Compiler Construction

Lecture 13: Semantic Analysis | (Attribute Grammars)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/
P

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Studieren Ohne Grenzen e.V. praséntiert die

_/v—/
1 Sﬁ
“ a c II t 1 d e r mmm"w""@’eﬂzen

15.06. . Apollo 22:00

Ab 23:00 legen eure Professoren von der RWTH fiir den guten Zweck auf:
Prof. Reicher-Marek | Philosophie

Prof. Reicherter | Neotektonik

Prof. Bientinesi | Informatik

Prof. Panstruga | Biologie

Prof. Blank | Biologie

Dr.Pratzer | Physik

Mitmachen? Besuch uns auf oder unter www.

© Overview

m Compiler Construction Summer Semester 2012 13.3

Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

Y
Syntax analysis (Parser))

Y

(Semantic analysis)

A
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code

Target code
mH Compiler Construction Summer Semester 2012 13.4

© Semantic Analysis

m Compiler Construction Summer Semester 2012 13.5

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:

@ Are there identifiers that are not declared? Declared but not used?

mH Compiler Construction Summer Semester 2012 13.6

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:

@ Are there identifiers that are not declared? Declared but not used?

@ Is x a scalar, an array, or a procedure? Of which type?

mH Compiler Construction Summer Semester 2012 13.6

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:

@ Are there identifiers that are not declared? Declared but not used?
@ Is x a scalar, an array, or a procedure? Of which type?

@ Which declaration of x is used by each reference?

mH Compiler Construction Summer Semester 2012 13.6

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:

@ Are there identifiers that are not declared? Declared but not used?
@ Is x a scalar, an array, or a procedure? Of which type?
@ Which declaration of x is used by each reference?

@ s x defined before it is used?

mH Compiler Construction Summer Semester 2012 13.6

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:

Are there identifiers that are not declared? Declared but not used?
Is x a scalar, an array, or a procedure? Of which type?
Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?

mH Compiler Construction Summer Semester 2012 13.6

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:

@ Are there identifiers that are not declared? Declared but not used?
@ Is x a scalar, an array, or a procedure? Of which type?

@ Which declaration of x is used by each reference?

@ Is x defined before it is used?

@ |s the expression 3 * x + y type consistent?

°

Where should the value of x be stored (register/stack/heap)?

mH Compiler Construction Summer Semester 2012 13.6

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:

Are there identifiers that are not declared? Declared but not used?
Is x a scalar, an array, or a procedure? Of which type?

Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?

Where should the value of x be stored (register/stack/heap)?

°
°
°
°
°
°
@ Do p and q refer to the same memory location (aliasing)?
°

mH Compiler Construction Summer Semester 2012 13.6

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:

@ Are there identifiers that are not declared? Declared but not used?
@ Is x a scalar, an array, or a procedure? Of which type?

@ Which declaration of x is used by each reference?

@ Is x defined before it is used?

@ |s the expression 3 * x + y type consistent?

@ Where should the value of x be stored (register/stack/heap)?

@ Do p and q refer to the same memory location (aliasing)?

°

These cannot be expressed using context-free grammars!

mH Compiler Construction Summer Semester 2012 13.6

Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:

@ Are there identifiers that are not declared? Declared but not used?
@ Is x a scalar, an array, or a procedure? Of which type?

@ Which declaration of x is used by each reference?

@ Is x defined before it is used?

@ |s the expression 3 * x + y type consistent?

@ Where should the value of x be stored (register/stack/heap)?

@ Do p and q refer to the same memory location (aliasing)?

°

These cannot be expressed using context-free grammars!
(e.g., {ww | weX*} ¢ CFly)

mH Compiler Construction Summer Semester 2012 13.6

Static Semantics
Static semantics

Static semantics refers to properties of program constructs

@ which are true for every occurrence of this construct in every program
execution (static) and

@ can be decided at compile time

@ but are context-sensitive and thus not expressible using context-free
grammars (semantics).

mH Compiler Construction Summer Semester 2012 13.7

Static Semantics
Static semantics

Static semantics refers to properties of program constructs

@ which are true for every occurrence of this construct in every program
execution (static) and

@ can be decided at compile time

@ but are context-sensitive and thus not expressible using context-free
grammars (semantics).

