
Compiler Construction
Lecture 12: Syntax Analysis VIII

(LALR(1) Parsing & Practical Issues)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Outline

1 Repetition: LR(1) Parsing

2 LALR(1) Parsing

3 Bottom-Up Parsing of Ambiguous Grammars

4 Generating Parsers Using yacc and bison

5 LL and LR Parsing in Practice

Compiler Construction Summer Semester 2012 12.2

LR(1) Items and Sets

Observation: not every element of fo(A) can follow every occurrence of A
=⇒ refinement of LR(0) items by adding possible lookahead symbols

Definition (LR(1) items and sets)

Let G = 〈N,Σ,P ,S〉 ∈ CFGΣ be start separated by S ′ → S .

If S ′ ⇒∗
r αAaw ⇒r αβ1β2aw , then [A → β1 · β2, a] is called an LR(1)

item for αβ1.

If S ′ ⇒∗
r αA ⇒r αβ1β2, then [A → β1 · β2, ε] is called an LR(1) item

for αβ1.

Given γ ∈ X ∗, LR(1)(γ) denotes the set of all LR(1) items for γ,
called the LR(1) set (or: LR(1) information) of γ.

LR(1)(G) := {LR(1)(γ) | γ ∈ X ∗}.

Compiler Construction Summer Semester 2012 12.3

The LR(1) Action Function

Definition (LR(1) action function)

The LR(1) action function

act : LR(1)(G) ×Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I , x) :=











red i if i 6= 0, πi = A → α and [A → α·, x] ∈ I
shift if [A → α1 · xα2, y] ∈ I and x ∈ Σ
accept if [S ′ → S ·, ε] ∈ I and x = ε
error otherwise

Corollary

For every G ∈ CFGΣ, G ∈ LR(1) iff its LR(1) action function is well
defined.

Compiler Construction Summer Semester 2012 12.4

Outline

1 Repetition: LR(1) Parsing

2 LALR(1) Parsing

3 Bottom-Up Parsing of Ambiguous Grammars

4 Generating Parsers Using yacc and bison

5 LL and LR Parsing in Practice

Compiler Construction Summer Semester 2012 12.5

LALR(1) Parsing

Motivation: resolving conflicts using LR(1) too expensive

Compiler Construction Summer Semester 2012 12.6

LALR(1) Parsing

Motivation: resolving conflicts using LR(1) too expensive

Example 11.7/11.13: |LR(0)(GLR)| = 11, |LR(1)(GLR)| = 15

Compiler Construction Summer Semester 2012 12.6

LALR(1) Parsing

Motivation: resolving conflicts using LR(1) too expensive

Example 11.7/11.13: |LR(0)(GLR)| = 11, |LR(1)(GLR)| = 15

Empirical evaluations:

A. Johnstone, E. Scott: Generalised Reduction Modified LR Parsing for
Domain Specific Language Prototyping, HICSS ’02, IEEE, 2002
X. Chen, D. Pager: Full LR(1) Parser Generator Hyacc and Study on
the Performance of LR(1) Algorithms, C3S2E ’11, ACM, 2011

Grammar |LR(0)(G)| |LR(1)(G)|
Pascal 368 1395
Ansi-C 381 1788
C++ 1236 9723

Compiler Construction Summer Semester 2012 12.6

LR(0) Equivalence I

Observation: potential redundancy by containment of LR(0) sets in
LR(1) sets (cf. Corollary 11.9)

Compiler Construction Summer Semester 2012 12.7

LR(0) Equivalence I

Observation: potential redundancy by containment of LR(0) sets in
LR(1) sets (cf. Corollary 11.9)

Definition 12.1 (LR(0) equivalence)

Let lr0 : LR(1)(G) → LR(0)(G) be defined by

lr0(I) := {[A → β1 · β2] | [A → β1 · β2, x] ∈ I}.

Two sets I1, I2 ∈ LR(1)(G) are called LR(0)-equivalent
(notation: I1 ∼0 I2) if lr0(I1) = lr0(I2).

Compiler Construction Summer Semester 2012 12.7

LR(0) Equivalence II

Example 12.2 (cf. Example 11.7/11.13)

GLR : S ′ → S S → L=R | R
L → *R | a R → L

LR(0)(GLR) :
I0(ε) : [S ′ → ·S] [S → ·L=R]

[S → ·R] [L → ·*R]
[L → ·a] [R → ·L]

I1(S) : [S ′ → S·]
I2(L) : [S → L · =R] [R → L·]
I3(R) : [S → R·]
I4(*) : [L → * · R] [R → ·L]

[L → ·*R] [L → ·a]
I5(a) : [L → a·]
I6(L=) : [S → L= · R] [R → ·L]

[L → ·*R] [L → ·a]
I7(*R) : [L → *R·]
I8(*L) : [R → L·]
I9(L=R) : [S → L=R·]

LR(1)(GLR) :
I ′0(ε) : [S ′ → ·S, ε] [S → ·L=R, ε]

[S → ·R, ε] [L → ·*R, =]
[L → ·a, =] [R → ·L, ε]
[L → ·*R, ε] [L → ·a, ε]

I ′1(S) : [S ′ → S·, ε]
I ′2(L) : [S → L · =R, ε] [R → L·, ε]
I ′3(R) : [S → R·, ε]
I ′4(*) : [L → * · R, =] [L → * · R, ε]

[R → ·L, =] [R → ·L, ε]
[L → ·*R, =] [L → ·a, =]
[L → ·*R, ε] [L → ·a, ε]

I ′5(a) : [L → a·, =] [L → a·, ε]
I ′6(L=) : [S → L= · R, ε] [R → ·L, ε]

[L → ·*R, ε] [L → ·a, ε]
I ′7(*R) : [L → *R·, =] [L → *R·, ε]
I ′8(*L) : [R → L·, =] [R → L·, ε]
I ′9(L=R) : [S → L=R·, ε]
I ′10(L=L) : [R → L·, ε]
I ′11(L=*) : [L → * · R, ε] [R → ·L, ε]

[L → ·*R, ε] [L → ·a, ε]
I ′12(L=a) : [L → a·, ε]
I ′13(L=*R) : [L → *R·, ε]

Compiler Construction Summer Semester 2012 12.8

LR(0) Equivalence II

Example 12.2 (cf. Example 11.7/11.13)

