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LR(1) Items and Sets

Observation: not every element of fo(A) can follow every occurrence of A
— refinement of LR(0) items by adding possible lookahead symbols

Definition (LR(1) items and sets)
Let G = (N,X,P,S) € CFGyx be start separated by S’ — S.

o If S’ =7 aAaw =, af15raw, then [A — 1 - [2, a] is called an LR(1)
item for afs.

o If " =% aA =, af1fs, then [A — B1 - B2,¢] is called an LR(1) item
for af3;.

@ Given v € X*, LR(1)(~y) denotes the set of all LR(1) items for ,
called the LR(1) set (or: LR(1) information) of ~.

° LR(1)(G) := {LR(1)() | v € X"}.
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The LR(1) Action Function

Definition (LR(1) action function)
The LR(1) action function

act : LR(1)(G) x X — {redi | i € [p]} U {shift, accept, error}
is defined by

redi ifi#0,mi=A—aand[A—a,x] €l
shift  if [A— a1 -xap,y] €/ and x€ X
accept if [S"— S-,e]€land x=¢

error  otherwise

act(/,x) :=

For every G € CFGy, G € LR(1) iff its LR(1) action function is well
defined.
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© LALR(1) Parsing
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LALR(1) Parsing

@ Motivation: resolving conflicts using LR(1) too expensive
@ Example 11.7/11.13: |[LR(0)(G.r)| = 11, |[LR(1)(GLR)| = 15
@ Empirical evaluations:
@ A. Johnstone, E. Scott: Generalised Reduction Modified LR Parsing for
Domain Specific Language Prototyping, HICSS '02, IEEE, 2002

@ X. Chen, D. Pager: Full LR(1) Parser Generator Hyacc and Study on
the Performance of LR(1) Algorithms, C3S2E'11, ACM, 2011

Grammar | [LR(0)(G)| |LR(1)(G)|
Pascal 368 1395
Ansi-C 381 1788
CH++ 1236 9723

mH Compiler Construction Summer Semester 2012 12.6



LR(0) Equivalence |

Observation: potential redundancy by containment of LR(0) sets in
LR(1) sets (cf. Corollary 11.9)

Definition 12.1 (LR(0) equivalence)

Let Irg : LR(1)(G) — LR(0)(G) be defined by

Irg(1) :=={[A— 1 B2 | [A— Br- P2, x] € I}.
Two sets l1, b € LR(1)(G) are called LR(0)-equivalent
(notation: h ~g I2) if 11'0(/1) = 11'0(/2).
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LR(0) Equivalence Il

Example 12.2 (cf. Example 11.7/11.13)

Gr: S’ =S S— L=R|R LR(1)(GLR) :
L—+*R|la R—L I§(e) : S'—-S,e]  [S— L=R,€]
LR(0)(GiR) : f_%R’E]] {LR_MLR’]:]
LR — -a,= — L
h(e) : S’"—.S] [S— -L=R] L— *Rje] [L— -a,e]
S — -R] [L — *R] I]:(S) : S — S ¢]
e é—> S] [R— L] I%EL)): §—>L-=li?,5] [R— L-€]
1 : — I5(R) : — R, e
IQEL)): §—> =R] [R — L] I4(*): L—*-R,=] [L—*-R,¢]
h(R) : — R R —-L,=] R — -L,¢]
W(x):  [L—*-R] [R— L] Lo *R=] [L— a-]
L— *R] [L— -q] L — xR, €] L— -a,¢]
I5(a) : L—a] I{(a) : L—a, =] L— a,e]
le(L=): [S— L=-R] [R —-L] R(L=) : S — L=-R,e] [R— L]
. L— xRl [L— -2] ) L — xR, €] L— a5l
r(xR) : L — *R] BOR):  [L—*R,=] [L—*Re]
;8(23?' _ SR—> t;]R Ia(xL) : R — L= R — L €]
o(L=R) : [S — L=R'] ly(L=R) : S = L=R-¢]
— Iz{ ~0 I];l /]70(L=L) 5 R — L',E]
Il ~o /]72 I{;(L=x): [L—=*-R,e] [R—-L¢]
2o~ 1l L— *Re] [L— -a,e]
"o I{,(L=a) : [L— a-,¢]
lg ~0 Ko 32
l{3(L=%R) : [L = *R-, €]
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LALR(1) Sets |

Corollary 12.3
For every G € CFGy,

LR(1)(G)/ ~o | = |LR(0)(G)|.

