
Compiler Construction
Lecture 15: Semantic Analysis III

(Attribute Evaluation)

Thomas Noll

Lehrstuhl für Informatik 2
(Software Modeling and Verification)

RWTH Aachen University

noll@cs.rwth-aachen.de

http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Summer Semester 2012

noll@cs.rwth-aachen.de
http://www-i2.informatik.rwth-aachen.de/i2/cc12/

Outline

1 Repetition: Circularity of Attribute Grammars

2 The Circularity Check

3 Correctness and Complexity of the Circularity Check

4 Attribute Evaluation

5 Attribute Evaluation by Topological Sorting

6 L-Attributed Grammars

Compiler Construction Summer Semester 2012 15.2

Circularity of Attribute Grammars

Goal: unique solvability of equation system
=⇒ avoid cyclic dependencies

Definition (Circularity)

An attribute grammar A = 〈G ,E ,V 〉 ∈ AG is called circular if there exists
a syntax tree t such that the attribute equation system Et is recursive
(i.e., some attribute variable of t depends on itself). Otherwise it is called
noncircular.

Remark: because of the division of Varπ into Inπ and Outπ, cyclic
dependencies cannot occur at production level.

Compiler Construction Summer Semester 2012 15.3

Attribute Dependency Graphs and Circularity I

Observation: a cycle in the dependency graph Dt of a given syntax tree t
is caused by the occurrence of a “cover” production
π = A0 → w0A1w1 . . .Arwr ∈ P in a node k0 of t such that

the dependencies in Ek0 yield the “upper end” of the cycle and

for at least one i ∈ [r], some attributes in syn(Ai) depend on
attributes in inh(Ai).

Example

on the board

To identify such “critical” situations we need to determine for each i ∈ [r]
the possible ways in which attributes in syn(Ai) can depend on attributes
in inh(Ai).

Compiler Construction Summer Semester 2012 15.4

Attribute Dependency Graphs and Circularity II

Definition (Attribute dependence)

Let A = 〈G ,E ,V 〉 ∈ AG with G = 〈N,Σ,P ,S〉.

If t is a syntax tree with root label A ∈ N and root node k ,
α ∈ syn(A), and β ∈ inh(A) such that β.k →+

t α.k , then α is

dependent on β below A in t (notation: β
A
→֒ α).

For every syntax tree t with root label A ∈ N,

is(A, t) := {(β, α) ∈ inh(A)× syn(A) | β
A
→֒ α in t}.

For every A ∈ N,

IS(A) := {is(A, t) | t syntax tree with root label A}
⊆ 2Inh×Syn.

Remark: it is important that IS(A) is a system of attribute dependence
sets, not a union (otherwise: strong noncircularity—see exercises).

Example

on the board

Compiler Construction Summer Semester 2012 15.5

Outline

1 Repetition: Circularity of Attribute Grammars

2 The Circularity Check

3 Correctness and Complexity of the Circularity Check

4 Attribute Evaluation

5 Attribute Evaluation by Topological Sorting

6 L-Attributed Grammars

Compiler Construction Summer Semester 2012 15.6

The Circularity Check I

In the circularity check, the dependency systems IS(A) are iteratively
computed. The following notation is employed:

Definition 15.1

Given π = A → w0A1w1 . . .Arwr ∈ P and is i ⊆ inh(Ai)× syn(Ai) for
every i ∈ [r], let

is[π; is1, . . . , isr] ⊆ inh(A)× syn(A)
be given by

is[π; is1, . . . , isr] :=
{

(β, α) | (β.0, α.0) ∈ (→π ∪
⋃r

i=1{(β
′.pi , α

′.pi) | (β
′, α′) ∈ is i})

+
}

where pi :=
∑i

j=1 |wj−1|+ i .

