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Conceptual Structure of a Compiler

Source code

(Lexical analysis (Scanner))

Y
Syntax analysis (Parser))

Y

(Semantic analysis)

A
(Generation of intermediate code)

Y
(Code optimization)

Y
(Generation of machine code

Target code
mH Compiler Construction Summer Semester 2012 13.4



© Semantic Analysis
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Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:

@ Are there identifiers that are not declared? Declared but not used?
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Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:

@ Are there identifiers that are not declared? Declared but not used?

@ Is x a scalar, an array, or a procedure? Of which type?
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Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:

@ Are there identifiers that are not declared? Declared but not used?
@ Is x a scalar, an array, or a procedure? Of which type?

@ Which declaration of x is used by each reference?
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Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:

@ Are there identifiers that are not declared? Declared but not used?
@ Is x a scalar, an array, or a procedure? Of which type?
@ Which declaration of x is used by each reference?

@ s x defined before it is used?
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Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:

Are there identifiers that are not declared? Declared but not used?
Is x a scalar, an array, or a procedure? Of which type?
Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?
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Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:

@ Are there identifiers that are not declared? Declared but not used?
@ Is x a scalar, an array, or a procedure? Of which type?

@ Which declaration of x is used by each reference?

@ Is x defined before it is used?

@ |s the expression 3 * x + y type consistent?

°

Where should the value of x be stored (register/stack/heap)?
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Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:

Are there identifiers that are not declared? Declared but not used?
Is x a scalar, an array, or a procedure? Of which type?

Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?

Where should the value of x be stored (register/stack/heap)?

°
°
°
°
°
°
@ Do p and q refer to the same memory location (aliasing)?
°
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Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:

@ Are there identifiers that are not declared? Declared but not used?
@ Is x a scalar, an array, or a procedure? Of which type?

@ Which declaration of x is used by each reference?

@ Is x defined before it is used?

@ |s the expression 3 * x + y type consistent?

@ Where should the value of x be stored (register/stack/heap)?

@ Do p and q refer to the same memory location (aliasing)?

°

These cannot be expressed using context-free grammars!
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Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:

@ Are there identifiers that are not declared? Declared but not used?
@ Is x a scalar, an array, or a procedure? Of which type?

@ Which declaration of x is used by each reference?

@ Is x defined before it is used?

@ |s the expression 3 * x + y type consistent?

@ Where should the value of x be stored (register/stack/heap)?

@ Do p and q refer to the same memory location (aliasing)?

°

These cannot be expressed using context-free grammars!
(e.g., {ww | weX*} ¢ CFly)
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Static Semantics
Static semantics

Static semantics refers to properties of program constructs

@ which are true for every occurrence of this construct in every program
execution (static) and

@ can be decided at compile time

@ but are context-sensitive and thus not expressible using context-free
grammars (semantics).
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Static Semantics
Static semantics

Static semantics refers to properties of program constructs

@ which are true for every occurrence of this construct in every program
execution (static) and

@ can be decided at compile time

@ but are context-sensitive and thus not expressible using context-free
grammars (semantics).

Example properties

Static: type or declaredness of an identifier, number of registers
required to evaluate an expression, ...

Dynamic: value of an expression, size of runtime stack, ...
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© Attribute Grammars
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Attribute Grammars |

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

= Semantic analysis = attribute evaluation

Result: attributed syntax tree
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Attribute Grammars |

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

= Semantic analysis = attribute evaluation
Result: attributed syntax tree

In greater detail:
@ With every nonterminal a set of attributes is associated.
@ Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leaves to the root)
Inherited: top-down computation (from the root to the leaves)

@ With every production a set of semantic rules is associated.
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Attribute Grammars Il

Advantage: attribute grammars provide a very flexible and broadly
applicable mechanism for transporting information throught the syntax
tree (“syntax-directed translation™)

@ Attribute values: symbol tables, data types, code, error flags, ...
@ Application in Compiler Construction:

static semantics

@ program analysis for optimization

@ code generation

@ error handling

©

@ Automatic attribute evaluation by compiler generators
(cf. yacc's synthesized attributes)