Example properties

Static: type or declaredness of an identifier, number of registers
required to evaluate an expression, ...

Dynamic: value of an expression, size of runtime stack, ...

mH Compiler Construction Summer Semester 2012 13.7

© Attribute Grammars

m Compiler Construction Summer Semester 2012 13.8

Attribute Grammars |

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

= Semantic analysis = attribute evaluation

Result: attributed syntax tree

m Compiler Construction Summer Semester 2012 13.9

Attribute Grammars |

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

= Semantic analysis = attribute evaluation
Result: attributed syntax tree

In greater detail:
@ With every nonterminal a set of attributes is associated.
@ Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leaves to the root)
Inherited: top-down computation (from the root to the leaves)

@ With every production a set of semantic rules is associated.

mH Compiler Construction Summer Semester 2012 13.9

Attribute Grammars Il

Advantage: attribute grammars provide a very flexible and broadly
applicable mechanism for transporting information throught the syntax
tree (“syntax-directed translation™)

@ Attribute values: symbol tables, data types, code, error flags, ...
@ Application in Compiler Construction:

static semantics

@ program analysis for optimization

@ code generation

@ error handling

©

@ Automatic attribute evaluation by compiler generators
(cf. yacc's synthesized attributes)

@ Originally designed by D. Knuth for defining the semantics of
context-free languages (Math. Syst. Theory 2 (1968), pp. 127-145)

mH Compiler Construction Summer Semester 2012 13.10

Example: Knuth’s Binary Numbers |

Example 13.1 (only synthesized attributes)

Binary numbers (with fraction):
Gg: Numbers S — L

S—L.L
Lists L —+ B

L — LB
Bits B—o0
Bits B—1

mH Compiler Construction Summer Semester 2012 13.11

Example: Knuth’s Binary Numbers |

Example 13.1 (only synthesized attributes)

Binary numbers (with fraction):
Gg: Numbers S — L d0 = d.1
S—L.L d0 = d1+d.3/23
Lists L— B d0 = d.1
[0 =1
L—-LB d0 = 2xdl1+d.2
10 = [1+1
Bits B —0 d0o =20
Bits B —1 do =1
Synthesized attributes of S, L, B: d (decimal value; domain: V¢ := Q)
of L: I (length; domain: V/:=N)
Semantic rules: equations with attribute variables
(index = position of symbol; 0 = left-hand side)

RWNTH Compiler Construction Summer Semester 2012 13.11

Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Syntax tree for 1101.01:

/L\
ot \
7 \\
/7 AN
.
L B
N 1
4 \ I
’ \ \
// % I
\
e . 1
L B 1
2N I
’ \ 1
4 \ I
e Y 1
2 % |
B 0
I
}
I
}
I
1

I—‘-————m-————l\\

O-----Ty-- -,

(SO, 1

Compiler Construction

Summer Semester 2012

13.12

Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

e V10 e [

y
Rer Compiler Construction

Summer Semester 2012 13.12

Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

e V10 e [

B—0:d0=0

y
Rer Compiler Construction

Summer Semester 2012 13.12

Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

e V10 e [

B—1:d0=1

y
Rer Compiler Construction

Summer Semester 2012 13.12

Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

e V10 e [

L—+B:d0=4d.1

y
Rer Compiler Construction

Summer Semester 2012 13.12

Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

e V10 e [

L—-B:/0=1

y
Rer Compiler Construction

Summer Semester 2012 13.12

Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

e V10 e [

L—-ILB:d0=2%xd.1+d.2

4
Rer Compiler Construction

Summer Semester 2012 13.12

Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

e V10 e [

L—-ILB:d0=2%xd.1+d.2

4
Rer Compiler Construction

Summer Semester 2012 13.12

Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

e V10 e [

L—-ILB:d0=2%xd.1+d.2

4
Rer Compiler Construction

Summer Semester 2012 13.12

Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

S=e==={fjrom=i

L—-LB:/0=/1+1

e V10 e [

RWNTH Compiler Construction Summer Semester 2012 13.12

Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

e V10 e [

S—L.L:d0=d.1+d.3/23

Rer Compiler Construction

Summer Semester 2012 13.12

@ Adding Inherited Attributes

m Compiler Construction Summer Semester 2012 13.13

Adding Inherited Attributes |

Example 13.2 (synthesized + inherited attributes)

Binary numbers (with fraction):
Gg: Numbers S — L
S—L.L
Lists L— B
L— LB
Bits B—0
Bits B—1

Summer Semester 2012 13.14

Rer Compiler Construction

Adding Inherited Attributes |

Example 13.2 (synthesized + inherited attributes)

Binary numbers (with fraction):
Gg: Numbers S — L d0 = d.1
pl =20
S—>L.L d0 = d1+d3
pl =20
p3 = —13
Lists L— B d0 = d.l
[0 =1
p.l = p.0
L—- LB dO0 = dl1+d2
[0 = [1+1
p.l = p0+1
p.2 = p.0
Bits B —o0 d0 =0
Bits B—1 do = 2°r0
Synthesized attributes of S, L, B: d (decimal value; domain: V¢ := Q)
of L: I (length; domain: V/:=N)
Inherited attribute of L,B: p (position; domain: VP :=7)

RWNTH Compiler Construction Summer Semester 2012 13.14

Adding Inherited Attributes Il

Example 13.2 (continued)
Syntax tree for 10.1:

SO

_————-m--—-—--r

oGy mm e

Compiler Construction

Summer Semester 2012

13.15

Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

mH Compiler Construction Summer Semester 2012 13.15

Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

mH Compiler Construction Summer Semester 2012 13.15

Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

L—LB:/0=/1+1

Compiler Construction Summer Semester 2012 13.15

Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

S—>L.L:pl1=0

Compiler Construction Summer Semester 2012 13.15

Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

S—>L.L:p3=-13

Compiler Construction Summer Semester 2012 13.15

Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

L—LB:pl=p0+1

Compiler Construction Summer Semester 2012 13.15

Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

L—LB:p2=p0

Compiler Construction Summer Semester 2012 13.15

Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

505
i
|
0

L—B:pl=p0

mH Compiler Construction Summer Semester 2012 13.15

Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

mH Compiler Construction Summer Semester 2012 13.15

Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

B—1:d.0=2P0

Compiler Construction Summer Semester 2012 13.15

Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

L—+B:d0=4d.1

Compiler Construction Summer Semester 2012 13.15

Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

L—+1LB:d0=d1+d.2

Compiler Construction Summer Semester 2012 13.15

Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

S—L.L:d0=d1+d3

Compiler Construction Summer Semester 2012 13.15

© Formal Definition of Attribute Grammars

m Compiler Construction Summer Semester 2012 13.16

Formal Definition of Attribute Grammars |

Definition 13.3 (Attribute grammar)
Let G = (N,%,P,S) € CFGx with X := N W L.

mH Compiler Construction Summer Semester 2012 13.17

Formal Definition of Attribute Grammars |

Definition 13.3 (Attribute grammar)

Let G = (N,X,P,S) € CFGx with X :=NWX.
® Let Att = SynW Inh be a set of (synthesized or inherited) attributes, and let
V = Uq,can V¢ be a union of value sets.

mH Compiler Construction Summer Semester 2012 13.17

Formal Definition of Attribute Grammars |

Definition 13.3 (Attribute grammar)

Let G = (N,X,P,S) € CFGx with X :=NWX.
® Let Att = SynW Inh be a set of (synthesized or inherited) attributes, and let
V = Uq,can V¢ be a union of value sets.

