Compiler Construction

Lecture 12: Syntax Analysis VIII
(LALR(1) Parsing & Practical Issues)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

© Repetition: LR(1) Parsing

m Compiler Construction Summer Semester 2012 12.2

LR(1) Items and Sets

Observation: not every element of fo(A) can follow every occurrence of A
— refinement of LR(0) items by adding possible lookahead symbols

Definition (LR(1) items and sets)
Let G = (N,X,P,S) € CFGyx be start separated by S’ — S.

o If S’ =7 aAaw =, af15raw, then [A — 1 - [2, a] is called an LR(1)
item for afs.

o If " =% aA =, af1fs, then [A — B1 - B2,¢] is called an LR(1) item
for af3;.

@ Given v € X*, LR(1)(~y) denotes the set of all LR(1) items for ,
called the LR(1) set (or: LR(1) information) of ~.

° LR(1)(G) := {LR(1)() | v € X"}.

mH Compiler Construction Summer Semester 2012 12.3

The LR(1) Action Function

Definition (LR(1) action function)
The LR(1) action function

act : LR(1)(G) x X — {redi | i € [p]} U {shift, accept, error}
is defined by

redi ifi#0,mi=A—aand[A—a,x] €l
shift if [A— a1 -xap,y] €/ and x€ X
accept if [S"— S-,e]€land x=¢

error otherwise

act(/,x) :=

For every G € CFGy, G € LR(1) iff its LR(1) action function is well
defined.

RWNTH Compiler Construction Summer Semester 2012 12.4

© LALR(1) Parsing

m Compiler Construction Summer Semester 2012 12,5

LALR(1) Parsing

@ Motivation: resolving conflicts using LR(1) too expensive
@ Example 11.7/11.13: |[LR(0)(G.r)| = 11, |[LR(1)(GLR)| = 15
@ Empirical evaluations:
@ A. Johnstone, E. Scott: Generalised Reduction Modified LR Parsing for
Domain Specific Language Prototyping, HICSS '02, IEEE, 2002

@ X. Chen, D. Pager: Full LR(1) Parser Generator Hyacc and Study on
the Performance of LR(1) Algorithms, C3S2E'11, ACM, 2011

Grammar | [LR(0)(G)| |LR(1)(G)|
Pascal 368 1395
Ansi-C 381 1788
CH++ 1236 9723

mH Compiler Construction Summer Semester 2012 12.6

LR(0) Equivalence |

Observation: potential redundancy by containment of LR(0) sets in
LR(1) sets (cf. Corollary 11.9)

Definition 12.1 (LR(0) equivalence)

Let Irg : LR(1)(G) — LR(0)(G) be defined by

Irg(1) :=={[A— 1 B2 | [A— Br- P2, x] € I}.
Two sets l1, b € LR(1)(G) are called LR(0)-equivalent
(notation: h ~g I2) if 11'0(/1) = 11'0(/2).

mH Compiler Construction Summer Semester 2012 12.7

LR(0) Equivalence Il

Example 12.2 (cf. Example 11.7/11.13)

Gr: S’ =S S— L=R|R LR(1)(GLR) :
L—+*R|la R—L I§(e) : S'—-S,e] [S— L=R,€]
LR(0)(GiR) : f_%R’E]] {LR_MLR’]:]
LR — -a,= — L
h(e) : S’"—.S] [S— -L=R] L— *Rje] [L— -a,e]
S — -R] [L — *R] I]:(S) : S — S ¢]
e é—> S] [R— L] I%EL)): §—>L-=li?,5] [R— L-€]
1 : — I5(R) : — R, e
IQEL)): §—> =R] [R — L] I4(*): L—*-R,=] [L—*-R,¢]
h(R) : — R R —-L,=] R — -L,¢]
W(x): [L—*-R] [R— L] Lo *R=] [L— a-]
L— *R] [L— -q] L — xR, €] L— -a,¢]
I5(a) : L—a] I{(a) : L—a, =] L— a,e]
le(L=): [S— L=-R] [R —-L] R(L=) : S — L=-R,e] [R— L]
. L— xRl [L— -2]) L — xR, €] L— a5l
r(xR) : L — *R] BOR): [L—*R,=] [L—*Re]
;8(23?' _ SR—> t;]R Ia(xL) : R — L= R — L €]
o(L=R) : [S — L=R'] ly(L=R) : S = L=R-¢]
— Iz{ ~0 I];l /]70(L=L) 5 R — L',E]
Il ~o /]72 I{;(L=x): [L—=*-R,e] [R—-L¢]
2o~ 1l L— *Re] [L— -a,e]
"o I{,(L=a) : [L— a-,¢]
lg ~0 Ko 32
l{3(L=%R) : [L = *R-, €]