@ Originally designed by D. Knuth for defining the semantics of
context-free languages (Math. Syst. Theory 2 (1968), pp. 127-145)

mH Compiler Construction Summer Semester 2012 13.10



Example: Knuth’s Binary Numbers |

Example 13.1 (only synthesized attributes)

Binary numbers (with fraction):
Gg: Numbers S — L

S—L.L
Lists L —+ B

L — LB
Bits B—o0
Bits B—1
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Example: Knuth’s Binary Numbers |

Example 13.1 (only synthesized attributes)

Binary numbers (with fraction):
Gg: Numbers S — L d0 = d.1
S—L.L d0 = d1+d.3/23
Lists L— B d0 = d.1
[0 =1
L—-LB d0 = 2xdl1+d.2
10 = [1+1
Bits B —0 d0o =20
Bits B —1 do =1
Synthesized attributes of S, L, B: d (decimal value; domain: V¢ := Q)
of L: I (length; domain: V/:=N)
Semantic rules: equations with attribute variables
(index = position of symbol; 0 = left-hand side)
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Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Syntax tree for 1101.01:

/L\
ot \
7 \\
/7 AN
.
L B
N 1
4 \ I
’ \ \
// % I
\
e . 1
L B 1
2N I
’ \ 1
4 \ I
e Y 1
2 % |
B 0
I
}
I
}
I
1

I—‘-————m-————l\\

O-----Ty-- -,

(SO, 1

Compiler Construction

Summer Semester 2012

13.12



Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

e V10 e [

y
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Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

e V10 e [

B—0:d0=0

y
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Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

e V10 e [

B—1:d0=1

y
Rer Compiler Construction
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Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

e V10 e [

L—+B:d0=4d.1

y
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Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

e V10 e [

L—-B:/0=1

y
Rer Compiler Construction
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Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

e V10 e [

L—-ILB:d0=2%xd.1+d.2

4
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Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

e V10 e [

L—-ILB:d0=2%xd.1+d.2

4
Rer Compiler Construction
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Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

e V10 e [

L—-ILB:d0=2%xd.1+d.2

4
Rer Compiler Construction
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Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

S=e==={fjrom=i

L—-LB:/0=/1+1

e V10 e [
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Example: Knuth’s Binary Numbers Il

Example 13.1 (continued)
Attributed syntax tree for 1101.01:

e V10 e [

S—L.L:d0=d.1+d.3/23

Rer Compiler Construction
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@ Adding Inherited Attributes
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Adding Inherited Attributes |

Example 13.2 (synthesized + inherited attributes)

Binary numbers (with fraction):
Gg: Numbers S — L
S—L.L
Lists L— B
L— LB
Bits B—0
Bits B—1

Summer Semester 2012 13.14
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Adding Inherited Attributes |

Example 13.2 (synthesized + inherited attributes)

Binary numbers (with fraction):
Gg: Numbers S — L d0 = d.1
pl =20
S—>L.L d0 = d1+d3
pl =20
p3 = —13
Lists L— B d0 = d.l
[0 =1
p.l = p.0
L—- LB dO0 = dl1+d2
[0 = [1+1
p.l = p0+1
p.2 = p.0
Bits B —o0 d0 =0
Bits B—1 do = 2°r0
Synthesized attributes of S, L, B: d (decimal value; domain: V¢ := Q)
of L: I (length; domain: V/:=N)
Inherited attribute  of L,B:  p (position; domain: VP :=7)
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Adding Inherited Attributes Il

Example 13.2 (continued)
Syntax tree for 10.1:
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Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:
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Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:
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Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

L—LB:/0=/1+1
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Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

S—>L.L:pl1=0
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Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

S—>L.L:p3=-13
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Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

L—LB:pl=p0+1
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Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

L—LB:p2=p0

Compiler Construction Summer Semester 2012 13.15



Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

505
i
|
0

L—B:pl=p0
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Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

mH Compiler Construction Summer Semester 2012 13.15



Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

B—1:d.0=2P0
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Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