@ Let att : X — 24 be an attribute assignment, and let
syn(Y) = att(Y) N Syn and inh(Y) := att(Y) N Inh for every Y € X.

mH Compiler Construction Summer Semester 2012 13.17

Formal Definition of Attribute Grammars |

Definition 13.3 (Attribute grammar)
Let G = (N,X,P,S) € CFGx with X :== NWX.
® Let Att = SynW Inh be a set of (synthesized or inherited) attributes, and let
V = Uq,can V¢ be a union of value sets.
® Let att : X — 24% be an attribute assignment, and let
syn(Y) = att(Y) N Syn and inh(Y) := att(Y) N Inh for every Y € X.
@ Every production 7 = Yy — Yi1...Y, € P determines the set
Vary == {a.i | a € att(Y;),i € {0,...,r}}
of attribute variables of m with the subsets of inner and outer variables:
{a.i | (i=0,a € syn(Y;)) or (i € [r],« € inh(Y;))}
Var, \ In,

In,
Out, :

mH Compiler Construction Summer Semester 2012 13.17

Formal Definition of Attribute Grammars |

Definition 13.3 (Attribute grammar)

Let G = (N,X,P,S) € CFGx with X :=NWX.
® Let Att = SynW Inh be a set of (synthesized or inherited) attributes, and let
V = Uq,can V¢ be a union of value sets.

@ Let att : X — 24 be an attribute assignment, and let

syn(Y) = att(Y) N Syn and inh(Y) := att(Y) N Inh for every Y € X.
@ Every production 7 = Yy — Yi1...Y, € P determines the set

Vary == {a.i | a € att(Y;),i € {0,...,r}}
of attribute variables of 7 with the subsets of inner and outer variables:
Ing :={a.i| (i=0,a € syn(Y;)) or (i € [r], @ € inh(Y;))}
Out, := Var; \ In;
@ A semantic rule of 7 is an equation of the form
a.i = f(ag.y,...,an.0)
where n € N, a.i € In;, aj.ij € Outr, and f: VO x ... x Vo — Ve,

mH Compiler Construction Summer Semester 2012 13.17

Formal Definition of Attribute Grammars |

Definition 13.3 (Attribute grammar)
Let G = (N,%,P,S) € CFGx with X := N W L.

® Let Att = SynW Inh be a set of (synthesized or inherited) attributes, and let

V = Uq,can V¢ be a union of value sets.
@ Let att : X — 24 be an attribute assignment, and let

syn(Y) = att(Y) N Syn and inh(Y) := att(Y) N Inh for every Y € X.
@ Every production 7 = Yy — Yi1...Y, € P determines the set

Var, :={a.i|a € att(Y;),i € {0,...,r}}
of attribute variables of 7 with the subsets of inner and outer variables:
Ing :={a.i| (i=0,a € syn(Y;)) or (i € [r], @ € inh(Y;))}
Out, := Var; \ In;
@ A semantic rule of 7 is an equation of the form
a.i = f(ag.y,...,an.0)

where n € N, a.i € In;, aj.ij € Outr, and f: VO x ... x Vo — Ve,
@ For each w € P, let E, be a set with exactly one semantic rule for every

inner variable of 7, and let E := (E; | w € P).

mH Compiler Construction Summer Semester 2012 13.17

Formal Definition of Attribute Grammars |

Definition 13.3 (Attribute grammar)
Let G = (N,%,P,S) € CFGx with X := N W L.

® Let Att = SynW Inh be a set of (synthesized or inherited) attributes, and let

V = Uq,can V¢ be a union of value sets.
@ Let att : X — 24 be an attribute assignment, and let

syn(Y) = att(Y) N Syn and inh(Y) := att(Y) N Inh for every Y € X.
@ Every production 7 = Yy — Yi1...Y, € P determines the set

Var, :={a.i|a € att(Y;),i € {0,...,r}}
of attribute variables of 7 with the subsets of inner and outer variables:
Ing :={a.i| (i=0,a € syn(Y;)) or (i € [r], @ € inh(Y;))}
Out, := Var; \ In;
@ A semantic rule of 7 is an equation of the form
a.i = f(ag.y,...,an.0)

where n € N, a.i € In;, aj.ij € Outr, and f: VO x ... x Vo — Ve,
@ For each w € P, let E, be a set with exactly one semantic rule for every

inner variable of 7, and let E := (E; | w € P).

