
Compiler Construction
Lecture 13: Semantic Analysis I (Attribute Grammars)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/




Outline

1 Overview

2 Semantic Analysis

3 Attribute Grammars

4 Adding Inherited Attributes

5 Formal Definition of Attribute Grammars

6 The Attribute Equation System

Compiler Construction Summer Semester 2012 13.3



Conceptual Structure of a Compiler

Source code

Lexical analysis (Scanner)

Syntax analysis (Parser)

Semantic analysis

Generation of intermediate code

Code optimization

Generation of machine code

Target code
Compiler Construction Summer Semester 2012 13.4



Outline

1 Overview

2 Semantic Analysis

3 Attribute Grammars

4 Adding Inherited Attributes

5 Formal Definition of Attribute Grammars

6 The Attribute Equation System

Compiler Construction Summer Semester 2012 13.5



Beyond Syntax

To generate (efficient) code, the compiler needs to answer many questions:

Are there identifiers that are not declared? Declared but not used?

Is x a scalar, an array, or a procedure? Of which type?

Which declaration of x is used by each reference?

Is x defined before it is used?

Is the expression 3 * x + y type consistent?

Where should the value of x be stored (register/stack/heap)?

Do p and q refer to the same memory location (aliasing)?

...

These cannot be expressed using context-free grammars!
(e.g., {ww | w ∈ Σ∗} /∈ CFLΣ)

Compiler Construction Summer Semester 2012 13.6



Static Semantics

Static semantics

Static semantics refers to properties of program constructs

which are true for every occurrence of this construct in every program
execution (static) and

can be decided at compile time

but are context-sensitive and thus not expressible using context-free
grammars (semantics).

Example properties

Static: type or declaredness of an identifier, number of registers
required to evaluate an expression, ...

Dynamic: value of an expression, size of runtime stack, ...

Compiler Construction Summer Semester 2012 13.7



Outline

1 Overview

2 Semantic Analysis

3 Attribute Grammars

4 Adding Inherited Attributes

5 Formal Definition of Attribute Grammars

6 The Attribute Equation System

Compiler Construction Summer Semester 2012 13.8



Attribute Grammars I

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

=⇒ Semantic analysis = attribute evaluation

Result: attributed syntax tree

In greater detail:

With every nonterminal a set of attributes is associated.

Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leaves to the root)
Inherited: top-down computation (from the root to the leaves)

With every production a set of semantic rules is associated.

Compiler Construction Summer Semester 2012 13.9



Attribute Grammars II

Advantage: attribute grammars provide a very flexible and broadly
applicable mechanism for transporting information throught the syntax
tree (“syntax-directed translation”)

Attribute values: symbol tables, data types, code, error flags, ...

Application in Compiler Construction:

static semantics
program analysis for optimization
code generation
error handling

Automatic attribute evaluation by compiler generators
(cf. yacc’s synthesized attributes)

Originally designed by D. Knuth for defining the semantics of
context-free languages (Math. Syst. Theory 2 (1968), pp. 127–145)

Compiler Construction Summer Semester 2012 13.10



Example: Knuth’s Binary Numbers I

Example 13.1 (only synthesized attributes)

Binary numbers (with fraction):

GB : Numbers S → L d .0 = d .1
S → L.L d .0 = d .1 + d .3/2l .3

Lists L → B d .0 = d .1
l .0 = 1

L → LB d .0 = 2 ∗ d .1 + d .2
l .0 = l .1 + 1

Bits B → 0 d .0 = 0
Bits B → 1 d .0 = 1

Synthesized attributes of S , L,B : d (decimal value; domain: V d := Q)
of L: l (length; domain: V l := N)

Semantic rules: equations with attribute variables
(index = position of symbol; 0 = left-hand side)

Compiler Construction Summer Semester 2012 13.11



Example: Knuth’s Binary Numbers II

Example 13.1 (continued)