mH Compiler Construction Summer Semester 2012 12.8

LALR(1) Sets |

Corollary 12.3
For every G € CFGy,

LR(1)(G)/ ~o | = |LR(0)(G)|.

Idea: merge LR(0)-equivalent LR(1) sets
(maintaining the lookahead information, but possibly introducing conflicts)

Definition 12.4 (LALR(1) sets)
Let G € CFGs.
@ An information / € LR(1)(G) determines the LALR(1) set

Ul = Ut € LRAY(G) | 1~ 1}.

@ The set of all LALR(1) sets of G is denoted by LALR(1)(G).

Remark: by Corollary 12.3, [LALR(1)(G)| = |LR(0)(G)|

(but LALR(1) sets provide additional lookahead information
mH Compiler Construction Summer Semester 2012 12.9

LALR(1) Sets II

Example 12.5 (cf. Example 12.2)
Gr:S—S S—L=R|R L—*R|a R—L

LR(O)(GLR) 5 LALR(].)(GLR) 5

be): [S"—=-S] [S—-L=R] I':=1I: [S"— -S.¢] [S — L=R,€]
S—-R] [L— *R] [S = -R,e] [L = *R,=/¢]
L — -a] [R — -L] [L = -a,=/e] [R— -L€]

h(S): [S'— S]] =1 [S"— S ¢]

h(L): [S—L-=R][R— L] L= [S—L-=R,e] [R— Lé€]

hL(R): [S— R] I=1 [S — R e]

(). (Lo xRl [R—-l 1= Uy:[L* R=/e] [R = L =/e]
L— *R] [L— -a] L— *R =/e] [L— -a,=/¢]

Is(a) : L—a] I = Ul,: [L—a,=/e

le(L=): [S— L=-R] [R — L] I =15 : S—L=-Re] [R—-Le]
L— -xR] [L— -3 L— xRe] [L— -ac¢]

I(*R): [L— *R'] I =k Ulz: [L— *R =/¢]

le(*L) : [R— L] Iy =1 UMty : [R— L,=/e]

Ig(L=R) 2 [S — L=R~] Ié/ = /9/ : S— L=R',E]

mH Compiler Construction Summer Semester 2012 12.10

The LALR(1) Action Function

The LALR(1) action function is defined in analogy to the LR(1) case
(Definition 11.14).

Definition 12.6 (LALR(1) action function)
The LALR(1) action function

act : LALR(1)(G) x X — {redi | i € [p]} U {shift, accept, error }
is defined by

redi ifi#0,7(i)=A—aand [A— a,x] €l
shift if [A— a1 xap,y] €/l and x € X

accept if [S'— S-,e] €/ and x =¢

error otherwise

act(/,x) :=

Definition 12.7 (LALR(1) grammar)

A grammar G € CFGyx has the LALR(1) property (notation:
G € LALR(1)) if its LALR(1) action function is well defined.

RWNTH Compiler Construction Summer Semester 2012 12.11

The LALR(1) goto Function

Example 12.8 (cf. Example 12.5)
G € LALR(I)

Also the LR(1) goto function (Definition 11.16) carries over to the
LALR(1) case. Reason:

Let G € CFGx and h, l, € LR(1)(G) such that Iy ~q¢ l,. Then, for every
Y € X, goto(h, Y) ~o goto(h, Y).