GLR : S ′ → S S → L=R | R
L → *R | a R → L

LR(0)(GLR) :
I0(ε) : [S ′ → ·S] [S → ·L=R]

[S → ·R] [L → ·*R]
[L → ·a] [R → ·L]

I1(S) : [S ′ → S·]
I2(L) : [S → L · =R] [R → L·]
I3(R) : [S → R·]
I4(*) : [L → * · R] [R → ·L]

[L → ·*R] [L → ·a]
I5(a) : [L → a·]
I6(L=) : [S → L= · R] [R → ·L]

[L → ·*R] [L → ·a]
I7(*R) : [L → *R·]
I8(*L) : [R → L·]
I9(L=R) : [S → L=R·]

=⇒ I ′4 ∼0 I ′11

LR(1)(GLR) :
I ′0(ε) : [S ′ → ·S, ε] [S → ·L=R, ε]

[S → ·R, ε] [L → ·*R, =]
[L → ·a, =] [R → ·L, ε]
[L → ·*R, ε] [L → ·a, ε]

I ′1(S) : [S ′ → S·, ε]
I ′2(L) : [S → L · =R, ε] [R → L·, ε]
I ′3(R) : [S → R·, ε]
I ′4(*) : [L → * · R, =] [L → * · R, ε]

[R → ·L, =] [R → ·L, ε]
[L → ·*R, =] [L → ·a, =]
[L → ·*R, ε] [L → ·a, ε]

I ′5(a) : [L → a·, =] [L → a·, ε]
I ′6(L=) : [S → L= · R, ε] [R → ·L, ε]

[L → ·*R, ε] [L → ·a, ε]
I ′7(*R) : [L → *R·, =] [L → *R·, ε]
I ′8(*L) : [R → L·, =] [R → L·, ε]
I ′9(L=R) : [S → L=R·, ε]
I ′10(L=L) : [R → L·, ε]
I ′11(L=*) : [L → * · R, ε] [R → ·L, ε]

[L → ·*R, ε] [L → ·a, ε]
I ′12(L=a) : [L → a·, ε]
I ′13(L=*R) : [L → *R·, ε]

Compiler Construction Summer Semester 2012 12.8

LR(0) Equivalence II

Example 12.2 (cf. Example 11.7/11.13)

GLR : S ′ → S S → L=R | R
L → *R | a R → L

LR(0)(GLR) :
I0(ε) : [S ′ → ·S] [S → ·L=R]

[S → ·R] [L → ·*R]
[L → ·a] [R → ·L]

I1(S) : [S ′ → S·]
I2(L) : [S → L · =R] [R → L·]
I3(R) : [S → R·]
I4(*) : [L → * · R] [R → ·L]

[L → ·*R] [L → ·a]
I5(a) : [L → a·]
I6(L=) : [S → L= · R] [R → ·L]

[L → ·*R] [L → ·a]
I7(*R) : [L → *R·]
I8(*L) : [R → L·]
I9(L=R) : [S → L=R·]

=⇒ I ′4 ∼0 I ′11
I ′5 ∼0 I ′12

LR(1)(GLR) :
I ′0(ε) : [S ′ → ·S, ε] [S → ·L=R, ε]

[S → ·R, ε] [L → ·*R, =]
[L → ·a, =] [R → ·L, ε]
[L → ·*R, ε] [L → ·a, ε]

I ′1(S) : [S ′ → S·, ε]
I ′2(L) : [S → L · =R, ε] [R → L·, ε]
I ′3(R) : [S → R·, ε]
I ′4(*) : [L → * · R, =] [L → * · R, ε]

[R → ·L, =] [R → ·L, ε]
[L → ·*R, =] [L → ·a, =]
[L → ·*R, ε] [L → ·a, ε]

I ′5(a) : [L → a·, =] [L → a·, ε]
I ′6(L=) : [S → L= · R, ε] [R → ·L, ε]

[L → ·*R, ε] [L → ·a, ε]
I ′7(*R) : [L → *R·, =] [L → *R·, ε]
I ′8(*L) : [R → L·, =] [R → L·, ε]
I ′9(L=R) : [S → L=R·, ε]
I ′10(L=L) : [R → L·, ε]
I ′11(L=*) : [L → * · R, ε] [R → ·L, ε]

[L → ·*R, ε] [L → ·a, ε]
I ′12(L=a) : [L → a·, ε]
I ′13(L=*R) : [L → *R·, ε]

Compiler Construction Summer Semester 2012 12.8

LR(0) Equivalence II

Example 12.2 (cf. Example 11.7/11.13)

GLR : S ′ → S S → L=R | R
L → *R | a R → L

LR(0)(GLR) :
I0(ε) : [S ′ → ·S] [S → ·L=R]

[S → ·R] [L → ·*R]
[L → ·a] [R → ·L]

I1(S) : [S ′ → S·]
I2(L) : [S → L · =R] [R → L·]
I3(R) : [S → R·]
I4(*) : [L → * · R] [R → ·L]

[L → ·*R] [L → ·a]
I5(a) : [L → a·]
I6(L=) : [S → L= · R] [R → ·L]

[L → ·*R] [L → ·a]
I7(*R) : [L → *R·]
I8(*L) : [R → L·]
I9(L=R) : [S → L=R·]

=⇒ I ′4 ∼0 I ′11
I ′5 ∼0 I ′12
I ′7 ∼0 I ′13

LR(1)(GLR) :
I ′0(ε) : [S ′ → ·S, ε] [S → ·L=R, ε]

[S → ·R, ε] [L → ·*R, =]
[L → ·a, =] [R → ·L, ε]
[L → ·*R, ε] [L → ·a, ε]

I ′1(S) : [S ′ → S·, ε]
I ′2(L) : [S → L · =R, ε] [R → L·, ε]
I ′3(R) : [S → R·, ε]
I ′4(*) : [L → * · R, =] [L → * · R, ε]

[R → ·L, =] [R → ·L, ε]
[L → ·*R, =] [L → ·a, =]
[L → ·*R, ε] [L → ·a, ε]

I ′5(a) : [L → a·, =] [L → a·, ε]
I ′6(L=) : [S → L= · R, ε] [R → ·L, ε]

