Compiler Construction

Lecture 14: Semantic Analysis Il
(Circularity Check)

Thomas Noll

Lehrstuhl fiir Informatik 2
(Software Modeling and Verification)

RWTH Aachen University
noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Studieren Ohne Grenzen e.V. praséntiert die

_/v—/
1 Sﬁ
“ a c II t 1 d e r mmm"w""@’eﬂzen

15.06. . Apollo 22:00

Ab 23:00 legen eure Professoren von der RWTH fiir den guten Zweck auf:
Prof. Reicher-Marek | Philosophie

Prof. Reicherter | Neotektonik

Prof. Bientinesi | Informatik

Prof. Panstruga | Biologie

Prof. Blank | Biologie

Dr. Pratzer | Physik

Mitmachen? Besuch uns auf oder unter www.

@ Repetition: Attribute Grammars

m Compiler Construction Summer Semester 2012 14.3

Attribute Grammars |

Goal: compute context-dependent but runtime-independent
properties of a given program

Idea: enrich context-free grammar by semantic rules which
annotate syntax tree with attribute values

= Semantic analysis = attribute evaluation
Result: attributed syntax tree

In greater detail:
@ With every nonterminal a set of attributes is associated.
@ Two types of attributes are distinguished:

Synthesized: bottom-up computation (from the leaves to the root)
Inherited: top-down computation (from the root to the leaves)

@ With every production a set of semantic rules is associated.

mH Compiler Construction Summer Semester 2012 14.4

Formal Definition of Attribute Grammars

Definition (Attribute grammar)
Let G = (N,%,P,S) € CFGx with X := N W L.

® Let Att = SynW Inh be a set of (synthesized or inherited) attributes, and let

V = Uq,can V¢ be a union of value sets.
@ Let att : X — 24 be an attribute assignment, and let

syn(Y) = att(Y) N Syn and inh(Y) := att(Y) N Inh for every Y € X.
@ Every production 7 = Yy — Yi1...Y, € P determines the set

Var, :={a.i|a € att(Y;),i € {0,...,r}}
of attribute variables of 7 with the subsets of inner and outer variables:
Ing :={a.i| (i=0,a € syn(Y;)) or (i € [r], @ € inh(Y;))}
Out, := Var; \ In;
@ A semantic rule of 7 is an equation of the form
a.i = f(ag.y,...,an.0)

where n € N, a.i € In;, aj.ij € Outr, and f: VO x ... x Vo — Ve,
@ For each w € P, let E, be a set with exactly one semantic rule for every

inner variable of 7, and let E := (E; | w € P).

Then 2 := (G, E, V) is called an attribute grammar: 2 € AG.

RWNTH Compiler Construction Summer Semester 2012

14.5

Attribution of Syntax Trees |

Definition (Attribution of syntax trees)
Let A = (G, E, V) € AG, and let t be a syntax tree of G with the set of
nodes K.

® K determines the set of attribute variables of t:

Var; := {a.k | k € K labelled with Y € X, € att(Y)}.

@ Let ko € K be an (inner) node where production
m=Yyo— Yi1...Y, € Pis applied, and let kq,...,k € K be the
corresponding successor nodes. The attribute equation system Ej; of
ko is obtained from E; by substituting every attribute index
i€{0,...,r} by k.
@ The attribute equation system of t is given by
E; = U{Ek | k inner node of t}.

mH Compiler Construction Summer Semester 2012 14.6

Attribution of Syntax Trees ||

Example (cf. Example 13.2)
Attributed syntax tree for 10.1:

@k QD

s ~

®k2|:L@@ @[{5; B@
l l
l l
@k3 . B@ k6 : 0
|
i
kil g d0=d1+d3
pl1=20
p.3=—1.3

E . g: d0=d.14+d2 Er, : d.ki = d.kb+ d.k
RWTH

ko o 5@
1 SO
ks : @kgl: L@@
I
|
@kg |: B@
I
|
klO 01
Eko . d.ko = d.kl T d.kg
subst
— p-kit =0
p.kg = —/.kg

Attribution of Syntax Trees Ill

For each ai.k € Var: except the inherited attribute variables at the root
and the synthesized attribute variables at the leaves of t, E; contains
exactly one equation with left-hand side . k.

Assumptions:
@ The start symbol does not have inherited attributes: inh(S) = 0.

@ Synthesized attributes of terminal symbols are provided by the
scanner.

mH Compiler Construction Summer Semester 2012 14.8

© Circularity of Attribute Grammars

m Compiler Construction Summer Semester 2012 14.9

Solvability of Attribute Equation System |

Definition 14.1 (Solution of attribute equation system)
Let A = (G, E, V) € AG, and let t be a syntax tree of G. A solution of E;
is a mapping
v:Vary >V
such that, for every a.k € Var; and a.k = f(auky, ..., a.ky) € Et,
v(a.k) = f(v(a.ky), ..., v(a.ky)).