Compiler Construction Summer Semester 2012 15.7

The Circularity Check I

In the circularity check, the dependency systems IS(A) are iteratively
computed. The following notation is employed:

Definition 15.1

Given π = A → w0A1w1 . . .Arwr ∈ P and is i ⊆ inh(Ai)× syn(Ai) for
every i ∈ [r], let

is[π; is1, . . . , isr] ⊆ inh(A)× syn(A)
be given by

is[π; is1, . . . , isr] :=
{

(β, α) | (β.0, α.0) ∈ (→π ∪
⋃r

i=1{(β
′.pi , α

′.pi) | (β
′, α′) ∈ is i})

+
}

where pi :=
∑i

j=1 |wj−1|+ i .

Example 15.2

on the board

Compiler Construction Summer Semester 2012 15.7

The Circularity Check II

Algorithm 15.3 (Circularity check for attribute grammars)

Input: A = 〈G ,E ,V 〉 ∈ AG with G = 〈N,Σ,P ,S〉

Compiler Construction Summer Semester 2012 15.8

The Circularity Check II

Algorithm 15.3 (Circularity check for attribute grammars)

Input: A = 〈G ,E ,V 〉 ∈ AG with G = 〈N,Σ,P ,S〉

Procedure: 1 for every A ∈ N, iteratively construct IS(A) as follows:
1 if π = A → w ∈ P, then is[π] ∈ IS(A)
2 if π = A → w0A1w1 . . .Arwr ∈ P and is i ∈ IS(Ai) for

every i ∈ [r], then is[π; is1, . . . , isr] ∈ IS(A)

Compiler Construction Summer Semester 2012 15.8

The Circularity Check II

Algorithm 15.3 (Circularity check for attribute grammars)

Input: A = 〈G ,E ,V 〉 ∈ AG with G = 〈N,Σ,P ,S〉

Procedure: 1 for every A ∈ N, iteratively construct IS(A) as follows:
1 if π = A → w ∈ P, then is[π] ∈ IS(A)
2 if π = A → w0A1w1 . . .Arwr ∈ P and is i ∈ IS(Ai) for

every i ∈ [r], then is[π; is1, . . . , isr] ∈ IS(A)

2 test whether A is circular by checking if there exist
π = A → w0A1w1 . . .Arwr ∈ P and is i ∈ IS(Ai) for
every i ∈ [r] such that the following relation is cyclic:

→π ∪
⋃r

i=1{(β.pi , α.pi) | (β, α) ∈ is i}

(where pi :=
∑i

j=1 |wj−1|+ i)

Compiler Construction Summer Semester 2012 15.8

The Circularity Check II

Algorithm 15.3 (Circularity check for attribute grammars)

Input: A = 〈G ,E ,V 〉 ∈ AG with G = 〈N,Σ,P ,S〉

Procedure: 1 for every A ∈ N, iteratively construct IS(A) as follows:
1 if π = A → w ∈ P, then is[π] ∈ IS(A)
2 if π = A → w0A1w1 . . .Arwr ∈ P and is i ∈ IS(Ai) for

every i ∈ [r], then is[π; is1, . . . , isr] ∈ IS(A)

2 test whether A is circular by checking if there exist
π = A → w0A1w1 . . .Arwr ∈ P and is i ∈ IS(Ai) for
every i ∈ [r] such that the following relation is cyclic:

→π ∪
⋃r

i=1{(β.pi , α.pi) | (β, α) ∈ is i}

(where pi :=
∑i

j=1 |wj−1|+ i)

Output: “yes” or “no”

Compiler Construction Summer Semester 2012 15.8

The Circularity Check III

Example 15.4

DS→AB : S

A B

α

α1 α2β α1 α2β

DB→AB : B

A B

α1 α2β

α1 α2β α1 α2β

DA→B : A

B

α1 α2β

α1 α2β

DA→a: A

a

α1 α2β

DA→c : A

c

α1 α2β

DB→b: B

b

α1 α2β

Application of Algorithm 15.3: on the board

Compiler Construction Summer Semester 2012 15.9

Outline

1 Repetition: Circularity of Attribute Grammars

2 The Circularity Check

3 Correctness and Complexity of the Circularity Check

4 Attribute Evaluation

5 Attribute Evaluation by Topological Sorting

6 L-Attributed Grammars

Compiler Construction Summer Semester 2012 15.10

Correctness and Complexity of Circularity Check

Theorem 15.5 (Correctness of circularity check)

An attribute grammar is circular iff Algorithm 15.3 yields the answer “yes”.