[L → ·*R, ε] [L → ·a, ε]
I ′7(*R) : [L → *R·, =] [L → *R·, ε]
I ′8(*L) : [R → L·, =] [R → L·, ε]
I ′9(L=R) : [S → L=R·, ε]
I ′10(L=L) : [R → L·, ε]
I ′11(L=*) : [L → * · R, ε] [R → ·L, ε]

[L → ·*R, ε] [L → ·a, ε]
I ′12(L=a) : [L → a·, ε]
I ′13(L=*R) : [L → *R·, ε]

Compiler Construction Summer Semester 2012 12.8

LR(0) Equivalence II

Example 12.2 (cf. Example 11.7/11.13)

GLR : S ′ → S S → L=R | R
L → *R | a R → L

LR(0)(GLR) :
I0(ε) : [S ′ → ·S] [S → ·L=R]

[S → ·R] [L → ·*R]
[L → ·a] [R → ·L]

I1(S) : [S ′ → S·]
I2(L) : [S → L · =R] [R → L·]
I3(R) : [S → R·]
I4(*) : [L → * · R] [R → ·L]

[L → ·*R] [L → ·a]
I5(a) : [L → a·]
I6(L=) : [S → L= · R] [R → ·L]

[L → ·*R] [L → ·a]
I7(*R) : [L → *R·]
I8(*L) : [R → L·]
I9(L=R) : [S → L=R·]

=⇒ I ′4 ∼0 I ′11
I ′5 ∼0 I ′12
I ′7 ∼0 I ′13
I ′8 ∼0 I ′10

LR(1)(GLR) :
I ′0(ε) : [S ′ → ·S, ε] [S → ·L=R, ε]

[S → ·R, ε] [L → ·*R, =]
[L → ·a, =] [R → ·L, ε]
[L → ·*R, ε] [L → ·a, ε]

I ′1(S) : [S ′ → S·, ε]
I ′2(L) : [S → L · =R, ε] [R → L·, ε]
I ′3(R) : [S → R·, ε]
I ′4(*) : [L → * · R, =] [L → * · R, ε]

[R → ·L, =] [R → ·L, ε]
[L → ·*R, =] [L → ·a, =]
[L → ·*R, ε] [L → ·a, ε]

I ′5(a) : [L → a·, =] [L → a·, ε]
I ′6(L=) : [S → L= · R, ε] [R → ·L, ε]

[L → ·*R, ε] [L → ·a, ε]
I ′7(*R) : [L → *R·, =] [L → *R·, ε]
I ′8(*L) : [R → L·, =] [R → L·, ε]
I ′9(L=R) : [S → L=R·, ε]
I ′10(L=L) : [R → L·, ε]
I ′11(L=*) : [L → * · R, ε] [R → ·L, ε]

[L → ·*R, ε] [L → ·a, ε]
I ′12(L=a) : [L → a·, ε]
I ′13(L=*R) : [L → *R·, ε]

Compiler Construction Summer Semester 2012 12.8

LALR(1) Sets I

Corollary 12.3

For every G ∈ CFGΣ, |LR(1)(G)/ ∼0 | = |LR(0)(G)|.

Compiler Construction Summer Semester 2012 12.9

LALR(1) Sets I

Corollary 12.3

For every G ∈ CFGΣ, |LR(1)(G)/ ∼0 | = |LR(0)(G)|.

Idea: merge LR(0)-equivalent LR(1) sets
(maintaining the lookahead information, but possibly introducing conflicts)

Compiler Construction Summer Semester 2012 12.9

LALR(1) Sets I

Corollary 12.3

For every G ∈ CFGΣ, |LR(1)(G)/ ∼0 | = |LR(0)(G)|.

Idea: merge LR(0)-equivalent LR(1) sets
(maintaining the lookahead information, but possibly introducing conflicts)

Definition 12.4 (LALR(1) sets)

Let G ∈ CFGΣ.

An information I ∈ LR(1)(G) determines the LALR(1) set
⋃

[I]∼0 =
⋃

{I ′ ∈ LR(1)(G) | I ′ ∼0 I}.

The set of all LALR(1) sets of G is denoted by LALR(1)(G).

Compiler Construction Summer Semester 2012 12.9

LALR(1) Sets I

Corollary 12.3

For every G ∈ CFGΣ, |LR(1)(G)/ ∼0 | = |LR(0)(G)|.

Idea: merge LR(0)-equivalent LR(1) sets
(maintaining the lookahead information, but possibly introducing conflicts)

Definition 12.4 (LALR(1) sets)

Let G ∈ CFGΣ.

An information I ∈ LR(1)(G) determines the LALR(1) set
⋃

[I]∼0 =
⋃

{I ′ ∈ LR(1)(G) | I ′ ∼0 I}.

The set of all LALR(1) sets of G is denoted by LALR(1)(G).

Remark: by Corollary 12.3, |LALR(1)(G)| = |LR(0)(G)|
(but LALR(1) sets provide additional lookahead information)

Compiler Construction Summer Semester 2012 12.9

LALR(1) Sets II

Example 12.5 (cf. Example 12.2)

GLR : S ′ → S S → L=R | R L→ *R | a R → L

LR(0)(GLR) :
I0(ε) : [S ′ → ·S] [S → ·L=R]

[S → ·R] [L→ ·*R]
[L→ ·a] [R → ·L]

I1(S) : [S ′ → S ·]
I2(L) : [S → L · =R] [R → L·]
I3(R) : [S → R·]
I4(*) : [L→ * · R] [R → ·L]

[L→ ·*R] [L→ ·a]
I5(a) : [L→ a·]
I6(L=) : [S → L= · R] [R → ·L]

[L→ ·*R] [L→ ·a]
I7(*R) : [L→ *R·]
I8(*L) : [R → L·]
I9(L=R) : [S → L=R·]

LALR(1)(GLR) :
I
′′

0 := I
′

0 : [S ′ → ·S , ε] [S → ·L=R, ε]
[S → ·R, ε] [L→ ·*R, =/ε]
[L→ ·a, =/ε] [R → ·L, ε]

I
′′

1 := I
′

1 : [S ′ → S ·, ε]
I
′′

2 := I
′

2 : [S → L · =R, ε] [R → L·, ε]
I
′′

3 := I
′

3 : [S → R·, ε]
I
′′

4 := I
′

4 ∪ I
′

11 : [L→ * · R, =/ε] [R → ·L, =/ε]
[L→ ·*R, =/ε] [L→ ·a, =/ε]

I
′′

5 := I
′

5 ∪ I
′

12 : [L→ a·, =/ε]
I
′′

6 := I
′

6 : [S → L= · R, ε] [R → ·L, ε]
[L→ ·*R, ε] [L→ ·a, ε]

I
′′

7 := I
′

7 ∪ I
′

13 : [L→ *R·, =/ε]
I
′′

8 := I
′

8 ∪ I
′

10 : [R → L·, =/ε]
I
′′

9 := I
′

9 : [S → L=R·, ε]

Compiler Construction Summer Semester 2012 12.10

The LALR(1) Action Function

The LALR(1) action function is defined in analogy to the LR(1) case
(Definition 11.14).