L—+B:d0=4d.1
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Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

L—+1LB:d0=d1+d.2
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Adding Inherited Attributes Il

Example 13.2 (continued)
Attributed syntax tree for 10.1:

S—L.L:d0=d1+d3
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© Formal Definition of Attribute Grammars
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Formal Definition of Attribute Grammars |

Definition 13.3 (Attribute grammar)
Let G = (N,%,P,S) € CFGx with X := N W L.
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Formal Definition of Attribute Grammars |

Definition 13.3 (Attribute grammar)

Let G = (N,X,P,S) € CFGx with X :=NWX.
® Let Att = SynW Inh be a set of (synthesized or inherited) attributes, and let
V = Uq,can V¢ be a union of value sets.
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Formal Definition of Attribute Grammars |

Definition 13.3 (Attribute grammar)

Let G = (N,X,P,S) € CFGx with X :=NWX.
® Let Att = SynW Inh be a set of (synthesized or inherited) attributes, and let
V = Uq,can V¢ be a union of value sets.

@ Let att : X — 24 be an attribute assignment, and let
syn(Y) = att(Y) N Syn and inh(Y) := att(Y) N Inh for every Y € X.
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Formal Definition of Attribute Grammars |

Definition 13.3 (Attribute grammar)
Let G = (N,X,P,S) € CFGx with X :== NWX.
® Let Att = SynW Inh be a set of (synthesized or inherited) attributes, and let
V = Uq,can V¢ be a union of value sets.
® Let att : X — 24% be an attribute assignment, and let
syn(Y) = att(Y) N Syn and inh(Y) := att(Y) N Inh for every Y € X.
@ Every production 7 = Yy — Yi1...Y, € P determines the set
Vary == {a.i | a € att(Y;),i € {0,...,r}}
of attribute variables of m with the subsets of inner and outer variables:
{a.i | (i=0,a € syn(Y;)) or (i € [r],« € inh(Y;))}
Var, \ In,

In,
Out, :
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Formal Definition of Attribute Grammars |

Definition 13.3 (Attribute grammar)

Let G = (N,X,P,S) € CFGx with X :=NWX.
® Let Att = SynW Inh be a set of (synthesized or inherited) attributes, and let
V = Uq,can V¢ be a union of value sets.

@ Let att : X — 24 be an attribute assignment, and let

syn(Y) = att(Y) N Syn and inh(Y) := att(Y) N Inh for every Y € X.
@ Every production 7 = Yy — Yi1...Y, € P determines the set

Vary == {a.i | a € att(Y;),i € {0,...,r}}
of attribute variables of 7 with the subsets of inner and outer variables:
Ing :={a.i| (i=0,a € syn(Y;)) or (i € [r], @ € inh(Y;))}
Out, := Var; \ In;
@ A semantic rule of 7 is an equation of the form
a.i = f(ag.y,...,an.0)
where n € N, a.i € In;, aj.ij € Outr, and f: VO x ... x Vo — Ve,
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Formal Definition of Attribute Grammars |

Definition 13.3 (Attribute grammar)
Let G = (N,%,P,S) € CFGx with X := N W L.

® Let Att = SynW Inh be a set of (synthesized or inherited) attributes, and let

V = Uq,can V¢ be a union of value sets.
@ Let att : X — 24 be an attribute assignment, and let

syn(Y) = att(Y) N Syn and inh(Y) := att(Y) N Inh for every Y € X.
@ Every production 7 = Yy — Yi1...Y, € P determines the set

Var, :={a.i|a € att(Y;),i € {0,...,r}}
of attribute variables of 7 with the subsets of inner and outer variables:
Ing :={a.i| (i=0,a € syn(Y;)) or (i € [r], @ € inh(Y;))}
Out, := Var; \ In;
@ A semantic rule of 7 is an equation of the form
a.i = f(ag.y,...,an.0)

where n € N, a.i € In;, aj.ij € Outr, and f: VO x ... x Vo — Ve,
@ For each w € P, let E, be a set with exactly one semantic rule for every

inner variable of 7, and let E := (E; | w € P).
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Formal Definition of Attribute Grammars |

Definition 13.3 (Attribute grammar)
Let G = (N,%,P,S) € CFGx with X := N W L.