Compiler Construction Summer Semester 2012 15.11

Correctness and Complexity of Circularity Check

Theorem 15.5 (Correctness of circularity check)

An attribute grammar is circular iff Algorithm 15.3 yields the answer “yes”.

Proof.
by induction on the syntax tree t with cyclic Dt

Compiler Construction Summer Semester 2012 15.11

Correctness and Complexity of Circularity Check

Theorem 15.5 (Correctness of circularity check)

An attribute grammar is circular iff Algorithm 15.3 yields the answer “yes”.

Proof.
by induction on the syntax tree t with cyclic Dt

Lemma 15.6
The time complexity of the circularity check is exponential in the size of the
attribute grammar (= maximal length of right-hand sides of productions).

Compiler Construction Summer Semester 2012 15.11

Correctness and Complexity of Circularity Check

Theorem 15.5 (Correctness of circularity check)

An attribute grammar is circular iff Algorithm 15.3 yields the answer “yes”.

Proof.
by induction on the syntax tree t with cyclic Dt

Lemma 15.6
The time complexity of the circularity check is exponential in the size of the
attribute grammar (= maximal length of right-hand sides of productions).

Proof.

by reduction of the word problem of alternating Turing machines (see
M. Jazayeri: A Simpler Construction for Showing the Intrinsically Exponential
Complexity of the Circularity Problem for Attribute Grammars, Comm. of the
ACM 28(4), 1981, pp. 715–720)

Compiler Construction Summer Semester 2012 15.11

Outline

1 Repetition: Circularity of Attribute Grammars

2 The Circularity Check

3 Correctness and Complexity of the Circularity Check

4 Attribute Evaluation

5 Attribute Evaluation by Topological Sorting

6 L-Attributed Grammars

Compiler Construction Summer Semester 2012 15.12

Attribute Evaluation Methods

Given: noncircular attribute grammar A = 〈G ,E ,V 〉 ∈ AG
syntax tree t of G
valuation v : SynΣ → V where
SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Compiler Construction Summer Semester 2012 15.13

Attribute Evaluation Methods

Given: noncircular attribute grammar A = 〈G ,E ,V 〉 ∈ AG
syntax tree t of G
valuation v : SynΣ → V where
SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Compiler Construction Summer Semester 2012 15.13

Attribute Evaluation Methods

Given: noncircular attribute grammar A = 〈G ,E ,V 〉 ∈ AG
syntax tree t of G
valuation v : SynΣ → V where
SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Methods: 1 Topological sorting of Dt (later):
1 start with variables which depend at most on SynΣ
2 proceed by successive substitution

Compiler Construction Summer Semester 2012 15.13

Attribute Evaluation Methods

Given: noncircular attribute grammar A = 〈G ,E ,V 〉 ∈ AG
syntax tree t of G
valuation v : SynΣ → V where
SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Methods: 1 Topological sorting of Dt (later):
1 start with variables which depend at most on SynΣ
2 proceed by successive substitution

2 Strongly noncircular AGs: recursive functions (details
omitted)

1 for every A ∈ N and α ∈ syn(A), define evaluation
function gA,α with the following parameters:
the node of t where α has to be evaluated and
all inherited attributes of A on which α (potentially)

depends

2 for every α ∈ syn(S), evaluate gS,α(k0) where k0
denotes the root of t

Compiler Construction Summer Semester 2012 15.13

Attribute Evaluation Methods

Given: noncircular attribute grammar A = 〈G ,E ,V 〉 ∈ AG
syntax tree t of G
valuation v : SynΣ → V where
SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Methods: 1 Topological sorting of Dt (later):
1 start with variables which depend at most on SynΣ
2 proceed by successive substitution

