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The goto Function

Observation: if G ∈ LR(0), then LR(0)(γ) yields deterministic
shift/reduce decision for NBA(G ) in a configuration with pushdown γ
=⇒ new pushdown alphabet: LR(0)(G ) in place of X

Moreover LR(0)(γY ) is determined by LR(0)(γ) and Y but independent
from γ in the following sense:

LR(0)(γ) = LR(0)(γ′) =⇒ LR(0)(γY ) = LR(0)(γ′Y )

Definition (LR(0) goto function)

The function goto : LR(0)(G )× X → LR(0)(G ) is determined by

goto(I ,Y ) = I ′ iff there exists γ ∈ X ∗ such that
I = LR(0)(γ) and I ′ = LR(0)(γY ).
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The LR(0) Action Function

The parsing automaton will be defined using another table, the action
function, which determines the shift/reduce decision.
(Reminder: π0 = S ′ → S)

Definition (LR(0) action function)

The LR(0) action function

act : LR(0)(G ) → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I ) :=











red i if i 6= 0, πi = A → α and [A → α·] ∈ I
shift if [A → α1 · aα2] ∈ I
accept if [S ′ → S ·] ∈ I
error if I = ∅

Corollary

For every G ∈ CFGΣ, G ∈ LR(0) iff act is well defined.

Together, act and goto form the LR(0) parsing table of G .Compiler Construction Summer Semester 2012 11.4



The LR(0) Parsing Automaton I

Definition (LR(0) parsing automaton)

Let G = 〈N ,Σ,P , S〉 ∈ LR(0). The (deterministic) LR(0) parsing automaton of
G is defined by the following components.

Input alphabet Σ

Pushdown alphabet Γ := LR(0)(G)

Output alphabet ∆ := [p] ∪ {0, error}

Configurations Σ∗ × Γ∗ ×∆∗

Initial configuration (w , I0, ε) where I0 := LR(0)(ε)

Final configurations {ε} × {ε} ×∆∗

Transitions:

shift: (aw , αI , z) ⊢ (w , αII ′, z) if act(I ) = shift and goto(I , a) = I ′

reduce: (w , αII1 . . . In, z) ⊢ (w , αII ′, zi) if act(In) = red i , πi = A → Y1 . . .Yn,
and goto(I ,A) = I ′

accept: (ε, I0I , z) ⊢ (ε, ε, z 0) if act(I ) = accept
error: (w , αI , z) ⊢ (ε, ε, z error) if act(I ) = error
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Removing Conflicts in LR(0) Parsing

In practice: often G /∈ LR(0)

Example 11.1

GAE : E ′ → E E → E+T | T
T → T*F | F F → (E) | a | b

LR(0)(GAE ) with conflicts:

I0 : [E ′ → ·E ] [E → ·E+T ] I1 : [E ′ → E ·] [E → E · +T ]
[E → ·T ] [T → ·T*F ] I2 : [E → T ·] [T → T · *F ]
[T → ·F ] [F → ·(E)] I3 : [T → F ·]
[F → ·a] [F → ·b]

I4 : [F → ( · E)] [E → ·E+T ] I5 : [F → a·]
[E → ·T ] [T → ·T*F ] I6 : [F → b·]
[T → ·F ] [F → ·(E)] I7 : [E → E+ · T ] [T → ·T*F ]
[F → ·a] [F → ·b] [T → ·F ] [F → ·(E)]

[F → ·a] [F → ·b]
I8 : [T → T* · F ] [F → ·(E)] I9 : [F → (E · )] [E → E · +T ]

[F → ·a] [F → ·b] I10 : [E → E+T ·] [T → T · *F ]
I11 : [T → T*F ·] I12 : [F → (E)·]
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Adding Lookahead I

Goal: resolving conflicts by considering next input symbol

Observations:

[A → β1 · aβ2] ∈ LR(0)(αβ1)
=⇒ S ′ ⇒∗

r αAw ⇒r αβ1
ր

pushdown

aβ2w
տ
next input symbol

Thus: shift only on lookahead a

[A → β·] ∈ LR(0)(αβ)
=⇒ S ′ ⇒∗

r αAxw ⇒r αβ
ր

pushdown

xw
տ
input

=⇒ x ∈ fo(A) ⊆ Σε (x = ε only if w = ε)

Thus: reduce with A → β only if lookahead x ∈ fo(A)
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Adding Lookahead II

Example 11.2 (cf. Example 11.1)

GAE : E ′ → E (0)
E → E+T | T (1, 2)
T → T*F | F (3, 4)
F → (E) | a | b (5, 6, 7)

A ∈ N fo(A)
E ′ {ε}
E {+, ), ε}

I1 = {[E ′ → E ·], [E → E · +T ]}:

accept on lookahead ε
shift on lookahead +

I2 = {[E → T ·], [T → T · *F ]}:
red 2 on lookahead +/)/ε
shift on lookahead *

I10 = {[E → E+T ·], [T → T · *F ]}:
red 1 on lookahead +/)/ε
shift on lookahead *

=⇒ SLR(1) parsing (Simple LR(1))
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The SLR(1) Action Function

Definition 11.3 (SLR(1) action function)

The SLR(1) action function

act : LR(0)(G ) ×Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I , x) :=



















red i if i 6= 0, πi = A → α, [A → α·] ∈ I ,
and x ∈ fo(A)

shift if [A → α1 · xα2] ∈ I and x ∈ Σ
accept if [S ′ → S ·] ∈ I and x = ε
error otherwise

Definition 11.4 (SLR(1) grammar)

A grammar G ∈ CFGΣ has the SLR(1) property (notation: G ∈ SLR(1))
if its SLR(1) action function is well defined.

Together, act and the LR(0) goto function (cf. Definition 10.1) form the
SLR(1) parsing table of G .
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The SLR(1) Parsing Table

Example 11.5 (cf. Example 11.1)

I0 : [E ′ → ·E ] [E → ·E+T ] I1 : [E ′ → E ·] [E → E · +T ]
[E → ·T ] [T → ·T*F ] I2 : [E → T ·] [T → T · *F ]
[T → ·F ] [F → ·(E)] I3 : [T → F ·]
[F → ·a] [F → ·b]

I4 : [F → ( · E)] [E → ·E+T ] I5 : [F → a·]
[E → ·T ] [T → ·T*F ] I6 : [F → b·]
[T → ·F ] [F → ·(E)] I7 : [E → E+ · T ] [T → ·T*F ]
[F → ·a] [F → ·b] [T → ·F ] [F → ·(E)]

[F → ·a] [F → ·b]
I8 : [T → T* · F ] [F → ·(E)] I9 : [F → (E · )] [E → E · +T ]

[F → ·a] [F → ·b] I10 : [E → E+T ·] [T → T · *F ]
I11 : [T → T*F ·] I12 : [F → (E)·]

A ∈ N fo(A)
E ′ {ε}
E {+, ), ε}
T {+, *, ), ε}
F {+, *, ), ε}

LR(0)(GAE ) act goto
+ * ( ) a b ε E T F + * ( ) a b

I0 shift shift shift I1 I2 I3 I4 I5 I6
I1 shift accept I7
I2 red 2 shift red 2 red 2 I8
I3 red 4 red 4 red 4 red 4
I4 shift shift shift I9 I2 I3 I4 I5 I6
I5 red 6 red 6 red 6 red 6
I6 red 7 red 7 red 7 red 7
I7 shift shift shift I10 I3 I4 I5 I6
I8 shift shift shift I11 I4 I5 I6
I9 shift shift I7 I12
I10 red 1 shift red 1 red 1 I8
I11 red 3 red 3 red 3 red 3
I12 red 5 red 5 red 5 red 5
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The SLR(1) Parsing Automaton

Definition 11.6 (SLR(1) parsing automaton)