® Let Att = SynW Inh be a set of (synthesized or inherited) attributes, and let

V = Uq,can V¢ be a union of value sets.
@ Let att : X — 24 be an attribute assignment, and let

syn(Y) = att(Y) N Syn and inh(Y) := att(Y) N Inh for every Y € X.
@ Every production 7 = Yy — Yi1...Y, € P determines the set

Var, :={a.i|a € att(Y;),i € {0,...,r}}
of attribute variables of 7 with the subsets of inner and outer variables:
Ing :={a.i| (i=0,a € syn(Y;)) or (i € [r], @ € inh(Y;))}
Out, := Var; \ In;
@ A semantic rule of 7 is an equation of the form
a.i = f(ag.y,...,an.0)

where n € N, a.i € In;, aj.ij € Outr, and f: VO x ... x Vo — Ve,
@ For each w € P, let E, be a set with exactly one semantic rule for every

inner variable of 7, and let E := (E; | w € P).

Then 2 := (G, E, V) is called an attribute grammar: 2 € AG.

RWNTH Compiler Construction Summer Semester 2012
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Formal Definition of Attribute Grammars ||

Example 13.4 (cf. Example 13.2)
Apg € AG for binary numbers:
@ Attributes: Att = SynW Inh with Syn = {d,/} and Inh = {p}

R — S SSE—N—S—S—S——SS————————————————
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Formal Definition of Attribute Grammars ||

Example 13.4 (cf. Example 13.2)

Apg € AG for binary numbers:
@ Attributes: Att = SynW Inh with Syn = {d,/} and Inh = {p}
o Valuesets: V¥=Q, V/ =N, VP =17

R — S SSE—N—S—S—S——SS————————————————
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Formal Definition of Attribute Grammars ||

Example 13.4 (cf. Example 13.2)
Apg € AG for binary numbers:

@ Attributes: Att = SynW Inh with Syn = {d, !} and Inh = {p}
o Valuesets: VI9=Q, V' =N, VP =7

@ Attribute assignment: | Y € X | § L B 0 1
syn(Y) [ {d} {d,7} {d} 0 0 0
inh(Y)| & {p} {p} 0 0 0

Rer Compiler Construction

SS————————————————_
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Formal Definition of Attribute Grammars ||

Example 13.4 (cf. Example 13.2)

Apg € AG for binary numbers:
@ Attributes: Att = SynW Inh with Syn = {d,/} and Inh = {p}
o Valuesets: V9=Q, V=N, VP =7
@ Attribute assignment: | Y € X | § L B 0 1 .
syn(Y) [ {d} {d,7} {d} 0 0 0
inh(Y)| @ {p} {p} 0 0 0
@ Attribute variables:
meP S—1L S—L.L L— B
Iny {d.0,p.1} {d.0,p.1,p.3} {d.0,1.0,p.1}
Out, {d.1,1.1} {d.1,1.1,d.3,1.3}  {d.1,p.0}
meP L— LB B—o0 B—1
Iny {d.0,1.0,p.1, p.2} {d.0} {d.0}
Out, |{d.1,d.2,/.1,p.0} {p.0} {p.0}
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Formal Definition of Attribute Grammars ||

Example 13.4 (cf. Example 13.2)
Apg € AG for binary numbers:

@ Attributes: Att = SynW Inh with Syn = {d, !} and Inh = {p}

@ Valuesets: V9=Q, V=N, vP =7

@ Attribute assignment: | Y € X | § L B 0 1 .
syn(Y) [ {d} {d,/} {d} 0 0 0
inh(Y) | 0  {p} {p} 0 0 0
@ Attribute variables:
meP S—1L S—L.L L— B
Iny {d.0,p.1} {d.0,p.1,p.3} {d.0,1.0,p.1}
Out, {d.1,1.1} {d.1,11,d3,13}  {d.1,p.0}
meP L— LB B—o0 B—1
Iny {d.0,1.0,p.1, p.2} {d.0} {d.0}
Out, |{d.1,d.2,/.1,p.0} {p.0} {p.0}