Again, act and goto form the LALR(1) parsing table of G.

mH Compiler Construction Summer Semester 2012 12.12

The LALR(1) Parsing Table

Example 12.10 (cf. Example 12.5)

LALR(1)(G(Rr) act/goto|x goto|y

* = a e |S LR

14 Shift/ 17 Shift /17 T

I accept

14 shift/l¢ red 5

4 red 2

1 shift/ /]! shift/ !/ N

4 red 4 red 4

gl shift /) shift/ 12 o

K red 3 red 3

I red 5 red 5

I red 1

(empty = error /)

Compiler Construction

Summer Semester 2012

12.13

LALR(1) Conflicts

But: merging of LR(1) sets can produce new conflicts (also see exercises):

Example 12.11

G:S"—>S S—aAd|bBd|aBe|bAe A—c B—c

LR(1)(e) : S"—-S,e] [S—-aAd,e] [S— bBd,] [S — -aBe,¢]
S — ‘bAe,¢]

LR(1)(S): [S"— S-. €]

LR(1)(a) : S —a-Ad,e| [S—a-Be,e] [A—-c,d [B—-c,e]

LR(1)(b) : S —b-Bd,e][S—b-Ae,e]| [B—-c,d [A— c,e]

LR(1)(aA): [S — aA-d,¢] LR(1)(aB): [S — aB-e,¢]

LR(1)(ac): [A— c-,d] [B — ce]

LR(1)(bB): [S — bB-d,¢] LR(1)(bA): [S — bA-e,¢]

LR(1)(bc) : [B — c-,d] [A— ce]

LR(1)(aAd) : [S — aAd-, €] LR(1)(aBe): [S — aBe:,¢]

LR(1)(bB4) : [S — bBd-,¢] LR(1)(bAe) : [S — bAe-, €]

no conflicts = G € LR(1)

LR(1)(ac) ~o LR(1)(bc), but LR(1)(ac) U LR(1)(bc) has conflicts
= G ¢ LALR(1)

RWNTH Compiler Construction Summer Semester 2012 12.14

© Bottom-Up Parsing of Ambiguous Grammars

m Compiler Construction Summer Semester 2012 12.15

Ambiguous Grammars

Reminder (Definition 5.5): a context-free grammar G € CFGy is called
unambiguous if every word w € L(G) has exactly one syntax tree. Otherwise it is
called ambiguous.

If G € CFGsx is ambiguous, then G ¢ | J, oy LR(k).

Proof.

Assume that there exist k € N and G € LR(k) such that G is ambiguous.

Hence there exists w € L(G) with different right derivations. Let aAv be the last
common sentence of the two derivations (i.e., 5 # §'):

=, affv =Fw

=, af'v=rw

But since firstx(v) = firstx(v) for every v € X*, Definition 9.4 yields that 3 = j'.
Contradiction O

4

S =7 aAv

However ambiguity is a natural specification method which generally avoids
involved syntactic constructs.
mH Compiler Construction Summer Semester 2012 12.16

Bottom-Up Parsing of Ambiguous Grammars |

Example 12.13 (Simple arithmetic expressions)
G:El -E E—E+E|ExE|a

Precedence: * > + Associativity: left

(thus: ataxa+a :=(a+(a*a))+a)

LR(0)(G):

I := LR(0)(¢) : [E' — -E] |[E — -E+E] [E — -ExE] [E — -4]
L :=LR(O)E): [E'—E] |[E—E-+E][E— E-*E]
h:=LR(0)(a): [E—a]

I3 :=LR(0)(E+): [E — E+-E][E — -E+E] [E — -ExE] [E — -4]
ly ;== LR(0)(E*): [E — Ex-E] [E — -E+E] [E — -ExE] [E — -4]
Is := LR(0)(E+E) : [E — E+E] [E — E -+E] [E — E - xE]

lo := LR(0)(E*E) : [E — ExE] [E — E -+E] [E — E - xE]