2 Strongly noncircular AGs: recursive functions (details
omitted)

1 for every A ∈ N and α ∈ syn(A), define evaluation
function gA,α with the following parameters:
the node of t where α has to be evaluated and
all inherited attributes of A on which α (potentially)

depends

2 for every α ∈ syn(S), evaluate gS,α(k0) where k0
denotes the root of t

3 L-attributed grammars: integration with top-down parsing
(later)

Compiler Construction Summer Semester 2012 15.13

Attribute Evaluation Methods

Given: noncircular attribute grammar A = 〈G ,E ,V 〉 ∈ AG
syntax tree t of G
valuation v : SynΣ → V where
SynΣ := {α.k | k labelled by a ∈ Σ, α ∈ syn(a)} ⊆ Var t

Goal: extend v to (partial) solution v : Var t → V

Methods: 1 Topological sorting of Dt (later):
1 start with variables which depend at most on SynΣ
2 proceed by successive substitution

2 Strongly noncircular AGs: recursive functions (details
omitted)

1 for every A ∈ N and α ∈ syn(A), define evaluation
function gA,α with the following parameters:
the node of t where α has to be evaluated and
all inherited attributes of A on which α (potentially)

depends

2 for every α ∈ syn(S), evaluate gS,α(k0) where k0
denotes the root of t

3 L-attributed grammars: integration with top-down parsing
(later)

4 S-attributed grammars (i.e., Inh = ∅): yacc
Compiler Construction Summer Semester 2012 15.13

Outline

1 Repetition: Circularity of Attribute Grammars

2 The Circularity Check

3 Correctness and Complexity of the Circularity Check

4 Attribute Evaluation

5 Attribute Evaluation by Topological Sorting

6 L-Attributed Grammars

Compiler Construction Summer Semester 2012 15.14

Attribute Evaluation by Topological Sorting

Algorithm 15.7 (Evaluation by topological sorting)

Input: noncircular A = 〈G ,E ,V 〉 ∈ AG, syntax tree t of G ,
valuation v : SynΣ → V

Compiler Construction Summer Semester 2012 15.15

Attribute Evaluation by Topological Sorting

Algorithm 15.7 (Evaluation by topological sorting)

Input: noncircular A = 〈G ,E ,V 〉 ∈ AG, syntax tree t of G ,
valuation v : SynΣ → V

Procedure: 1 let Var := Var t \ SynΣ (* attributes to be evaluated *)
2 while Var 6= ∅ do

1 let x ∈ Var such that {y ∈ Var | y →t x} = ∅
2 let x = f (x1, . . . , xn) ∈ Et

3 let v(x) := f (v(x1), . . . , v(xn))
4 let Var := Var \ {x}

Compiler Construction Summer Semester 2012 15.15

Attribute Evaluation by Topological Sorting

Algorithm 15.7 (Evaluation by topological sorting)

Input: noncircular A = 〈G ,E ,V 〉 ∈ AG, syntax tree t of G ,
valuation v : SynΣ → V

Procedure: 1 let Var := Var t \ SynΣ (* attributes to be evaluated *)
2 while Var 6= ∅ do

1 let x ∈ Var such that {y ∈ Var | y →t x} = ∅
2 let x = f (x1, . . . , xn) ∈ Et

3 let v(x) := f (v(x1), . . . , v(xn))
4 let Var := Var \ {x}

Output: solution v : Var t → V

Compiler Construction Summer Semester 2012 15.15

Attribute Evaluation by Topological Sorting

Algorithm 15.7 (Evaluation by topological sorting)

Input: noncircular A = 〈G ,E ,V 〉 ∈ AG, syntax tree t of G ,
valuation v : SynΣ → V

Procedure: 1 let Var := Var t \ SynΣ (* attributes to be evaluated *)
2 while Var 6= ∅ do

1 let x ∈ Var such that {y ∈ Var | y →t x} = ∅
2 let x = f (x1, . . . , xn) ∈ Et

3 let v(x) := f (v(x1), . . . , v(xn))
4 let Var := Var \ {x}

Output: solution v : Var t → V

Remark: noncircularity guarantees that in step 2.1 at least one such x is
available