@ Semantic rules: see Example 13.2
(e.g., Es,y ={d.0=d.1,p.1 =0})
Rer Compiler Construction

Summer Semester 2012
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© The Attribute Equation System
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Attribution of Syntax Trees |

Definition 13.5 (Attribution of syntax trees)

Let A = (G, E, V) € AG, and let t be a syntax tree of G with the set of
nodes K.

@ K determines the set of attribute variables of t:
Var; := {a.k | k € K labelled with Y € X, € att(Y)}.
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Attribution of Syntax Trees |

Definition 13.5 (Attribution of syntax trees)

Let A = (G, E, V) € AG, and let t be a syntax tree of G with the set of
nodes K.

@ K determines the set of attribute variables of t:
Var; := {a.k | k € K labelled with Y € X, € att(Y)}.

@ Let ko € K be an (inner) node where production
m=Yyo— Yi1...Y, € Pis applied, and let kq,...,k € K be the
corresponding successor nodes. The attribute equation system Ej; of
ko is obtained from E; by substituting every attribute index
i€{0,...,r} by ki.

mH Compiler Construction Summer Semester 2012 13.20



Attribution of Syntax Trees |

Definition 13.5 (Attribution of syntax trees)
Let A = (G, E, V) € AG, and let t be a syntax tree of G with the set of
nodes K.

® K determines the set of attribute variables of t:

Var; := {a.k | k € K labelled with Y € X, € att(Y)}.

@ Let ko € K be an (inner) node where production
m=Yyo— Yi1...Y, € Pis applied, and let kq,...,k € K be the
corresponding successor nodes. The attribute equation system Ej; of
ko is obtained from E; by substituting every attribute index
i€{0,...,r} by k.
@ The attribute equation system of t is given by
E; = U{Ek | k inner node of t}.
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Attribution of Syntax Trees ||

Example 13.6 (cf. Example 13.2)

Attributed syntax tree for 10.1: ko :

-

Compiler Construction

Summer Semester 2012
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Attribution of Syntax Trees ||

Example 13.6 (cf. Example 13.2)
Attributed syntax tree for 10.1:

@k QD
/// \\\

s ~

®k2|:L@@ ® ks I: B@)
: :
l l
@k3 . B@ k6 : 0
|
i
kil g d0=d1+d3
pl1=20
p3——13

Compiler Construction

subst
—

Ek'

0 -

@kg . B@

d.ko = d.ky + d.kg
p.kl =0
p.kg —/.kg
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Attribution of Syntax Trees ||

Example 13.6 (cf. Example 13.2)
Attributed syntax tree for 10.1:

-

® ki : LD
®k2|:L@@ @[{5; B@
| |
: :
@k3 . B@ k6 : 0
|
i
kil g o d0=d1+d2
[0=1/1+1 subst
pl=p0+1

Compiler Construction

Elq .

d.ky = d.kp + d.ks

l.ki = lL.ko + 1
p-ka = p.-ki +1
p.ks = p.k1
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Attribution of Syntax Trees Ill

Corollary 13.7

For each ai.k € Var: except the inherited attribute variables at the root
and the synthesized attribute variables at the leaves of t, E; contains
exactly one equation with left-hand side . k.
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Attribution of Syntax Trees Ill

Corollary 13.7

For each ai.k € Var: except the inherited attribute variables at the root
and the synthesized attribute variables at the leaves of t, E; contains
exactly one equation with left-hand side . k.

Assumptions:
@ The start symbol does not have inherited attributes: inh(S) = 0.

@ Synthesized attributes of terminal symbols are provided by the
scanner.
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