Definition 12.6 (LALR(1) action function)

The LALR(1) action function

act : LALR(1)(G)× Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I , x) :=











red i if i 6= 0, π(i) = A → α and [A → α·, x] ∈ I
shift if [A → α1 · xα2, y] ∈ I and x ∈ Σ
accept if [S ′ → S ·, ε] ∈ I and x = ε
error otherwise

Compiler Construction Summer Semester 2012 12.11

The LALR(1) Action Function

The LALR(1) action function is defined in analogy to the LR(1) case
(Definition 11.14).

Definition 12.6 (LALR(1) action function)

The LALR(1) action function

act : LALR(1)(G)× Σε → {red i | i ∈ [p]} ∪ {shift, accept, error}

is defined by

act(I , x) :=











red i if i 6= 0, π(i) = A → α and [A → α·, x] ∈ I
shift if [A → α1 · xα2, y] ∈ I and x ∈ Σ
accept if [S ′ → S ·, ε] ∈ I and x = ε
error otherwise

Definition 12.7 (LALR(1) grammar)

A grammar G ∈ CFGΣ has the LALR(1) property (notation:
G ∈ LALR(1)) if its LALR(1) action function is well defined.

Compiler Construction Summer Semester 2012 12.11

The LALR(1) goto Function

Example 12.8 (cf. Example 12.5)

GLR ∈ LALR(1)

Compiler Construction Summer Semester 2012 12.12

The LALR(1) goto Function

Example 12.8 (cf. Example 12.5)

GLR ∈ LALR(1)

Also the LR(1) goto function (Definition 11.16) carries over to the
LALR(1) case. Reason:

Lemma 12.9

Let G ∈ CFGΣ and I1, I2 ∈ LR(1)(G) such that I1 ∼0 I2. Then, for every
Y ∈ X, goto(I1,Y) ∼0 goto(I2,Y).

Compiler Construction Summer Semester 2012 12.12

The LALR(1) goto Function

Example 12.8 (cf. Example 12.5)

GLR ∈ LALR(1)

Also the LR(1) goto function (Definition 11.16) carries over to the
LALR(1) case. Reason:

Lemma 12.9

Let G ∈ CFGΣ and I1, I2 ∈ LR(1)(G) such that I1 ∼0 I2. Then, for every
Y ∈ X, goto(I1,Y) ∼0 goto(I2,Y).

Again, act and goto form the LALR(1) parsing table of G .

Compiler Construction Summer Semester 2012 12.12

The LALR(1) Parsing Table

Example 12.10 (cf. Example 12.5)

LALR(1)(GLR) act/goto|Σ goto|N
* = a ε S L R

I ′′0 shift/I ′′4 shift/I ′′5 I ′′1 I ′′2 I ′′3
I ′′1 accept
I ′′2 shift/I ′′6 red 5
I ′′3 red 2
I ′′4 shift/I ′′4 shift/I ′′5 I ′′8 I ′′7
I ′′5 red 4 red 4
I ′′6 shift/I ′′4 shift/I ′′5 I ′′8 I ′′9
I ′′7 red 3 red 3
I ′′8 red 5 red 5
I ′′9 red 1

(empty = error/∅)

Compiler Construction Summer Semester 2012 12.13

LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 12.11

G : S ′ → S S → aAd | bBd | aBe | bAe A → c B → c

Compiler Construction Summer Semester 2012 12.14

LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 12.11

G : S ′ → S S → aAd | bBd | aBe | bAe A → c B → c

LR(1)(ε) : [S ′ → ·S , ε] [S → ·aAd, ε] [S → ·bBd, ε] [S → ·aBe, ε]
[S → ·bAe, ε]

LR(1)(S) : [S ′ → S ·, ε]
LR(1)(a) : [S → a · Ad, ε] [S → a · Be, ε] [A → ·c, d] [B → ·c, e]
LR(1)(b) : [S → b · Bd, ε] [S → b · Ae, ε] [B → ·c, d] [A → ·c, e]
LR(1)(aA) : [S → aA · d, ε] LR(1)(aB) : [S → aB · e, ε]
LR(1)(ac) : [A → c·, d] [B → c·, e]
LR(1)(bB) : [S → bB · d, ε] LR(1)(bA) : [S → bA · e, ε]
LR(1)(bc) : [B → c·, d] [A → c·, e]
LR(1)(aAd) : [S → aAd·, ε] LR(1)(aBe) : [S → aBe·, ε]
LR(1)(bBd) : [S → bBd·, ε] LR(1)(bAe) : [S → bAe·, ε]

Compiler Construction Summer Semester 2012 12.14

LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 12.11

G : S ′ → S S → aAd | bBd | aBe | bAe A → c B → c

LR(1)(ε) : [S ′ → ·S , ε] [S → ·aAd, ε] [S → ·bBd, ε] [S → ·aBe, ε]
[S → ·bAe, ε]

LR(1)(S) : [S ′ → S ·, ε]
LR(1)(a) : [S → a · Ad, ε] [S → a · Be, ε] [A → ·c, d] [B → ·c, e]
LR(1)(b) : [S → b · Bd, ε] [S → b · Ae, ε] [B → ·c, d] [A → ·c, e]
LR(1)(aA) : [S → aA · d, ε] LR(1)(aB) : [S → aB · e, ε]
LR(1)(ac) : [A → c·, d] [B → c·, e]
LR(1)(bB) : [S → bB · d, ε] LR(1)(bA) : [S → bA · e, ε]
LR(1)(bc) : [B → c·, d] [A → c·, e]
LR(1)(aAd) : [S → aAd·, ε] LR(1)(aBe) : [S → aBe·, ε]
LR(1)(bBd) : [S → bBd·, ε] LR(1)(bAe) : [S → bAe·, ε]

no conflicts =⇒ G ∈ LR(1)