The SLR(1) parsing automaton is defined as in the LR(0) case (see
Definition 10.6), except for the transition relation:

shift: (aw , αI , z) ⊢ (w , αII ′, z) if act(I , a) = shift and
goto(I , a) = I ′

reducea: (aw , αII1 . . . In, z) ⊢ (aw , αII ′, zi) if act(In, a) = red i ,
πi = A → Y1 . . .Yn, and goto(I ,A) = I ′

reduceε: (ε, αII1 . . . In, z) ⊢ (ε, αII ′, zi) if act(In, ε) = red i ,
πi = A → Y1 . . .Yn, and goto(I ,A) = I ′

accept: (ε, I0I , z) ⊢ (ε, ε, z 0) if act(I , ε) = accept

errora: (aw , αI , z) ⊢ (ε, ε, z error) if act(I , a) = error

errorε: (ε, αI , z) ⊢ (ε, ε, z error) if act(I , ε) = error
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SLR(1) Conflicts

Problem: not all conflicts can be resolved using fo sets

Example 11.7

GLR : S ′ → S S → L=R | R L → *R | a R → L

LR(0)(GLR ):

I0 := LR(0)(ε) : [S ′ → ·S ] [S → ·L=R ] [S → ·R ]
[L → ·*R ] [L → ·a] [R → ·L]

I1 := LR(0)(S) : [S ′ → S ·]
I2 := LR(0)(L) : [S → L · =R ] [R → L·]
I3 := LR(0)(R) : [S → R ·]
I4 := LR(0)(*) : [L → * · R ] [R → ·L] [L → ·*R ] [L → ·a]
I5 := LR(0)(a) : [L → a·]
I6 := LR(0)(L=) : [S → L= · R ] [R → ·L] [L → ·*R ] [L → ·a]
I7 := LR(0)(*R) : [L → *R ·]
I8 := LR(0)(*L) : [R → L·]
I9 := LR(0)(L=R) : [S → L=R ·]

But: conflict in I2 not SLR(1)-solvable since = ∈ fo(R)
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LR(1) Items and Sets I

Observation: not every element of fo(A) can follow every occurrence of A
=⇒ refinement of LR(0) items by adding possible lookahead symbols

Definition 11.8 (LR(1) items and sets)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ be start separated by S ′ → S .

If S ′ ⇒∗
r αAaw ⇒r αβ1β2aw , then [A → β1 · β2, a] is called an LR(1)

item for αβ1.

If S ′ ⇒∗
r αA ⇒r αβ1β2, then [A → β1 · β2, ε] is called an LR(1) item

for αβ1.

Given γ ∈ X ∗, LR(1)(γ) denotes the set of all LR(1) items for γ,
called the LR(1) set (or: LR(1) information) of γ.

LR(1)(G ) := {LR(1)(γ) | γ ∈ X ∗}.
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LR(1) Items and Sets II

Corollary 11.9

1 For every γ ∈ X ∗, LR(1)(γ) is finite.
2 LR(1)(G ) is finite.
3 For every γ ∈ X ∗, LR(1)(γ) “contains” LR(0)(γ), i.e.,

{[A → β1 · β2] | [A → β1 · β2, x ] ∈ LR(1)(γ)} = LR(0)(γ).

4 [A → β1 · β2, x ] ∈ I ∈ LR(1)(G ) =⇒ x ∈ fo(A)
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LR(1) Conflicts

Definition 11.10 (LR(1) conflicts)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ and I ∈ LR(1)(G ).

I has a shift/reduce conflict if there exist A → α1aα2,B → β ∈ P
and x ∈ Σε such that

[A → α1 · aα2, x ], [B → β·, a] ∈ I .

I has a reduce/reduce conflict if there exist x ∈ Σε and
A → α,B → β ∈ P with A 6= B or α 6= β such that

[A → α·, x ], [B → β·, x ] ∈ I .