Idea: merge LR(0)-equivalent LR(1) sets
(maintaining the lookahead information, but possibly introducing conflicts)

Definition 12.4 (LALR(1) sets)
Let G € CFGs.
@ An information / € LR(1)(G) determines the LALR(1) set

Ul = Ut € LRAY(G) | 1~ 1}.

@ The set of all LALR(1) sets of G is denoted by LALR(1)(G).

Remark: by Corollary 12.3, [LALR(1)(G)| = |LR(0)(G)|

(but LALR(1) sets provide additional lookahead information
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LALR(1) Sets II

Example 12.5 (cf. Example 12.2)
Gr:S—S S—L=R|R L—*R|a R—L

LR(O)(GLR) 5 LALR(].)(GLR) 5

be): [S"—=-S] [S—-L=R] I':=1I: [S"— -S.¢] [S — L=R,€]
S—-R] [L— *R] [S = -R,e] [L = *R,=/¢]
L — -a] [R — -L] [L = -a,=/e] [R— -L€]

h(S): [S'— S]] =1 [S"— S ¢]

h(L): [S—L-=R][R— L] L= [S—L-=R,e] [R— Lé€]

hL(R): [S— R] I=1 [S — R e]

(). (Lo xRl [R—-l 1= Uy:[L* R=/e] [R = L =/e]
L— *R] [L— -a] L— *R =/e] [L— -a,=/¢]

Is(a) : L—a] I = Ul,: [L—a,=/e

le(L=): [S— L=-R] [R — L] I =15 : S—L=-Re] [R—-Le]
L— -xR] [L— -3 L— xRe] [L— -ac¢]

I(*R): [L— *R'] I =k Ulz: [L— *R =/¢]

le(*L) : [R— L] Iy =1 UMty : [R— L,=/e]

Ig(L=R) 2 [S — L=R~] Ié/ = /9/ : S— L=R',E]
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The LALR(1) Action Function

The LALR(1) action function is defined in analogy to the LR(1) case
(Definition 11.14).

Definition 12.6 (LALR(1) action function)
The LALR(1) action function

act : LALR(1)(G) x X — {redi | i € [p]} U {shift, accept, error }
is defined by

redi  ifi#0,7(i)=A—aand [A— a,x] €l
shift  if [A— a1 xap,y] €/l and x € X

accept if [S'— S-,e] €/ and x =¢

error  otherwise

act(/,x) :=

Definition 12.7 (LALR(1) grammar)

A grammar G € CFGyx has the LALR(1) property (notation:
G € LALR(1)) if its LALR(1) action function is well defined.

RWNTH Compiler Construction Summer Semester 2012 12.11




The LALR(1) goto Function

Example 12.8 (cf. Example 12.5)
G € LALR(I)

Also the LR(1) goto function (Definition 11.16) carries over to the
LALR(1) case. Reason:

Let G € CFGx and h, l, € LR(1)(G) such that Iy ~q¢ l,. Then, for every
Y € X, goto(h, Y) ~o goto(h, Y).

Again, act and goto form the LALR(1) parsing table of G.
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The LALR(1) Parsing Table

Example 12.10 (cf. Example 12.5)

LALR(1)(G(Rr) act/goto|x goto|y

* = a e |S LR

14 Shift/ 17 Shift /17 T

I accept

14 shift/l¢ red 5

4 red 2

1 shift/ /]! shift/ !/ N

4 red 4 red 4

gl shift /) shift/ 12 o

K red 3 red 3

I red 5 red 5

I red 1

(empty = error /)
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LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 12.11

G:S"—>S S—aAd|bBd|aBe|bAe A—c B—c

LR(1)(e) : S"—-S,e] [S—-aAd,e] [S— bBd, ] [S — -aBe,¢]
S — ‘bAe,¢]

LR(1)(S): [S"— S-. €]

LR(1)(a) : S —a-Ad,e| [S—a-Be,e] [A—-c,d [B—-c,e]

LR(1)(b) : S —b-Bd,e][S—b-Ae,e]| [B—-c,d [A— c,e]

LR(1)(aA): [S — aA-d,¢] LR(1)(aB): [S — aB-e,¢]

LR(1)(ac): [A— c-,d] [B — ce]

LR(1)(bB): [S — bB-d,¢] LR(1)(bA): [S — bA-e,¢]

LR(1)(bc) : [B — c-,d] [A— ce]

LR(1)(aAd) : [S — aAd-, €] LR(1)(aBe): [S — aBe:,¢]

LR(1)(bB4) : [S — bBd-,¢] LR(1)(bAe) : [S — bAe-, €]

no conflicts = G € LR(1)

LR(1)(ac) ~o LR(1)(bc), but LR(1)(ac) U LR(1)(bc) has conflicts
= G ¢ LALR(1)
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© Bottom-Up Parsing of Ambiguous Grammars
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Ambiguous Grammars

Reminder (Definition 5.5): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise it is
called ambiguous.