Compiler Construction Summer Semester 2012 15.15

Attribute Evaluation by Topological Sorting

Algorithm 15.7 (Evaluation by topological sorting)

Input: noncircular A = 〈G ,E ,V 〉 ∈ AG, syntax tree t of G ,
valuation v : SynΣ → V

Procedure: 1 let Var := Var t \ SynΣ (* attributes to be evaluated *)
2 while Var 6= ∅ do

1 let x ∈ Var such that {y ∈ Var | y →t x} = ∅
2 let x = f (x1, . . . , xn) ∈ Et

3 let v(x) := f (v(x1), . . . , v(xn))
4 let Var := Var \ {x}

Output: solution v : Var t → V

Remark: noncircularity guarantees that in step 2.1 at least one such x is
available

Example 15.8

see Examples 13.1 and 13.2 (Knuth’s binary numbers)

Compiler Construction Summer Semester 2012 15.15

Outline

1 Repetition: Circularity of Attribute Grammars

2 The Circularity Check

3 Correctness and Complexity of the Circularity Check

4 Attribute Evaluation

5 Attribute Evaluation by Topological Sorting

6 L-Attributed Grammars

Compiler Construction Summer Semester 2012 15.16

L-Attributed Grammars I

In an L-attributed grammar, attribute dependencies on the right-hand
sides of productions are only allowed to run from left to right.

Compiler Construction Summer Semester 2012 15.17

L-Attributed Grammars I

In an L-attributed grammar, attribute dependencies on the right-hand
sides of productions are only allowed to run from left to right.

Definition 15.1 (L-attributed grammar)

Let A = 〈G ,E ,V 〉 ∈ AG such that, for every π ∈ P and
β.i = f (. . . , α.j , . . .) ∈ Eπ with β ∈ Inh and α ∈ Syn, j < i . Then A is
called an L-attributed grammar (notation: A ∈ LAG).

Remark: note that no restrictions are imposed for β ∈ Syn (for i = 0) or
α ∈ Inh (for j = 0). Thus, in an L-attributed grammar,

synthesized attributes of the left-hand side can depend on any outer
variable and
every inner variable can depend on any inherited attribute of the
left-hand side.

Compiler Construction Summer Semester 2012 15.17

L-Attributed Grammars I

In an L-attributed grammar, attribute dependencies on the right-hand
sides of productions are only allowed to run from left to right.

Definition 15.1 (L-attributed grammar)

Let A = 〈G ,E ,V 〉 ∈ AG such that, for every π ∈ P and
β.i = f (. . . , α.j , . . .) ∈ Eπ with β ∈ Inh and α ∈ Syn, j < i . Then A is
called an L-attributed grammar (notation: A ∈ LAG).

Remark: note that no restrictions are imposed for β ∈ Syn (for i = 0) or
α ∈ Inh (for j = 0). Thus, in an L-attributed grammar,

synthesized attributes of the left-hand side can depend on any outer
variable and
every inner variable can depend on any inherited attribute of the
left-hand side.

Corollary 15.2

Every A ∈ LAG is noncircular.

Compiler Construction Summer Semester 2012 15.17

L-Attributed Grammars II

Example 15.3

L-attributed grammar:

S → AB i .1 = 0
i .2 = s.1 + 1
s.0 = s.2 + 1

A → aA i .2 = i .0 + 1
s.0 = s.2 + 1

A → c s.0 = i .0 + 1
B → b s.0 = i .0 + 1

Compiler Construction Summer Semester 2012 15.18

L-Attributed Grammars II

Example 15.3

L-attributed grammar:

S → AB i .1 = 0
i .2 = s.1 + 1
s.0 = s.2 + 1

A → aA i .2 = i .0 + 1
s.0 = s.2 + 1

A → c s.0 = i .0 + 1
B → b s.0 = i .0 + 1

S

A B

a A

c

b

0

1 2

3 4 5

6

Compiler Construction Summer Semester 2012 15.18

Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be
attributed by a depth-first, left-to-right tree traversal with two visits to
each node