Compiler Construction Summer Semester 2012 12.14

LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 12.11

G : S ′ → S S → aAd | bBd | aBe | bAe A → c B → c

LR(1)(ε) : [S ′ → ·S , ε] [S → ·aAd, ε] [S → ·bBd, ε] [S → ·aBe, ε]
[S → ·bAe, ε]

LR(1)(S) : [S ′ → S ·, ε]
LR(1)(a) : [S → a · Ad, ε] [S → a · Be, ε] [A → ·c, d] [B → ·c, e]
LR(1)(b) : [S → b · Bd, ε] [S → b · Ae, ε] [B → ·c, d] [A → ·c, e]
LR(1)(aA) : [S → aA · d, ε] LR(1)(aB) : [S → aB · e, ε]
LR(1)(ac) : [A → c·, d] [B → c·, e]
LR(1)(bB) : [S → bB · d, ε] LR(1)(bA) : [S → bA · e, ε]
LR(1)(bc) : [B → c·, d] [A → c·, e]
LR(1)(aAd) : [S → aAd·, ε] LR(1)(aBe) : [S → aBe·, ε]
LR(1)(bBd) : [S → bBd·, ε] LR(1)(bAe) : [S → bAe·, ε]

no conflicts =⇒ G ∈ LR(1)

LR(1)(ac) ∼0 LR(1)(bc), but LR(1)(ac) ∪ LR(1)(bc) has conflicts
=⇒ G 6∈ LALR(1)

Compiler Construction Summer Semester 2012 12.14

Outline

1 Repetition: LR(1) Parsing

2 LALR(1) Parsing

3 Bottom-Up Parsing of Ambiguous Grammars

4 Generating Parsers Using yacc and bison

5 LL and LR Parsing in Practice

Compiler Construction Summer Semester 2012 12.15

Ambiguous Grammars

Reminder (Definition 5.5): a context-free grammar G ∈ CFGΣ is called
unambiguous if every word w ∈ L(G) has exactly one syntax tree. Otherwise it is
called ambiguous.

Compiler Construction Summer Semester 2012 12.16

Ambiguous Grammars

Reminder (Definition 5.5): a context-free grammar G ∈ CFGΣ is called
unambiguous if every word w ∈ L(G) has exactly one syntax tree. Otherwise it is
called ambiguous.

Lemma 12.12

If G ∈ CFGΣ is ambiguous, then G /∈
⋃

k∈N
LR(k).

Compiler Construction Summer Semester 2012 12.16

Ambiguous Grammars

Reminder (Definition 5.5): a context-free grammar G ∈ CFGΣ is called
unambiguous if every word w ∈ L(G) has exactly one syntax tree. Otherwise it is
called ambiguous.

Lemma 12.12

If G ∈ CFGΣ is ambiguous, then G /∈
⋃

k∈N
LR(k).

Proof.

Assume that there exist k ∈ N and G ∈ LR(k) such that G is ambiguous.

Compiler Construction Summer Semester 2012 12.16

Ambiguous Grammars

Reminder (Definition 5.5): a context-free grammar G ∈ CFGΣ is called
unambiguous if every word w ∈ L(G) has exactly one syntax tree. Otherwise it is
called ambiguous.

Lemma 12.12

If G ∈ CFGΣ is ambiguous, then G /∈
⋃

k∈N
LR(k).

Proof.

Assume that there exist k ∈ N and G ∈ LR(k) such that G is ambiguous.
Hence there exists w ∈ L(G) with different right derivations. Let αAv be the last
common sentence of the two derivations (i.e., β 6= β′):

S ⇒∗

r αAv

{

⇒r αβv ⇒∗

r w
⇒r αβ

′v ⇒∗

r w

Compiler Construction Summer Semester 2012 12.16

Ambiguous Grammars

Reminder (Definition 5.5): a context-free grammar G ∈ CFGΣ is called
unambiguous if every word w ∈ L(G) has exactly one syntax tree. Otherwise it is
called ambiguous.

Lemma 12.12

If G ∈ CFGΣ is ambiguous, then G /∈
⋃

k∈N
LR(k).

Proof.

Assume that there exist k ∈ N and G ∈ LR(k) such that G is ambiguous.
Hence there exists w ∈ L(G) with different right derivations. Let αAv be the last
common sentence of the two derivations (i.e., β 6= β′):

S ⇒∗

r αAv

{

⇒r αβv ⇒∗

r w
⇒r αβ

′v ⇒∗

r w

But since firstk(v) = firstk(v) for every v ∈ Σ∗, Definition 9.4 yields that β = β′.
Contradiction

Compiler Construction Summer Semester 2012 12.16

Ambiguous Grammars

Reminder (Definition 5.5): a context-free grammar G ∈ CFGΣ is called
unambiguous if every word w ∈ L(G) has exactly one syntax tree. Otherwise it is
called ambiguous.

Lemma 12.12

If G ∈ CFGΣ is ambiguous, then G /∈
⋃

k∈N
LR(k).

Proof.

Assume that there exist k ∈ N and G ∈ LR(k) such that G is ambiguous.
Hence there exists w ∈ L(G) with different right derivations. Let αAv be the last
common sentence of the two derivations (i.e., β 6= β′):

S ⇒∗

r αAv

{

⇒r αβv ⇒∗

r w
⇒r αβ

′v ⇒∗

r w

But since firstk(v) = firstk(v) for every v ∈ Σ∗, Definition 9.4 yields that β = β′.
Contradiction

However ambiguity is a natural specification method which generally avoids

involved syntactic constructs.