Syntax tree for 1101.01: S

L . L

L B

L B

L B

B

1

0

1

1

L B

B 1

0

d : 13.25

d : 13 d : 1 l : 2

d : 6 d : 1

d : 3 d : 0

d : 1 d : 1

d : 1

d : 0 l : 1 d : 1

d : 0

B → 0 : d .0 = 0B → 1 : d .0 = 1L → B :
d .0 = d .1L → B : l .0 = 1L → LB : d .0 = 2 ∗ d .1 + d .2L → LB : l .0 =
l .1 + 1S → L.L : d .0 = d .1 + d .3/2l .3Compiler Construction Summer Semester 2012 13.12



Outline

1 Overview

2 Semantic Analysis

3 Attribute Grammars

4 Adding Inherited Attributes

5 Formal Definition of Attribute Grammars

6 The Attribute Equation System

Compiler Construction Summer Semester 2012 13.13



Adding Inherited Attributes I

Example 13.2 (synthesized + inherited attributes)

Binary numbers (with fraction):

G ′

B : Numbers S → L d .0 = d .1
p.1 = 0

S → L.L d .0 = d .1 + d .3
p.1 = 0
p.3 = − l .3

Lists L → B d .0 = d .1
l .0 = 1
p.1 = p.0

L → LB d .0 = d .1 + d .2
l .0 = l .1 + 1
p.1 = p.0 + 1
p.2 = p.0

Bits B → 0 d .0 = 0
Bits B → 1 d .0 = 2p.0

Synthesized attributes of S , L,B : d (decimal value; domain: V d := Q)
of L: l (length; domain: V l := N)

Inherited attribute of L,B : p (position; domain: V p := Z)
Compiler Construction Summer Semester 2012 13.14



Adding Inherited Attributes II

Example 13.2 (continued)

Syntax tree for 10.1:

S

L . L

L B

B

B

0

1

1

d : 2.5

d : 2 l : 2p : 0

d : 2 l : 1p : 1

d : 0.5 l : 1p : −1

d : 0p : 0

d : 2p : 1

d : 0.5p : −1

L → B : l .0 = 1L → LB : l .0 = l .1+1S →
L.L : p.1 = 0S → L.L : p.3 = −l .3L → LB : p.1 = p.0 + 1L → LB :
p.2 = p.0L → B : p.1 = p.0B → 0 : d .0 = 0B → 1 : d .0 = 2p.0L → B :
d .0 = d .1L → LB : d .0 = d .1 + d .2S → L.L : d .0 = d .1 + d .3Compiler Construction Summer Semester 2012 13.15



Outline

1 Overview

2 Semantic Analysis

3 Attribute Grammars

4 Adding Inherited Attributes

5 Formal Definition of Attribute Grammars

6 The Attribute Equation System

Compiler Construction Summer Semester 2012 13.16



Formal Definition of Attribute Grammars I

Definition 13.3 (Attribute grammar)

Let G = 〈N ,Σ,P , S〉 ∈ CFGΣ with X := N ⊎ Σ.

Let Att = Syn ⊎ Inh be a set of (synthesized or inherited) attributes, and let
V =

⋃
α∈Att V

α be a union of value sets.

Let att : X → 2Att be an attribute assignment, and let
syn(Y ) := att(Y ) ∩ Syn and inh(Y ) := att(Y ) ∩ Inh for every Y ∈ X .

Every production π = Y0 → Y1 . . .Yr ∈ P determines the set

Varπ := {α.i | α ∈ att(Yi ), i ∈ {0, . . . , r}}
of attribute variables of π with the subsets of inner and outer variables:

Inπ := {α.i | (i = 0, α ∈ syn(Yi )) or (i ∈ [r ], α ∈ inh(Yi ))}
Outπ := Varπ \ Inπ

A semantic rule of π is an equation of the form

α.i = f (α1.i1, . . . , αn.in)
where n ∈ N, α.i ∈ Inπ, αj .ij ∈ Outπ, and f : Vα1 × . . .× Vαn → Vα.

