → *R·, ε]
I ′8 := LR(1)(*L) : [R → L·, =] [R → L·, ε]
I ′9 := LR(1)(L=R) : [S → L=R·, ε]
I ′10 := LR(1)(L=L) : [R → L·, ε]
I ′11 := LR(1)(L=*) : [L → * · R, ε] [R → ·L, ε] [L → ·*R, ε] [L → ·a, ε]
I ′12 := LR(1)(L=a) : [L → a·, ε]
I ′13 := LR(1)(L=*R) : [L → *R·, ε]
I ′14 := ∅

In I ′2: shift on =/reduce on ε =⇒ GLR ∈ LR(1)
Compiler Construction Summer Semester 2012 11.19

The LR(1) Action Function

Definition 11.14 (LR(1) action function)

The LR(1) action function

act : LR(1)(G) ×Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I , x) :=











red i if i 6= 0, πi = A → α and [A → α·, x] ∈ I
shift if [A → α1 · xα2, y] ∈ I and x ∈ Σ
accept if [S ′ → S ·, ε] ∈ I and x = ε
error otherwise

Corollary 11.15

For every G ∈ CFGΣ, G ∈ LR(1) iff its LR(1) action function is well
defined.

Compiler Construction Summer Semester 2012 11.20

The LR(1) goto Function

The goto function is defined in analogy to the LR(0) case
(Definition 10.1).

Definition 11.16 (LR(1) goto function)

The function goto : LR(1)(G)× X → LR(1)(G) is determined by

goto(I ,Y) = I ′ iff there exists γ ∈ X ∗ such that
I = LR(1)(γ) and I ′ = LR(1)(γY).

Again, act and goto form the LR(1) parsing table of G .

Compiler Construction Summer Semester 2012 11.21

The LR(1) Parsing Table

Example 11.17 (cf. Example 11.13)

LR(1)(GLR) act/goto|Σ goto|N
* = a ε S L R

I ′0 shift/I ′4 shift/I ′5 I ′1 I ′2 I ′3
I ′1 accept
I ′2 shift/I ′6 red 5
I ′3 red 2
I ′4 shift/I ′4 shift/I ′5 I ′8 I ′7
I ′5 red 4 red 4
I ′6 shift/I ′11 shift/I ′12 I ′10 I ′9
I ′7 red 3 red 3
I ′8 red 5
I ′9 red 1
I ′10 red 5
I ′11 shift/I ′11 shift/I ′12 I ′10 I ′13
I ′12 red 4
I ′13 red 3

(empty = error/∅)

Compiler Construction Summer Semester 2012 11.22

The LR(1) Parsing Automaton I

Definition 11.18 (LR(1) parsing automaton)

The LR(1) parsing automaton is defined as in the LR(0) case (see
Definition 10.6), except for the transition relation:

shift: (aw , αI , z) ⊢ (w , αII ′, z) if act(I , a) = shift and
goto(I , a) = I ′

reducea: (aw , αII1 . . . In, z) ⊢ (aw , αII ′, zi) if act(In, a) = red i ,
πi = A → Y1 . . .Yn, and goto(I ,A) = I ′

reduceε: (ε, αII1 . . . In, z) ⊢ (ε, αII ′, zi) if act(In, ε) = red i ,
πi = A → Y1 . . .Yn, and goto(I ,A) = I ′

accept: (ε, I0I , z) ⊢ (ε, ε, z 0) if act(I , ε) = accept

errora: (aw , αI , z) ⊢ (ε, ε, z error) if act(I , a) = error

errorε: (ε, αI , z) ⊢ (ε, ε, z error) if act(I , ε) = error

Compiler Construction Summer Semester 2012 11.23

The LR(1) Parsing Automaton II

Example 11.19 (cf. Example 11.13)

GLR : S ′ → S (0) S → L=R | R (1, 2) L → *R | a (3, 4) R → L (5)

LR(1)(GLR) act/goto|Σ goto|N
* = a ε S L R

I ′0 shift/I ′4 shift/I ′5 I ′1 I
′

2 I ′3
I ′1 accept
I ′2 shift/I ′6 red 5
I ′3 red 2
I ′4 shift/I ′4 shift/I ′5 I ′8 I ′7
I ′5 red 4 red 4
I ′6 shift/I ′11 shift/I ′12 I ′10 I

′

9

I ′7 red 3 red 3
I ′8 red 5
I ′9 red 1
I ′10 red 5
I ′11 shift/I ′11 shift/I ′12 I ′10 I

′

13

I ′12 red 4
I ′13 red 3

(empty = error/∅)

LR(1) parsing of a=*a:

(a=*a, I ′0 , ε)
⊢ (=*a, I ′0I

′

5 , ε)
⊢ (=*a, I ′0I

′

2 , 4)
⊢ (*a, I ′0I

′

2 I
′

6 , 4)
⊢ (a, I ′0I

′

2 I
′

6 I
′

11 , 4)
⊢ (ε, I ′0I

′

2 I
′

6 I
′

11I
′

12, 4)
⊢ (ε, I ′0I

′

2 I
′

6 I
′

11I
′

10, 44)
⊢ (ε, I ′0I

′

2 I
′

6 I
′

11I
′

13, 445)
⊢ (ε, I ′0I

′

2 I
′

6 I
′

10 , 4453)
⊢ (ε, I ′0I

′

2 I
′

6 I
′

9 , 44535)
⊢ (ε, I ′0I

′

1 , 445351)
⊢ (ε, ε , 4453510)

Compiler Construction Summer Semester 2012 11.24

	Repetition: LR(0) Parsing
	SLR(1) Parsing
	LR(1) Parsing