Compiler Construction Summer Semester 2012 12.16

Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)

G : E ′ → E E → E+E | E*E | a

Compiler Construction Summer Semester 2012 12.17

Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)

G : E ′ → E E → E+E | E*E | a

Precedence: * > + Associativity: left
(thus: a+a*a+a :=(a+(a*a))+a)

Compiler Construction Summer Semester 2012 12.17

Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)

G : E ′ → E E → E+E | E*E | a

Precedence: * > + Associativity: left
(thus: a+a*a+a :=(a+(a*a))+a)

LR(0)(G):
I0 := LR(0)(ε) : [E ′ → ·E] [E → ·E+E] [E → ·E*E] [E → ·a]
I1 := LR(0)(E) : [E ′ → E ·] [E → E · +E] [E → E · *E]
I2 := LR(0)(a) : [E → a·]
I3 := LR(0)(E+) : [E → E+ · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I4 := LR(0)(E*) : [E → E* · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I5 := LR(0)(E+E) : [E → E+E ·] [E → E · +E] [E → E · *E]
I6 := LR(0)(E*E) : [E → E*E ·] [E → E · +E] [E → E · *E]

Compiler Construction Summer Semester 2012 12.17

Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)

G : E ′ → E E → E+E | E*E | a

Precedence: * > + Associativity: left
(thus: a+a*a+a :=(a+(a*a))+a)

LR(0)(G):
I0 := LR(0)(ε) : [E ′ → ·E] [E → ·E+E] [E → ·E*E] [E → ·a]
I1 := LR(0)(E) : [E ′ → E ·] [E → E · +E] [E → E · *E]
I2 := LR(0)(a) : [E → a·]
I3 := LR(0)(E+) : [E → E+ · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I4 := LR(0)(E*) : [E → E* · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I5 := LR(0)(E+E) : [E → E+E ·] [E → E · +E] [E → E · *E]
I6 := LR(0)(E*E) : [E → E*E ·] [E → E · +E] [E → E · *E]

Conflicts: I1: SLR(1)-solvable (reduce on ε, shift on +/*)

Compiler Construction Summer Semester 2012 12.17

Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)

G : E ′ → E E → E+E | E*E | a

Precedence: * > + Associativity: left
(thus: a+a*a+a :=(a+(a*a))+a)

LR(0)(G):
I0 := LR(0)(ε) : [E ′ → ·E] [E → ·E+E] [E → ·E*E] [E → ·a]
I1 := LR(0)(E) : [E ′ → E ·] [E → E · +E] [E → E · *E]
I2 := LR(0)(a) : [E → a·]
I3 := LR(0)(E+) : [E → E+ · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I4 := LR(0)(E*) : [E → E* · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I5 := LR(0)(E+E) : [E → E+E ·] [E → E · +E] [E → E · *E]
I6 := LR(0)(E*E) : [E → E*E ·] [E → E · +E] [E → E · *E]

Conflicts: I1: SLR(1)-solvable (reduce on ε, shift on +/*)
I5, I6: not SLR(1)-solvable (+, * ∈ fo(E))

Compiler Construction Summer Semester 2012 12.17

Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)

G : E ′ → E E → E+E | E*E | a

Precedence: * > + Associativity: left
(thus: a+a*a+a :=(a+(a*a))+a)

LR(0)(G):
I0 := LR(0)(ε) : [E ′ → ·E] [E → ·E+E] [E → ·E*E] [E → ·a]
I1 := LR(0)(E) : [E ′ → E ·] [E → E · +E] [E → E · *E]
I2 := LR(0)(a) : [E → a·]
I3 := LR(0)(E+) : [E → E+ · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I4 := LR(0)(E*) : [E → E* · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I5 := LR(0)(E+E) : [E → E+E ·] [E → E · +E] [E → E · *E]
I6 := LR(0)(E*E) : [E → E*E ·] [E → E · +E] [E → E · *E]

Conflicts: I1: SLR(1)-solvable (reduce on ε, shift on +/*)
I5, I6: not SLR(1)-solvable (+, * ∈ fo(E))

Solution:
I5: * > + =⇒ act(I5, *) := shift, + left assoc. =⇒ act(I5, +) := red 1

Compiler Construction Summer Semester 2012 12.17

Bottom-Up Parsing of Ambiguous Grammars I

Example 12.13 (Simple arithmetic expressions)

G : E ′ → E E → E+E | E*E | a

Precedence: * > + Associativity: left
(thus: a+a*a+a :=(a+(a*a))+a)

LR(0)(G):
I0 := LR(0)(ε) : [E ′ → ·E] [E → ·E+E] [E → ·E*E] [E → ·a]
I1 := LR(0)(E) : [E ′ → E ·] [E → E · +E] [E → E · *E]
I2 := LR(0)(a) : [E → a·]
I3 := LR(0)(E+) : [E → E+ · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I4 := LR(0)(E*) : [E → E* · E] [E → ·E+E] [E → ·E*E] [E → ·a]
I5 := LR(0)(E+E) : [E → E+E ·] [E → E · +E] [E → E · *E]
I6 := LR(0)(E*E) : [E → E*E ·] [E → E · +E] [E → E · *E]

Conflicts: I1: SLR(1)-solvable (reduce on ε, shift on +/*)
I5, I6: not SLR(1)-solvable (+, * ∈ fo(E))

Solution:
I5: * > + =⇒ act(I5, *) := shift, + left assoc. =⇒ act(I5, +) := red 1
I6: * > + =⇒ act(I6, +) := red 2, * left assoc. =⇒ act(I6, *) := red 2

Compiler Construction Summer Semester 2012 12.17

Bottom-Up Parsing of Ambiguous Grammars II

Example 12.14 (“Dangling else”)

G : S ′ → S S → iSeS | iS | a

Compiler Construction Summer Semester 2012 12.18

Bottom-Up Parsing of Ambiguous Grammars II

Example 12.14 (“Dangling else”)

G : S ′ → S S → iSeS | iS | a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

Compiler Construction Summer Semester 2012 12.18

Bottom-Up Parsing of Ambiguous Grammars II

Example 12.14 (“Dangling else”)

G : S ′ → S S → iSeS | iS | a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

LR(0)(G):
I0 := LR(0)(ε) : [S ′ → ·S] [S → ·iSeS] [S → ·iS]

[S → ·a]
I1 := LR(0)(S) : [S ′ → S ·]
I2 := LR(0)(i) : [S → i · SeS] [S → i · S] [S → ·iSeS]

[S → ·iS] [S → ·a]
I3 := LR(0)(a) : [S → a·]
I4 := LR(0)(iS) : [S → iS · eS] [S → iS ·]
I5 := LR(0)(iSe) : [S → iSe · S] [S → ·iSeS] [S → ·iS]