Lemma 11.11

G ∈ LR(1) iff no I ∈ LR(1)(G ) contains conflicting items.
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Computing LR(1) Sets I

The computation of LR(0) sets (cf. Theorem 9.11) can be extended to
cover right contexts:

Theorem 11.12 (Computing LR(1) sets)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ be start separated by S ′ → S and reduced.
1 LR(1)(ε) is the least set such that

[S ′ → ·S , ε] ∈ LR(1)(ε) and
if [A → ·Bγ, x ] ∈ LR(1)(ε), B → β ∈ P, and y ∈ fi(γx), then
[B → ·β, y ] ∈ LR(1)(ε).

2 LR(1)(αY ) (α ∈ X ∗,Y ∈ X) is the least set such that

if [A → γ1 · Y γ2, x ] ∈ LR(1)(α),
then [A → γ1Y · γ2, x ] ∈ LR(1)(αY ) and
if [A → γ1 · Bγ2, x ] ∈ LR(1)(αY ), B → β ∈ P, and y ∈ fi(γ2x), then
[B → ·β, y ] ∈ LR(1)(αY ).
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Computing LR(1) Sets II

Example 11.13 (cf. Example 11.7)

GLR : S ′ → S S → L=R | R L → *R | a R → L

LR(1)(GLR): [S
′ → ·S , ε] ∈ LR(1)(ε) [A → ·Bγ, x] ∈ LR(1)(ε),B → β ∈ P, y ∈ fi(γx)

=⇒ [B → ·β, y ] ∈ LR(1)(ε)
[A
=

I ′0 := LR(1)(ε) : [S ′ → ·S , ε] [S → ·L=R, ε] [S → ·R, ε] [L → ·*R, =]
[L → ·a, =] [R → ·L, ε] [L → ·*R, ε] [L → ·a, ε]

I ′1 := LR(1)(S) : [S ′ → S ·, ε]
I ′2 := LR(1)(L) : [S → L · =R, ε] [R → L·, ε]
I ′3 := LR(1)(R) : [S → R·, ε]
I ′4 := LR(1)(*) : [L → * · R, =] [L → * · R, ε] [R → ·L, =] [R → ·L, ε]

[L → ·*R, =] [L → ·a, =] [L → ·*R, ε] [L → ·a, ε]
I ′5 := LR(1)(a) : [L → a·, =] [L → a·, ε]
I ′6 := LR(1)(L=) : [S → L= · R, ε] [R → ·L, ε] [L → ·*R, ε] [L → ·a, ε]
I ′7 := LR(1)(*R) : [L → *R·, =] [L → *R·, ε]
I ′8 := LR(1)(*L) : [R → L·, =] [R → L·, ε]
I ′9 := LR(1)(L=R) : [S → L=R·, ε]
I ′10 := LR(1)(L=L) : [R → L·, ε]
I ′11 := LR(1)(L=*) : [L → * · R, ε] [R → ·L, ε] [L → ·*R, ε] [L → ·a, ε]
I ′12 := LR(1)(L=a) : [L → a·, ε]
I ′13 := LR(1)(L=*R) : [L → *R·, ε]
I ′14 := ∅

In I ′2: shift on =/reduce on ε =⇒ GLR ∈ LR(1)
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The LR(1) Action Function

Definition 11.14 (LR(1) action function)

The LR(1) action function

act : LR(1)(G ) ×Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I , x) :=











red i if i 6= 0, πi = A → α and [A → α·, x ] ∈ I
shift if [A → α1 · xα2, y ] ∈ I and x ∈ Σ
accept if [S ′ → S ·, ε] ∈ I and x = ε
error otherwise

Corollary 11.15

For every G ∈ CFGΣ, G ∈ LR(1) iff its LR(1) action function is well
defined.
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The LR(1) goto Function

The goto function is defined in analogy to the LR(0) case
(Definition 10.1).