In general, the attribute equation system E; of a given syntax tree t can
have

@ no solution,
@ exactly one solution, or

@ several solutions.

mH Compiler Construction Summer Semester 2012 14.10

Solvability of Attribute Equation System II

Example 14.2

o A—aB,B—+beP

@ o €syn(B), 5 € inh(B) —> cyclic dependency:

0 3.2= f(a2) € Ex B A

@ a.0=p£0¢€ Eg_,p //” i

o
— for V®:= V# := N and

@ f(x) := x+ 1: no solution IID

@ f(x) := 2x: exactly one solution E: B.k=f(a.k)
(v(a.k) = v(B.k) =0) a.k = B.k

@ f(x) := x: infinitely many solutions
(v(a.k) = v(B.k) = y for any y € N)

mH Compiler Construction Summer Semester 2012 14.11

Circularity of Attribute Grammars

Goal: unique solvability of equation system
— avoid cyclic dependencies

Definition 14.3 (Circularity)

An attribute grammar 20 = (G, E, V) € AG is called circular if there exists
a syntax tree t such that the attribute equation system E; is recursive
(i.e., some attribute variable of ¢t depends on itself). Otherwise it is called
noncircular.

Remark: because of the division of Var, into In; and Out,, cyclic
dependencies cannot occur at production level.

mH Compiler Construction Summer Semester 2012 14.12

9 Attribute Dependency Graphs

m Compiler Construction Summer Semester 2012 14.13

Attribute Dependency Graphs |

Goal: graphic representation of attribute dependencies

Definition 14.4 (Production dependency graph)

Let A = (G, E, V) € AG with G = (N, X, P,S). Every production 7 € P
determines the dependency graph D := (Var,, —,) where the set of
edges —,C Var, x Var, is given by

x—=py iff y=Ff(..,x,...) € E.

Corollary 14.5

The dependency graph of a production is acyclic
(since —,C Out, X Iny).

mH Compiler Construction Summer Semester 2012 14.14

Attribute Dependency Graphs Il

Example 14.6 (cf. Example 13.2)

Q@ N—-L.L: = Dyn_pr.L:
d0=d1+d3 Y
p.l =0 S
p.3 =—13 P

@D LEDCD

Q@ L—LB:
d0=dl1+d?2
10=11+1
pl=p0+1
p2 = p.0

mH Compiler Construction Summer Semester 2012 14.15

Attribute Dependency Graphs Il

Just as the attribute equation system E; of a syntax tree t is obtained
from the semantic rules of the contributing productions, the dependency
graph of t is obtained by “glueing together” the dependency graphs of the
productions.

Definition 14.7 (Tree dependency graph)
Let A = (G, E, V) € AG, and let t be a syntax tree of G.

@ The dependency graph of t is defined by D, := (Var;, —) where the
set of edges, —;:C Var; x Var, is given by

x—ey iff y=»Ff(..,x,...)€E;.

@ D; is called cyclic if there exists x € Var; such that x —; x.

Corollary 14.8

An attribute grammar 20 = (G, E, V') € AG is circular iff there exists a
syntax tree t of G such that D is cyclic.

mH Compiler Construction Summer Semester 2012 14.16

Attribute Dependency Graphs IV

Example 14.9 (cf. Example 13.2)
(Acyclic) dependency graph of the syntax tree for 10.1:

mH Compiler Construction Summer Semester 2012 14.17

@ Testing Attribute Grammars for Circularity

m Compiler Construction Summer Semester 2012 14.18

Attribute Dependency Graphs and Circularity |

Observation: a cycle in the dependency graph D; of a given syntax tree t
is caused by the occurrence of a “cover” production
T = Ag — woAiwy ... Aw, € Pin a node kg of t such that

@ the dependencies in E, yield the “upper end” of the cycle and

@ for at least one i € [r], some attributes in syn(A;) depend on
attributes in inh(A4;).

Example 14.10

on the board

To identify such “critical” situations we need to determine for each i € [r]
the possible ways in which attributes in syn(A;) can depend on attributes
in inh(A;).

mH Compiler Construction Summer Semester 2012 14.19

Attribute Dependency Graphs and Circularity 11
Definition 14.11 (Attribute dependence)

Let A = (G, E, V) € AG with G = (N, X, P,S).
o If t is a syntax tree with root label A € N and root node k,
a € syn(A), and 3 € inh(A) such that 3.k —7 a.k, then « is
dependent on 3 below A in t (notation: i) a).
@ For every syntax tree t with root label A € N,
is(A, t) :={(B,a) € inh(A) x syn(A) | B A ain t}.
@ For every AeN,

IS(A) :

{is(A, t) | t syntax tree with root label A}
2

C 92InhxSyn

Remark: it is important that /S(A) is a system of attribute dependence
sets, not a union (otherwise: strong noncircularity—see exercises).
Example 14.12

on the board

mH Compiler Construction Summer Semester 2012 14.20

	Repetition: Attribute Grammars
	Circularity of Attribute Grammars
	Attribute Dependency Graphs
	Testing Attribute Grammars for Circularity