[S → ·a]
I6 := LR(0)(iSeS) : [S → iSeS ·]

Compiler Construction Summer Semester 2012 12.18

Bottom-Up Parsing of Ambiguous Grammars II

Example 12.14 (“Dangling else”)

G : S ′ → S S → iSeS | iS | a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

LR(0)(G):
I0 := LR(0)(ε) : [S ′ → ·S] [S → ·iSeS] [S → ·iS]

[S → ·a]
I1 := LR(0)(S) : [S ′ → S ·]
I2 := LR(0)(i) : [S → i · SeS] [S → i · S] [S → ·iSeS]

[S → ·iS] [S → ·a]
I3 := LR(0)(a) : [S → a·]
I4 := LR(0)(iS) : [S → iS · eS] [S → iS ·]
I5 := LR(0)(iSe) : [S → iSe · S] [S → ·iSeS] [S → ·iS]

[S → ·a]
I6 := LR(0)(iSeS) : [S → iSeS ·]

Conflict in I4: e ∈ fo(S) =⇒ not SLR(1)-solvable

Compiler Construction Summer Semester 2012 12.18

Bottom-Up Parsing of Ambiguous Grammars II

Example 12.14 (“Dangling else”)

G : S ′ → S S → iSeS | iS | a

Ambiguity: iiaea := (1) i(iaea) (common) or (2) i(ia)ea

LR(0)(G):
I0 := LR(0)(ε) : [S ′ → ·S] [S → ·iSeS] [S → ·iS]

[S → ·a]
I1 := LR(0)(S) : [S ′ → S ·]
I2 := LR(0)(i) : [S → i · SeS] [S → i · S] [S → ·iSeS]

[S → ·iS] [S → ·a]
I3 := LR(0)(a) : [S → a·]
I4 := LR(0)(iS) : [S → iS · eS] [S → iS ·]
I5 := LR(0)(iSe) : [S → iSe · S] [S → ·iSeS] [S → ·iS]

[S → ·a]
I6 := LR(0)(iSeS) : [S → iSeS ·]

Conflict in I4: e ∈ fo(S) =⇒ not SLR(1)-solvable

Solution (1): act(I4, e) := shift

Compiler Construction Summer Semester 2012 12.18

Outline

1 Repetition: LR(1) Parsing

2 LALR(1) Parsing

3 Bottom-Up Parsing of Ambiguous Grammars

4 Generating Parsers Using yacc and bison

5 LL and LR Parsing in Practice

Compiler Construction Summer Semester 2012 12.19

The yacc and bison Tools

Usage of yacc (“yet another compiler compiler”):

spec.y
yacc
−→ y.tab.c lex.yy.c

[f]lex
←− spec.l

yacc specification Parser source Scanner source [f]lex specification
↓ cc ↓
a.out

Executable LALR(1) parser

Compiler Construction Summer Semester 2012 12.20

The yacc and bison Tools

Usage of yacc (“yet another compiler compiler”):

spec.y
yacc
−→ y.tab.c lex.yy.c

[f]lex
←− spec.l

yacc specification Parser source Scanner source [f]lex specification
↓ cc ↓
a.out

Executable LALR(1) parser

Like for [f]lex, a yacc specification is of the form

Declarations (optional)
%%

Rules
%%

Auxiliary procedures (optional)

Compiler Construction Summer Semester 2012 12.20

The yacc and bison Tools

Usage of yacc (“yet another compiler compiler”):

spec.y
yacc
−→ y.tab.c lex.yy.c

[f]lex
←− spec.l

yacc specification Parser source Scanner source [f]lex specification
↓ cc ↓
a.out

Executable LALR(1) parser

Like for [f]lex, a yacc specification is of the form

Declarations (optional)
%%

Rules
%%

Auxiliary procedures (optional)

bison : upward-compatible GNU implementation of yacc
(more flexible w.r.t. file names)

Compiler Construction Summer Semester 2012 12.20

yacc Specifications

Declarations: Token definitions: %token Tokens
Not every token needs to be declared (’+’, ’=’, ...)
Start symbol: %start Symbol (optional)
C code for declarations etc.: %{ Code %}

Compiler Construction Summer Semester 2012 12.21

yacc Specifications

Declarations: Token definitions: %token Tokens
Not every token needs to be declared (’+’, ’=’, ...)
Start symbol: %start Symbol (optional)
C code for declarations etc.: %{ Code %}

Rules: context-free productions and semantic actions

A → α1 | α2 | . . . | αn represented as
A : α1 {Action1}

| α2 {Action2}
...
| αn {Actionn};

Semantic actions = C statements for computing attribute
values
$$ = attribute value of A
$i = attribute value of ith symbol on right-hand side
Default action: $$ = $1

Compiler Construction Summer Semester 2012 12.21

yacc Specifications

Declarations: Token definitions: %token Tokens
Not every token needs to be declared (’+’, ’=’, ...)
Start symbol: %start Symbol (optional)
C code for declarations etc.: %{ Code %}

Rules: context-free productions and semantic actions

A → α1 | α2 | . . . | αn represented as
A : α1 {Action1}

| α2 {Action2}
...
| αn {Actionn};

Semantic actions = C statements for computing attribute
values
$$ = attribute value of A
$i = attribute value of ith symbol on right-hand side
Default action: $$ = $1

Auxiliary procedures: scanner (if not [f]lex), error routines, ...

Compiler Construction Summer Semester 2012 12.21

Example: Simple Desk Calculator I

%{/* SLR(1) grammar for arithmetic expressions (Example 11.1) */
#include <stdio.h>
#include <ctype.h>

%}
%token DIGIT
%%
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ term { $$ = $1 + $3; }

| term { $$ = $1; };
term : term ’*’ factor { $$ = $1 * $3; }

| factor { $$ = $1; };
factor : ’(’ expr ’)’ { $$ = $2; }

| DIGIT { $$ = $1; };
%%
yylex() {
int c;
c = getchar();
if (isdigit(c)) yylval = c - ’0’; return DIGIT;
return c;

}

Compiler Construction Summer Semester 2012 12.22

Example: Simple Desk Calculator II

> yacc calc.y

> cc y.tab.c -ly

> a.out

2+3

5

> a.out

2+3*5

17

Compiler Construction Summer Semester 2012 12.23

An Ambiguous Grammar I

%{/* Ambiguous grammar for arithm. expressions (Ex. 12.13) */
#include <stdio.h>
#include <ctype.h>