1 top-down: evaluation of inherited attributes

2 bottom-up: evaluation of synthesized attributes

Compiler Construction Summer Semester 2012 15.19

Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be
attributed by a depth-first, left-to-right tree traversal with two visits to
each node

1 top-down: evaluation of inherited attributes

2 bottom-up: evaluation of synthesized attributes

Observation 2: visit sequence fits nicely with parsing

1 top-down: expansion steps

2 bottom-up: reduction steps

Compiler Construction Summer Semester 2012 15.19

Evaluation of L-Attributed Grammars

Observation 1: the syntax tree of an L-attributed grammar can be
attributed by a depth-first, left-to-right tree traversal with two visits to
each node

1 top-down: evaluation of inherited attributes

2 bottom-up: evaluation of synthesized attributes

Observation 2: visit sequence fits nicely with parsing

1 top-down: expansion steps

2 bottom-up: reduction steps

Idea: extend LL parsing to support reduction steps, and integrate
attribute evaluation =⇒

use recursive-descent parser

add variables and operations for attribute evaluation

Compiler Construction Summer Semester 2012 15.19

Recursive-Descent Parsing I

Ingredients: variable token for current token
function next() for invoking the scanner
procedure print(i) for displaying the leftmost analysis
(or errors)

Compiler Construction Summer Semester 2012 15.20

Recursive-Descent Parsing I

Ingredients: variable token for current token
function next() for invoking the scanner
procedure print(i) for displaying the leftmost analysis
(or errors)

Method: to every A ∈ N we assign a procedure

A()

which

tests token with regard to the lookahead sets of the
A-productions,
prints the corresponding rule number and
evaluates the corresponding right-hand side as follows:

for a ∈ Σ: check token; call next()
for A ∈ N : call A

Compiler Construction Summer Semester 2012 15.20

Recursive-Descent Parsing and Evaluation I

Ingredients: variable token for current token
function next() for invoking the scanner
procedure print(i) for displaying the leftmost analysis
(or errors)

Method: to every A ∈ N we assign a procedure

A(in: inh(A), out: syn(A))

which

declares local variables for synthesized attributes on
right-hand sides,
tests token with regard to the lookahead sets of the
A-productions,
prints the corresponding rule number and
evaluates the corresponding right-hand side as follows:

for a ∈ Σ: check token; call next()
for A ∈ N : call A with appropriate parameters

Compiler Construction Summer Semester 2012 15.20

Recursive-Descent Parsing II

Example 15.4 (cf. Example 15.3)

proc main();
token := next(); S()

proc S(); (* S → A B *)
if token in {’a’,’c’} then

print(1); A(); B()
else print(error); stop fi

proc A(); (* A → a A | c *)
if token = ’a’ then

print(2); token := next(); A()
elsif token = ’c’ then

print(3); token := next()
else print(error); stop fi

proc B(); (* B → b *)
if token = ’b’ then

print(4); token := next()
else print(error); stop fi

Compiler Construction Summer Semester 2012 15.21

Recursive-Descent Parsing and Evaluation II

Example 15.5 (cf. Example 15.3)

proc main(); var s;
token := next(); S(s); print(s)

proc S(out s0); var s1,s2; (* S → A B *)
if token in {’a’,’c’} then

print(1); A(0,s1); B(s1 + 1,s2); s0 := s2 + 1
else print(error); stop fi

proc A(in i0,out s0); var s2; (* A → a A | c *)
if token = ’a’ then

print(2); token := next(); A(i0 + 1,s2); s0 := s2 + 1
elsif token = ’c’ then

print(3); token := next(); s0 := i0 + 1
else print(error); stop fi

proc B(in i0,out s0); (* B → b *)
if token = ’b’ then

print(4); token := next(); s0 := i0 + 1
else print(error); stop fi

Compiler Construction Summer Semester 2012 15.22

	Repetition: Circularity of Attribute Grammars
	The Circularity Check
	Correctness and Complexity of the Circularity Check
	Attribute Evaluation
	Attribute Evaluation by Topological Sorting
	L-Attributed Grammars