If G € CFGsx is ambiguous, then G ¢ | J, oy LR(k).

Proof.

Assume that there exist k € N and G € LR(k) such that G is ambiguous.

Hence there exists w € L(G) with different right derivations. Let aAv be the last
common sentence of the two derivations (i.e., 5 # §'):

=, affv =Fw

=, af'v=rw

But since firstx(v) = firstx(v) for every v € X*, Definition 9.4 yields that 3 = j'.
Contradiction O

4

S =7 aAv

However ambiguity is a natural specification method which generally avoids
involved syntactic constructs.
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Bottom-Up Parsing of Ambiguous Grammars |

Example 12.13 (Simple arithmetic expressions)
G:El -E E—E+E|ExE|a

Precedence: * > + Associativity: left

(thus: ataxa+a :=(a+(a*a))+a)

LR(0)(G):

I := LR(0)(¢) : [E' — -E] |[E — -E+E] [E — -ExE] [E — -4]
L :=LR(O)E): [E'—E] |[E—E-+E][E— E-*E]
h:=LR(0)(a): [E—a]

I3 :=LR(0)(E+): [E — E+-E][E — -E+E] [E — -ExE] [E — -4]
ly ;== LR(0)(E*): [E — Ex-E] [E — -E+E] [E — -ExE] [E — -4]
Is := LR(0)(E+E) : [E — E+E] [E — E -+E] [E — E - xE]

lo := LR(0)(E*E) : [E — ExE] [E — E -+E] [E — E - xE]

Conflicts: 1: SLR(1)-solvable (reduce on ¢, shift on +/*)
Is, ls: not SLR(1)-solvable (+,* € fo(E))
Solution:
ls: * >+ = act(ls, *) := shift, + left assoc. = act(/s,+) :=red1
l: * >+ = act(ls,+) := red 2, x left assoc. = act(lp, *) := red 2
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Bottom-Up Parsing of Ambiguous Grammars |l

Example 12.14 (“Dangling else")
G:S' =S S—iSeS|iS|a
Ambiguity: iiaea =

LR(0)(G):
I == LR(0)(e) :
== LR(0)(S) :
b= LR(0)(1) :

I3 = LR(0)(a) :

ls :== LR(0)(1S) :
Is :== LR(0)(iSe)
le == LR(0)(1iSeS)

[S — iSeS]
Conflict in I4: e € fo(S) = not SLR(1)-solvable
Solution (1): act(la, e) := shift

(1) i(iaea) (common) or (2) i(ia)ea

[S" — -S] [S — -iSeS] [S — -iS5]
[S — -]

[S"— S

[S—i-SeS][S—1i-5] [S— -iSeS]
[S — -i5] [S — -a]

[S — a]

[S— 1S5 eS| [S — i5]

[S— iSe -S| [S — -iSeS] [S — -iS]
[S — -]
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@ Generating Parsers Using yacc and bison
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The yacc and bison Tools

Usage of yacc (“yet another compiler compiler”):

yacc [f]lex

spec.y — y.tab.c lex.yy.c — spec.1l
yacc specification Parser source  Scanner source [£]1ex specification
Leel
a.out

Executable LALR(1) parser

Like for [f]1lex, a yacc specification is of the form
Declarations (optional)
he
Rules
he

Auxiliary procedures (optional)

bison : upward-compatible GNU implementation of yacc
(more flexible w.r.t. file names)
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yacc Specifications

Declarations: @ Token definitions: %token Tokens
@ Not every token needs to be declared (’+’, =, ...)
@ Start symbol: Ystart Symbol (optional)
@ C code for declarations etc.: %{ Code %}

Rules: context-free productions and semantic actions

@ A= oq]an|...|a, represented as
a1 {Actionl}
| ar {Actions}

| an {Action,};
@ Semantic actions = C statements for computing attribute
values
@ $3$ = attribute value of A
@ $i = attribute value of jth symbol on right-hand side
@ Default action: $$ = $1