Definition 11.16 (LR(1) goto function)

The function goto : LR(1)(G )× X → LR(1)(G ) is determined by

goto(I ,Y ) = I ′ iff there exists γ ∈ X ∗ such that
I = LR(1)(γ) and I ′ = LR(1)(γY ).

Again, act and goto form the LR(1) parsing table of G .
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The LR(1) Parsing Table

Example 11.17 (cf. Example 11.13)

LR(1)(GLR ) act/goto|Σ goto|N
* = a ε S L R

I ′0 shift/I ′4 shift/I ′5 I ′1 I ′2 I ′3
I ′1 accept
I ′2 shift/I ′6 red 5
I ′3 red 2
I ′4 shift/I ′4 shift/I ′5 I ′8 I ′7
I ′5 red 4 red 4
I ′6 shift/I ′11 shift/I ′12 I ′10 I ′9
I ′7 red 3 red 3
I ′8 red 5
I ′9 red 1
I ′10 red 5
I ′11 shift/I ′11 shift/I ′12 I ′10 I ′13
I ′12 red 4
I ′13 red 3

(empty = error/∅)
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The LR(1) Parsing Automaton I

Definition 11.18 (LR(1) parsing automaton)

The LR(1) parsing automaton is defined as in the LR(0) case (see
Definition 10.6), except for the transition relation:

shift: (aw , αI , z) ⊢ (w , αII ′, z) if act(I , a) = shift and
goto(I , a) = I ′

reducea: (aw , αII1 . . . In, z) ⊢ (aw , αII ′, zi) if act(In, a) = red i ,
πi = A → Y1 . . .Yn, and goto(I ,A) = I ′

reduceε: (ε, αII1 . . . In, z) ⊢ (ε, αII ′, zi) if act(In, ε) = red i ,
πi = A → Y1 . . .Yn, and goto(I ,A) = I ′

accept: (ε, I0I , z) ⊢ (ε, ε, z 0) if act(I , ε) = accept

errora: (aw , αI , z) ⊢ (ε, ε, z error) if act(I , a) = error

errorε: (ε, αI , z) ⊢ (ε, ε, z error) if act(I , ε) = error
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The LR(1) Parsing Automaton II

Example 11.19 (cf. Example 11.13)

GLR : S ′ → S (0) S → L=R | R (1, 2) L → *R | a (3, 4) R → L (5)

LR(1)(GLR) act/goto|Σ goto|N
* = a ε S L R

I ′0 shift/I ′4 shift/I ′5 I ′1 I
′

2 I ′3
I ′1 accept
I ′2 shift/I ′6 red 5
I ′3 red 2
I ′4 shift/I ′4 shift/I ′5 I ′8 I ′7
I ′5 red 4 red 4
I ′6 shift/I ′11 shift/I ′12 I ′10 I

′

9

I ′7 red 3 red 3
I ′8 red 5
I ′9 red 1
I ′10 red 5
I ′11 shift/I ′11 shift/I ′12 I ′10 I

′

13

I ′12 red 4
I ′13 red 3

(empty = error/∅)

LR(1) parsing of a=*a:

(a=*a, I ′0 , ε )
⊢ ( =*a, I ′0I

′

5 , ε )
⊢ ( =*a, I ′0I

′

2 , 4 )
⊢ ( *a, I ′0I

′

2 I
′

6 , 4 )
⊢ ( a, I ′0I

′

2 I
′

6 I
′

11 , 4 )
⊢ ( ε, I ′0I

′

2 I
′

6 I
′

11I
′

12, 4 )
⊢ ( ε, I ′0I

′

2 I
′

6 I
′

11I
′

10, 44 )
⊢ ( ε, I ′0I

′

2 I
′

6 I
′

11I
′

13, 445 )
⊢ ( ε, I ′0I

′

2 I
′

6 I
′

10 , 4453 )
⊢ ( ε, I ′0I

′

2 I
′

6 I
′

9 , 44535 )
⊢ ( ε, I ′0I

′

1 , 445351 )
⊢ ( ε, ε , 4453510)
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