Conflicts: 1: SLR(1)-solvable (reduce on ¢, shift on +/*)
Is, ls: not SLR(1)-solvable (+,* € fo(E))
Solution:
ls: * >+ = act(ls, *) := shift, + left assoc. = act(/s,+) :=red1
l: * >+ = act(ls,+) := red 2, x left assoc. = act(lp, *) := red 2

mH Compiler Construction Summer Semester 2012 12.17

Bottom-Up Parsing of Ambiguous Grammars |l

Example 12.14 (“Dangling else")
G:S' =S S—iSeS|iS|a
Ambiguity: iiaea =

LR(0)(G):
I == LR(0)(e) :
== LR(0)(S) :
b= LR(0)(1) :

I3 = LR(0)(a) :

ls :== LR(0)(1S) :
Is :== LR(0)(iSe)
le == LR(0)(1iSeS)

[S — iSeS]
Conflict in I4: e € fo(S) = not SLR(1)-solvable
Solution (1): act(la, e) := shift

(1) i(iaea) (common) or (2) i(ia)ea

[S" — -S] [S — -iSeS] [S — -iS5]
[S — -]

[S"— S

[S—i-SeS][S—1i-5] [S— -iSeS]
[S — -i5] [S — -a]

[S — a]

[S— 1S5 eS| [S — i5]

[S— iSe -S| [S — -iSeS] [S — -iS]
[S — -]

Compiler Construction Summer Semester 2012 12.18

@ Generating Parsers Using yacc and bison

m Compiler Construction Summer Semester 2012 12.19

The yacc and bison Tools

Usage of yacc (“yet another compiler compiler”):

yacc [f]lex

spec.y — y.tab.c lex.yy.c — spec.1l
yacc specification Parser source Scanner source [£]1ex specification
Leel
a.out

Executable LALR(1) parser

Like for [f]1lex, a yacc specification is of the form
Declarations (optional)
he
Rules
he

Auxiliary procedures (optional)

bison : upward-compatible GNU implementation of yacc
(more flexible w.r.t. file names)

mH Compiler Construction Summer Semester 2012 12.20

yacc Specifications

Declarations: @ Token definitions: %token Tokens
@ Not every token needs to be declared (’+’, =, ...)
@ Start symbol: Ystart Symbol (optional)
@ C code for declarations etc.: %{ Code %}

Rules: context-free productions and semantic actions

@ A= oq]an|...|a, represented as
a1 {Actionl}
| ar {Actions}

| an {Action,};
@ Semantic actions = C statements for computing attribute
values
@ 3 = attribute value of A
@ $i = attribute value of jth symbol on right-hand side
@ Default action: $$ = $1

Auxiliary procedures: scanner (if not [£]1lex), error routines, ...

mH Compiler Construction Summer Semester 2012 12.21

Example: Simple Desk Calculator |

%{/* SLR(1) grammar for arithmetic expressions (Example 11.1) */
#include <stdio.h>
#include <ctype.h>

h}

%token DIGIT

Dot

line : expr ’\n’ { prlntf("%d\n" $1); };
expr : expr ’+’ term {$$=9$1+ $3; }
| term { $$ = $1; };
term : term ’*’ factor { $$ = $1 x $3; }
| factor { $$ = $1; };
factor : ’(’ expr ’)’ {$$=292; }
| DIGIT {$$ =9$1; };
hoh
yylex() {
int c;
= getchar();
if (isdigit(c)) yylval = ¢ - ’0’; return DIGIT;
return c;

m Compiler Construction Summer Semester 2012 12.22

Example: Simple Desk Calculator |l

> yacc calc.y

> cc y.tab.c -1y
> a.out

243

5

> a.out

2+3%5

17

m Compiler Construction Summer Semester 2012 12.23

An Ambiguous Grammar |

%{/* Ambiguous grammar for arithm. expressions (Ex. 12.13) */
#include <stdio.h>
#include <ctype.h>

h}

%token DIGIT

Tt

line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr {83 =81+ 93; }
| expr ’*’ expr {$$ =81 % $3; }
| DIGIT {$$ = $1; };
YA
yylex() {
int c;

c = getchar();
if (isdigit(c)) {yylval = ¢ - ’0’; return DIGIT;}
return c;

m Compiler Construction Summer Semester 2012 12.24

An Ambiguous Grammar ||

Invoking yacc with the option -v produces a report y.output:

State 8

2 expr: expr . ’+’ expr
2 | expr ’+’ expr .
3 | expr . ’*’ expr

’+’ shift and goto state 6
’x’ shift and goto state 7

742 [reduce with rule 2 (expr)]

%2 [reduce with rule 2 (expr)]
State 9

2 expr: expr . ’+’ expr

3 | expr . ’x’ expr

3 | expr ’*’ expr .

’+’ shift and goto state 6
’%’ shift and goto state 7

742 [reduce with rule 3 (expr)]
%2 [reduce with rule 3 (expr)]

m Compiler Construction Summer Semester 2012 12.25

Conflict Handling in yacc

Default conflict resolving strategy in yacc:

reduce/reduce: choose first conflicting production in specification
shift/reduce: prefer shift
@ resolves dangling-else ambiguity (Example 12.14) correctly
@ also adequate for strong following weak operator (* after +;
Example 12.13) and for right-associative operators
@ not appropriate for weak following strong operator and for
left-associative binary operators
(= reduce; see Example 12.13)

For ambiguous grammar:

> yacc ambig.y
conflicts: 4 shift/reduce
> cc y.tab.c -1y
> a.out
2+3%*5
17
> a.out
2x3+5
16
mH Compiler Construction Summer Semester 2012 12.26

Precedences and Associativities in yacc |

General mechanism for resolving conflicts:
h[left|right] Operators;

hlleft|right] Operators,

@ operators in one line have given associativity and same precedence

@ precedence increases over lines

Example 12.15
Yleft 2+7 -7
%left L))/)
Yright ’°°

" (right associative) binds stronger than * and / (left associative),
which in turn bind stronger than + and - (left associative)

mH Compiler Construction Summer Semester 2012 12.27

Precedences and Associativities in yacc |l

%{/* Ambiguous grammar for arithmetic expressions
with precedences and associativities */
#include <stdio.h>
#include <ctype.h>
h}
%token DIGIT
%left ’+2
%hleft %’
i
line : expr ’\n’ { printf("%d\n", $1); };
expr : expr ’+’ expr { 8% =81 + $3; }
| expr ’*’ expr {$$ =81 % $3; }
| DIGIT {$$=9$1; };

he
yylex() {
int c;
c = getchar();
if (isdigit(c)) {yylval = ¢ - ’0’; return DIGIT;}
return c;

m Compiler Construction Summer Semester 2012 12.28

Precedences and Associativities in yacc Il

> yacc ambig-prio.y
> cc y.tab.c -1y

> a.out

2%3+5

11

> a.out

2+3%*5

17

Compiler Construction

Summer Semester 2012

12.29

© LL and LR Parsing in Practice

m Compiler Construction Summer Semester 2012 12.30

LL and LR Parsing in Practice

In practice: use of LL(1) or LALR(1)

Detailed comparison (cf. Fischer/LeBlanc: Crafting a Compiler,
Benjamin/Cummings, 1988):
Simplicity : LL wins
@ LL parsing technique easier to understand
@ recursive-descent parser easier to debug than LALR
action tables
Generality : LALR wins
@ “almost” LL(1) C LALR(1) (only pathological
counterexamples)
@ LL requires elimination of left recursion and left
factorization
Semantic actions : (see semantic analysis) LL wins
@ actions can be placed anywhere in LL parsers without
causing conflicts
@ in LALR: implicit e-productions

mH Compiler Construction Summer Semester 2012

12.31

	Repetition: LR(1) Parsing
	LALR(1) Parsing
	Bottom-Up Parsing of Ambiguous Grammars
	Generating Parsers Using yacc and bison
	LL and LR Parsing in Practice