Auxiliary procedures: scanner (if not [£]1lex), error routines, ...
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Example: Simple Desk Calculator |

%{/* SLR(1) grammar for arithmetic expressions (Example 11.1) */
#include <stdio.h>
#include <ctype.h>

h}

%token DIGIT

Dot

line : expr ’\n’ { prlntf("%d\n" $1); };
expr : expr ’+’ term {$$=9$1+ $3; }
| term { $$ = $1; };
term : term ’*’ factor { $$ = $1 x $3; }
| factor { $$ = $1; };
factor : ’(’ expr ’)’ {$$=292; }
| DIGIT {$$ =9$1; };
hoh
yylex() {
int c;
= getchar();
if (isdigit(c)) yylval = ¢ - ’0’; return DIGIT;
return c;
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Example: Simple Desk Calculator |l

> yacc calc.y

> cc y.tab.c -1y
> a.out

243

5

> a.out

2+3%5

17
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An Ambiguous Grammar |

%{/* Ambiguous grammar for arithm. expressions (Ex. 12.13) */
#include <stdio.h>
#include <ctype.h>

h}

%token DIGIT

Tt

line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr {83 =81+ 93; }
| expr ’*’ expr {$$ =81 % $3; }
| DIGIT {$$ = $1; };
YA
yylex() {
int c;

c = getchar();
if (isdigit(c)) {yylval = ¢ - ’0’; return DIGIT;}
return c;
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An Ambiguous Grammar ||

Invoking yacc with the option -v produces a report y.output:

State 8

2 expr: expr . ’+’ expr
2 | expr ’+’ expr .
3 | expr . ’*’ expr

’+’ shift and goto state 6
’x’ shift and goto state 7

742 [reduce with rule 2 (expr)]

%2 [reduce with rule 2 (expr)]
State 9

2 expr: expr . ’+’ expr

3 | expr . ’x’ expr

3 | expr ’*’ expr .

’+’  shift and goto state 6
’%’  shift and goto state 7

742 [reduce with rule 3 (expr)]
%2 [reduce with rule 3 (expr)]
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Conflict Handling in yacc

Default conflict resolving strategy in yacc:

reduce/reduce: choose first conflicting production in specification
shift/reduce: prefer shift
@ resolves dangling-else ambiguity (Example 12.14) correctly
@ also adequate for strong following weak operator (* after +;
Example 12.13) and for right-associative operators
@ not appropriate for weak following strong operator and for
left-associative binary operators
(= reduce; see Example 12.13)

For ambiguous grammar:

> yacc ambig.y
conflicts: 4 shift/reduce
> cc y.tab.c -1y
> a.out
2+3%*5
17
> a.out
2x3+5
16
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Precedences and Associativities in yacc |

General mechanism for resolving conflicts:
h[left|right] Operators;

hlleft|right] Operators,

@ operators in one line have given associativity and same precedence

@ precedence increases over lines

Example 12.15
Yleft 2+7 -7
%left L) )/)
Yright ’°°

" (right associative) binds stronger than * and / (left associative),
which in turn bind stronger than + and - (left associative)
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Precedences and Associativities in yacc |l

%{/* Ambiguous grammar for arithmetic expressions
with precedences and associativities */
#include <stdio.h>
#include <ctype.h>
h}
%token DIGIT
%left ’+2
%hleft %’
i
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr { 8% =81 + $3; }
| expr ’*’ expr {$$ =81 % $3; }
| DIGIT {$$=9$1; };

he
yylex() {
int c;
c = getchar();
if (isdigit(c)) {yylval = ¢ - ’0’; return DIGIT;}
return c;
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Precedences and Associativities in yacc Il

> yacc ambig-prio.y
> cc y.tab.c -1y

> a.out

2%3+5

11

> a.out

2+3%*5

17
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© LL and LR Parsing in Practice
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LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):
Simplicity : LL wins
@ LL parsing technique easier to understand
@ recursive-descent parser easier to debug than LALR
action tables
Generality : LALR wins
@ “almost” LL(1) C LALR(1) (only pathological
counterexamples)
@ LL requires elimination of left recursion and left
factorization
Semantic actions : (see semantic analysis) LL wins
@ actions can be placed anywhere in LL parsers without
causing conflicts
@ in LALR: implicit e-productions
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