For each π ∈ P , let Eπ be a set with exactly one semantic rule for every
inner variable of π, and let E := (Eπ | π ∈ P).

Then A := 〈G ,E ,V 〉 is called an attribute grammar: A ∈ AG .

Compiler Construction Summer Semester 2012 13.17



Formal Definition of Attribute Grammars II

Example 13.4 (cf. Example 13.2)

AB ∈ AG for binary numbers:

Attributes: Att = Syn ⊎ Inh with Syn = {d , l} and Inh = {p}

Value sets: V d = Q, V l = N, V p = Z

Attribute assignment: Y ∈ X S L B 0 1 .

syn(Y ) {d} {d , l} {d} ∅ ∅ ∅
inh(Y ) ∅ {p} {p} ∅ ∅ ∅

Attribute variables:

π ∈ P S → L S → L.L L → B

Inπ {d .0, p.1} {d .0, p.1, p.3} {d .0, l .0, p.1}
Outπ {d .1, l .1} {d .1, l .1, d .3, l .3} {d .1, p.0}

π ∈ P L → LB B → 0 B → 1

Inπ {d .0, l .0, p.1, p.2} {d .0} {d .0}
Outπ {d .1, d .2, l .1, p.0} {p.0} {p.0}

Semantic rules: see Example 13.2
(e.g., ES→L = {d .0 = d .1, p.1 = 0})

Compiler Construction Summer Semester 2012 13.18



Outline

1 Overview

2 Semantic Analysis

3 Attribute Grammars

4 Adding Inherited Attributes

5 Formal Definition of Attribute Grammars

6 The Attribute Equation System

Compiler Construction Summer Semester 2012 13.19



Attribution of Syntax Trees I

Definition 13.5 (Attribution of syntax trees)

Let A = 〈G ,E ,V 〉 ∈ AG , and let t be a syntax tree of G with the set of
nodes K .

K determines the set of attribute variables of t:

Var t := {α.k | k ∈ K labelled with Y ∈ X , α ∈ att(Y )}.

Let k0 ∈ K be an (inner) node where production
π = Y0 → Y1 . . .Yr ∈ P is applied, and let k1, . . . , kr ∈ K be the
corresponding successor nodes. The attribute equation system Ek0 of
k0 is obtained from Eπ by substituting every attribute index
i ∈ {0, . . . , r} by ki .

The attribute equation system of t is given by

Et :=
⋃

{Ek | k inner node of t}.

Compiler Construction Summer Semester 2012 13.20



Attribution of Syntax Trees II

Example 13.6 (cf. Example 13.2)

Attributed syntax tree for 10.1: k0 : S

k1 : L k7 : . k8 : L

k2 : L k5 : B

k3 : B

k9 : B

k6 : 0

k4 : 1

k10 : 1

d

d lp

d lp

d lp

dp

dp

dp

ES→L.L : d .0 = d .1 + d .3
p.1 = 0
p.3 = −l .3

subst
−→

Ek0 : d .k0 = d .k1 + d .k8
p.k1 = 0
p.k8 = −l .k8

EL→LB : d .0 = d .1 + d .2
l .0 = l .1 + 1 subst

−→

Ek1 : d .k1 = d .k2 + d .k5
l .k1 = l .k2 + 1Compiler Construction Summer Semester 2012 13.21



Attribution of Syntax Trees III

Corollary 13.7

For each α.k ∈ Var t except the inherited attribute variables at the root

and the synthesized attribute variables at the leaves of t, Et contains

exactly one equation with left-hand side α.k.

Assumptions:

The start symbol does not have inherited attributes: inh(S) = ∅.

Synthesized attributes of terminal symbols are provided by the
scanner.

Compiler Construction Summer Semester 2012 13.22


	Overview
	Semantic Analysis
	Attribute Grammars
	Adding Inherited Attributes
	Formal Definition of Attribute Grammars
	The Attribute Equation System