Then 2 := (G, E, V) is called an attribute grammar: 2 € AG.

RWNTH Compiler Construction Summer Semester 2012

13.17

Formal Definition of Attribute Grammars ||

Example 13.4 (cf. Example 13.2)
Apg € AG for binary numbers:
@ Attributes: Att = SynW Inh with Syn = {d,/} and Inh = {p}

R — S SSE—N—S—S—S——SS————————————————
mH Compiler Construction Summer Semester 2012 13.18

Formal Definition of Attribute Grammars ||

Example 13.4 (cf. Example 13.2)

Apg € AG for binary numbers:
@ Attributes: Att = SynW Inh with Syn = {d,/} and Inh = {p}
o Valuesets: V¥=Q, V/ =N, VP =17

R — S SSE—N—S—S—S——SS————————————————
mH Compiler Construction Summer Semester 2012 13.18

Formal Definition of Attribute Grammars ||

Example 13.4 (cf. Example 13.2)
Apg € AG for binary numbers:

@ Attributes: Att = SynW Inh with Syn = {d, !} and Inh = {p}
o Valuesets: VI9=Q, V' =N, VP =7

@ Attribute assignment: | Y € X | § L B 0 1
syn(Y) [{d} {d,7} {d} 0 0 0
inh(Y)| & {p} {p} 0 0 0

Rer Compiler Construction

SS————————————————_

Summer Semester 2012

13.18

Formal Definition of Attribute Grammars ||

Example 13.4 (cf. Example 13.2)

Apg € AG for binary numbers:
@ Attributes: Att = SynW Inh with Syn = {d,/} and Inh = {p}
o Valuesets: V9=Q, V=N, VP =7
@ Attribute assignment: | Y € X | § L B 0 1 .
syn(Y) [{d} {d,7} {d} 0 0 0
inh(Y)| @ {p} {p} 0 0 0
@ Attribute variables:
meP S—1L S—L.L L— B
Iny {d.0,p.1} {d.0,p.1,p.3} {d.0,1.0,p.1}
Out, {d.1,1.1} {d.1,1.1,d.3,1.3} {d.1,p.0}
meP L— LB B—o0 B—1
Iny {d.0,1.0,p.1, p.2} {d.0} {d.0}
Out, |{d.1,d.2,/.1,p.0} {p.0} {p.0}

mH Compiler Construction Summer Semester 2012 13.18

Formal Definition of Attribute Grammars ||

Example 13.4 (cf. Example 13.2)
Apg € AG for binary numbers:

@ Attributes: Att = SynW Inh with Syn = {d, !} and Inh = {p}

@ Valuesets: V9=Q, V=N, vP =7

@ Attribute assignment: | Y € X | § L B 0 1 .
syn(Y) [{d} {d,/} {d} 0 0 0
inh(Y) | 0 {p} {p} 0 0 0
@ Attribute variables:
meP S—1L S—L.L L— B
Iny {d.0,p.1} {d.0,p.1,p.3} {d.0,1.0,p.1}
Out, {d.1,1.1} {d.1,11,d3,13} {d.1,p.0}
meP L— LB B—o0 B—1
Iny {d.0,1.0,p.1, p.2} {d.0} {d.0}
Out, |{d.1,d.2,/.1,p.0} {p.0} {p.0}

@ Semantic rules: see Example 13.2
(e.g., Es,y ={d.0=d.1,p.1 =0})
Rer Compiler Construction

Summer Semester 2012

13.18

© The Attribute Equation System

m Compiler Construction Summer Semester 2012 13.19

Attribution of Syntax Trees |

Definition 13.5 (Attribution of syntax trees)

Let A = (G, E, V) € AG, and let t be a syntax tree of G with the set of
nodes K.