%}
%token DIGIT
%%
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr { $$ = $1 + $3; }

| expr ’*’ expr { $$ = $1 * $3; }
| DIGIT { $$ = $1; };

%%
yylex() {
int c;
c = getchar();
if (isdigit(c)) {yylval = c - ’0’; return DIGIT;}
return c;

}

Compiler Construction Summer Semester 2012 12.24

An Ambiguous Grammar II

Invoking yacc with the option -v produces a report y.output:

...
State 8

2 expr: expr . ’+’ expr
2 | expr ’+’ expr .
3 | expr . ’*’ expr

’+’ shift and goto state 6
’*’ shift and goto state 7

’+’ [reduce with rule 2 (expr)]
’*’ [reduce with rule 2 (expr)]

State 9

2 expr: expr . ’+’ expr
3 | expr . ’*’ expr
3 | expr ’*’ expr .

’+’ shift and goto state 6
’*’ shift and goto state 7

’+’ [reduce with rule 3 (expr)]
’*’ [reduce with rule 3 (expr)]

Compiler Construction Summer Semester 2012 12.25

Conflict Handling in yacc

Default conflict resolving strategy in yacc:

reduce/reduce: choose first conflicting production in specification

Compiler Construction Summer Semester 2012 12.26

Conflict Handling in yacc

Default conflict resolving strategy in yacc:

reduce/reduce: choose first conflicting production in specification

shift/reduce: prefer shift

resolves dangling-else ambiguity (Example 12.14) correctly
also adequate for strong following weak operator (* after +;
Example 12.13) and for right-associative operators
not appropriate for weak following strong operator and for
left-associative binary operators
(=⇒ reduce; see Example 12.13)

Compiler Construction Summer Semester 2012 12.26

Conflict Handling in yacc

Default conflict resolving strategy in yacc:

reduce/reduce: choose first conflicting production in specification

shift/reduce: prefer shift

resolves dangling-else ambiguity (Example 12.14) correctly
also adequate for strong following weak operator (* after +;
Example 12.13) and for right-associative operators
not appropriate for weak following strong operator and for
left-associative binary operators
(=⇒ reduce; see Example 12.13)

For ambiguous grammar:

> yacc ambig.y
conflicts: 4 shift/reduce
> cc y.tab.c -ly
> a.out
2+3*5
17
> a.out
2*3+5
16

Compiler Construction Summer Semester 2012 12.26

Precedences and Associativities in yacc I

General mechanism for resolving conflicts:

%[left|right] Operators1
...

%[left|right] Operatorsn

operators in one line have given associativity and same precedence

precedence increases over lines

Compiler Construction Summer Semester 2012 12.27

Precedences and Associativities in yacc I

General mechanism for resolving conflicts:

%[left|right] Operators1
...

%[left|right] Operatorsn

operators in one line have given associativity and same precedence

precedence increases over lines

Example 12.15

%left ’+’ ’-’

%left ’*’ ’/’

%right ’^’

^ (right associative) binds stronger than * and / (left associative),
which in turn bind stronger than + and - (left associative)

Compiler Construction Summer Semester 2012 12.27

Precedences and Associativities in yacc II

%{/* Ambiguous grammar for arithmetic expressions
with precedences and associativities */

#include <stdio.h>
#include <ctype.h>

%}
%token DIGIT
%left ’+’
%left ’*’
%%
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr { $$ = $1 + $3; }

| expr ’*’ expr { $$ = $1 * $3; }
| DIGIT { $$ = $1; };

%%
yylex() {
int c;
c = getchar();
if (isdigit(c)) {yylval = c - ’0’; return DIGIT;}
return c;

}

Compiler Construction Summer Semester 2012 12.28

Precedences and Associativities in yacc III

> yacc ambig-prio.y

> cc y.tab.c -ly

> a.out

2*3+5

11

> a.out

2+3*5

17

Compiler Construction Summer Semester 2012 12.29

Outline

1 Repetition: LR(1) Parsing

2 LALR(1) Parsing

3 Bottom-Up Parsing of Ambiguous Grammars

4 Generating Parsers Using yacc and bison

5 LL and LR Parsing in Practice

Compiler Construction Summer Semester 2012 12.30

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Compiler Construction Summer Semester 2012 12.31

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins

LL parsing technique easier to understand
recursive-descent parser easier to debug than LALR
action tables

Compiler Construction Summer Semester 2012 12.31

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins

Generality : LALR wins

“almost” LL(1) ⊆ LALR(1) (only pathological
counterexamples)
LL requires elimination of left recursion and left
factorization

Compiler Construction Summer Semester 2012 12.31

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins

Generality : LALR wins

Semantic actions : (see semantic analysis) LL wins

actions can be placed anywhere in LL parsers without
causing conflicts
in LALR: implicit ε-productions
=⇒ may generate conflicts

Compiler Construction Summer Semester 2012 12.31

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins

Generality : LALR wins

Semantic actions : (see semantic analysis) LL wins

Error handling : LL wins

top-down approach provides context information
=⇒ better basis for reporting and/or repairing errors

Compiler Construction Summer Semester 2012 12.31

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins

Generality : LALR wins

Semantic actions : (see semantic analysis) LL wins

Error handling : LL wins

Parser size : comparable

LL: action table
LALR: action/goto table

Compiler Construction Summer Semester 2012 12.31

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins

Generality : LALR wins

Semantic actions : (see semantic analysis) LL wins

Error handling : LL wins

Parser size : comparable

Parsing speed : comparable

both linear in length of input program
(LL(1): see Lemma 8.7 for ε-free case)
concrete figures tool dependent

Compiler Construction Summer Semester 2012 12.31

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):

Simplicity : LL wins

Generality : LALR wins

Semantic actions : (see semantic analysis) LL wins

Error handling : LL wins

Parser size : comparable

Parsing speed : comparable

Conclusion: choose LL when possible
(depending on available grammars and tools)

Compiler Construction Summer Semester 2012 12.31

	Repetition: LR(1) Parsing
	LALR(1) Parsing
	Bottom-Up Parsing of Ambiguous Grammars
	Generating Parsers Using yacc and bison
	LL and LR Parsing in Practice