@ K determines the set of attribute variables of t:
Var; := {a.k | k € K labelled with Y € X, € att(Y)}.

mH Compiler Construction Summer Semester 2012 13.20

Attribution of Syntax Trees |

Definition 13.5 (Attribution of syntax trees)

Let A = (G, E, V) € AG, and let t be a syntax tree of G with the set of
nodes K.

@ K determines the set of attribute variables of t:
Var; := {a.k | k € K labelled with Y € X, € att(Y)}.

@ Let ko € K be an (inner) node where production
m=Yyo— Yi1...Y, € Pis applied, and let kq,...,k € K be the
corresponding successor nodes. The attribute equation system Ej; of
ko is obtained from E; by substituting every attribute index
i€{0,...,r} by ki.

mH Compiler Construction Summer Semester 2012 13.20

Attribution of Syntax Trees |

Definition 13.5 (Attribution of syntax trees)
Let A = (G, E, V) € AG, and let t be a syntax tree of G with the set of
nodes K.

® K determines the set of attribute variables of t:

Var; := {a.k | k € K labelled with Y € X, € att(Y)}.

@ Let ko € K be an (inner) node where production
m=Yyo— Yi1...Y, € Pis applied, and let kq,...,k € K be the
corresponding successor nodes. The attribute equation system Ej; of
ko is obtained from E; by substituting every attribute index
i€{0,...,r} by k.
@ The attribute equation system of t is given by
E; = U{Ek | k inner node of t}.

mH Compiler Construction Summer Semester 2012 13.20

Attribution of Syntax Trees ||

Example 13.6 (cf. Example 13.2)

Attributed syntax tree for 10.1: ko :

-

Compiler Construction

Summer Semester 2012

13.21

Attribution of Syntax Trees ||

Example 13.6 (cf. Example 13.2)
Attributed syntax tree for 10.1:

@k QD
/// \\\

s ~

®k2|:L@@ ® ks I: B@)
: :
l l
@k3 . B@ k6 : 0
|
i
kil g d0=d1+d3
pl1=20
p3——13

Compiler Construction

subst
—

Ek'

0 -

@kg . B@

d.ko = d.ky + d.kg
p.kl =0
p.kg —/.kg

Summer Semester 2012

13.21

Attribution of Syntax Trees ||

Example 13.6 (cf. Example 13.2)
Attributed syntax tree for 10.1:

-

® ki : LD
®k2|:L@@ @[{5; B@
| |
: :
@k3 . B@ k6 : 0
|
i
kil g o d0=d1+d2
[0=1/1+1 subst
pl=p0+1

Compiler Construction

Elq .

d.ky = d.kp + d.ks

l.ki = lL.ko + 1
p-ka = p.-ki +1
p.ks = p.k1

Summer Semester 2012

Attribution of Syntax Trees Ill

Corollary 13.7

For each ai.k € Var: except the inherited attribute variables at the root
and the synthesized attribute variables at the leaves of t, E; contains
exactly one equation with left-hand side . k.

mH Compiler Construction Summer Semester 2012 13.22

Attribution of Syntax Trees Ill

Corollary 13.7

For each ai.k € Var: except the inherited attribute variables at the root
and the synthesized attribute variables at the leaves of t, E; contains
exactly one equation with left-hand side . k.

Assumptions:
@ The start symbol does not have inherited attributes: inh(S) = 0.

@ Synthesized attributes of terminal symbols are provided by the
scanner.

mH Compiler Construction Summer Semester 2012 13.22

	Overview
	Semantic Analysis
	Attribute Grammars
	Adding Inherited Attributes
	Formal Definition of Attribute Grammars
	The Attribute Equation System

